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In light-front dynamics, the regularization of amplitudes by traditional cutoffs imposed on the
transverse and longitudinal components of particle momenta corresponds to restricting the integration
volume by a nonrotationally invariant domain. The result depends not only on the size of this domain (i.e.,
on the cutoff values), but also on its orientation determined by the position of the light-front plane.
Explicitly covariant formulation of light-front dynamics allows us to parametrize the latter dependence in
a very transparent form. If we decompose the regularized amplitude in terms of independent invariant
amplitudes, extra (nonphysical) terms should appear, with spin structures which explicitly depend on the
orientation of the light-front plane. The number of form factors, i.e., the coefficients of this decom-
position, therefore also increases. The spin-1=2 fermion self-energy is determined by three scalar
functions, instead of the two standard ones, while for the elastic electromagnetic vertex the number of
form factors increases from two to five. In the present paper we calculate perturbatively all these form
factors in the Yukawa model. Then we compare the results obtained in the two following ways: (i) by
using the light-front dynamics graph technique rules directly; (ii) by integrating the corresponding
Feynman amplitudes in terms of the light-front variables. For each of these methods, we use two types
of regularization: the transverse and longitudinal cutoffs, and the Pauli-Villars regularization. In the latter
case, the dependence of amplitudes on the light-front plane orientation vanishes completely provided
enough Pauli-Villars subtractions are made.
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I. INTRODUCTION

Light-front dynamics (LFD) is extensively and success-
fully applied to hadron phenomenology, relativistic few-
body systems, and field theory. For reviews of theoretical
developments and applications see, e.g., Refs. [1,2]. In the
LFD framework, nonperturbative approaches to field the-
ory were developed in Refs. [3–5] and in Refs. [6–8]. In
spite of some essential differences, these approaches pro-
ceed from the same starting point, namely, they approxi-
mate the state vector of the system by a truncated one. The
problem is then solved without any decomposition in
powers of the coupling constant. Doing that, one should
carry out the renormalization procedure nonperturbatively.
This is a nontrivial problem which is at the heart of on-
going intense research. However, before renormalization,
one should regularize the amplitudes, both in the perturba-
tive and nonperturbative frameworks. The explicit depen-
dence of these amplitudes on the cutoffs is not unique. It is
determined by the method of regularization.

It is of utmost importance to understand the origin and
the implications of this dependence if one wants to address
the question of nonperturbative renormalization. As we
shall show in the present article, this is the only way to
identify the structure of the counterterms needed to recover
full rotationally invariant renormalized amplitudes in LFD.
The question of the nonperturbative determination of the
counterterms in truncated Fock space is discussed in
Ref. [8].

The rules for calculating amplitudes can be derived
directly, either by transforming the standard T-ordering
of the S-matrix into the ordering along the light-front
(LF) time (the LFD graph technique rules [1]), or from
quantized field theory on the LF plane [2]. An alternative
method consists in expressing well-defined Feynman am-
plitudes through the LF variables and integrating over the
minus components of particle momenta [9,10]. Such an
approach was applied to the derivation and study of the LF
electromagnetic amplitudes [11,12] and to the analysis of
different contributions to the electromagnetic current, re-
sulting from the LF reduction of the Bethe-Salpeter for-
malism [13]. A study of electroweak transitions of the spin-
1 mesons, based on using the LF plane of general orienta-
tion [1], was carried out in Refs. [14,15]. The comparison
of perturbative amplitudes obtained from the LFD graph
technique rules with those derived from the Feynman
approach is, in general, not trivial, as shown in Ref. [16].

Concerning the regularization of amplitudes in LFD, at
least two important features should be mentioned. First, if a
given physical process is described by a set of LF dia-
grams, each partial LF amplitude usually diverges more
strongly than the Feynman amplitude of the same process.
The statement holds true regardless of the origin of the LF
contributions: either from the rules of LFD, or from the
Feynman amplitude. This increases the sensitivity of the
result to the choice of the regularization procedure and may
be a source of the so-called treacherous points [17].
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Second, the LF variables (and, hence, the integration do-
main with the cutoffs imposed on it) explicitly depend on
the LF plane orientation, which means the loss of rotational
invariance. Because of this extra dependence, standard
decompositions of such regularized LF amplitudes into
invariant amplitudes are not valid. The total number of
invariant amplitudes (and the number of form factors
which are the coefficients in this decomposition) increases,
as compared to the case when the rotational invariance is
preserved. For example, the LF electromagnetic vertex
(EMV) of a spin-1=2 particle is determined by five form
factors rather than by two. In order to cancel the extra
contributions (which depend on the LF plane orientation),
one needs to introduce in the interaction Hamiltonian new
specific counterterms.

This complication is especially dramatic in nonpertur-
bative approaches, where the Fock space truncation is
another source of the rotational symmetry violation. A
given Feynman diagram may generate a few time-ordered
ones with intermediate states containing a different number
of particles. When they are truncated, the rotational invari-
ance is lost even for invariant cutoffs. The interlacing of the
two sources of the violation of rotational symmetry makes
nonperturbative analysis of the counterterm structure ex-
tremely involved. One should therefore separate to a maxi-
mal extent the problems coming from the regularization
procedure and from the Fock space truncation. That can be
effectively done in the explicitly covariant formulation of
LFD within the perturbative framework in a given order in
the coupling constant.

In the present paper we study in detail this problem for
the spin-1=2 fermion perturbative self-energy and the elas-
tic EMV in the Yukawa model within the framework of
explicitly covariant LFD [1]. The latter deals with the LF
plane of general orientation ! � x � !0t�! � x � 0,
where ! is a four-vector with !2 � 0. In the particular
case! � �1; 0; 0;�1�we recover the standard approach on
the plane t� z � 0. Because of!, which is transformed as
a four-vector under rotations and Lorentz boosts, we can
keep manifest rotational invariance throughout the calcu-
lations. Dependence of amplitudes on the LF plane orien-
tation turns now in their dependence on the four-vector !.
The latter participates in the construction of the spin struc-
tures in which the regularized initial LF amplitude can be
decomposed, on equal footing with the particle four-
momenta. This generates extra (!-dependent) spin struc-
tures with corresponding scalar coefficients (e.g., electro-
magnetic form factors). The number of the extra spin
structures and their explicit forms are determined by gen-
eral physical principles (more precisely, by the particle
spins and the symmetries of the interaction), i.e., they are
universal for any model and do not depend on particular
features of dynamics; whereas, the dependence of the extra
coefficients on particle four-momenta is determined by the
model. This allows to separate general properties, related
to LFD itself, from model-dependent effects.

We shall proceed in the following two ways, both for the
self-energy and the EMV. In the first way, we calculate
these quantities by the LFD graph technique rules, taking
into account all necessary diagrams. In the second way, we
start from the standard Feynman amplitudes and integrate
them in terms of the LF variables. For both ways, we have
to introduce cutoffs on the LF variables, and this fact
already implies the contribution of extra (!-dependent)
structures and their corresponding form factors. The regu-
larized self-energy and the EMV calculated by means of
the LFD graph technique rules do not coincide in general
with their counterparts obtained from the Feynman ampli-
tudes. For the EMV case, the vertex found from the
Feynman amplitude with the cutoffs imposed on the LF
variables also differs from that calculated in a standard
way, by the Wick rotation with a spherically symmetric
cutoff or by the Pauli-Villars (PV) regularization. All these
differences disappear when we deal with integrals which
are finite from the very beginning (e.g., due to the PV
regularization). They disappear also in the renormalized
amplitudes, though renormalization procedures (counter-
terms, etc.) are drastically different for different regulari-
zation schemes.

Within covariant LFD, the perturbative QED self-energy
and the EMV in the channel of the fermion-antifermion
pair creation have been studied earlier [18]. The main
subject was to extract the physical (!-independent) con-
tributions from the corresponding amplitudes and to renor-
malize this physical part only. The present analysis is
devoted to a more detailed treatment of the self-energy
and the EMV. We calculate both physical and nonphysical
contributions in the two ways mentioned above and inves-
tigate the influence of the regularization procedure on the
whole amplitudes and on their subsequent renormalization.
The Yukawa model which we use reflects some features of
QED but it is simpler from the technical point of view.

The paper is organized as follows. In Sec. II we briefly
describe the LFD graph technique rules and apply them to
calculate the fermion self-energy. We use two different
regularization procedures, the transverse and longitudinal
LF cutoffs or PV subtractions, either for the bosonic, or
simultaneously for both bosonic and fermionic propaga-
tors. Then we calculate the fermion self-energy, starting
from the manifestly invariant Feynman amplitude ex-
pressed through the LF variables and regularized in the
same way as the LFD one. We compare the results obtained
in both approaches and analyze how they are affected by
the choice of regularization. In Sec. III we repeat analo-
gous steps for the fermion EMV. For this purpose, we
derive the LF interaction Hamiltonian which includes
fermion-boson and fermion-photon interactions. We then
construct the complete set of the LF diagrams which
contribute to the EMV. We use again the noninvariant LF
cutoffs and the invariant PV regularization. The LFD form
factors are compared to those obtained in terms of the

V. A. KARMANOV, J.-F. MATHIOT, AND A. V. SMIRNOV PHYSICAL REVIEW D 75, 045012 (2007)

045012-2



Feynman amplitude with the same type of regularization.
A general discussion of our results is presented in Sec. IV.
Section V contains concluding remarks. The technical de-
tails of some derivations are given in the Appendices.

II. THE FERMION SELF-ENERGY

The fermion self-energy is the simplest example of how
an extra spin structure is generated by rotationally non-
invariant cutoffs in LFD. To make the situation more
transparent, we will calculate the self-energy indepen-
dently in the two following ways: (i) by applying the
covariant LFD graph technique rules; (ii) by using the
four-dimensional Feynman approach. In each case we
consider two different types of regularization of divergent
integrals: either the traditional rotationally noninvariant
cutoffs or the invariant PV regularization. We then renor-
malize the amplitudes and compare the results obtained
within these two methods.

A. Calculation in light-front dynamics

1. Light-front diagrams and their amplitudes

We calculate in this section the fermion self-energy in
the second order of perturbation theory, using the graph
technique rules of explicitly covariant LFD [1,7,19]. We do
it in detail in order to explain the rules on a concrete
example.

The self-energy ��p� is determined by the sum of the
two diagrams shown in Fig. 1,

 ��p� � �2b�p� � �fc�p�: (1)

They correspond to the two-body contribution and the
fermion contact term, respectively. Analytical expressions
for the corresponding amplitudes read
 

�2b�p� � �
g2

�2��3
Z
��! � k���k2 ��2�d4k�q6 �m�

� ��! � q���q2 �m2�d4q��4��p�!�� k� q�

�
d�

�� i0
; (2a)

�fc�p� �
g2

�2��3
Z !6

2! � �p� k�
��! � k���k2 ��2�d4k;

(2b)

where g is the coupling constant of the fermion-boson
interaction, m and � are the fermion and boson masses,
respectively. In the covariant LFD graph technique, all the
four-momenta are on the corresponding mass shells. This
is due to the fact that the propagators are proportional to
delta functions: ��! � k���k2 ��2� is the boson propaga-
tor, �q6 �m���! � q���q2 �m2� is the fermion one. Each

theta function ��! � l� selects only one value of l0 ������������������
l�m2

l 2
q

, of the two possible ones allowed by the corre-

sponding delta function ��l2 �m2
l �. There is no conserva-

tion law for the components of particle four-momenta in
the direction of ! (or for the minus components, in the
standard version of LFD). The conservation is restored by
the spurion four-momentum !� which enters the delta
function ��4��p�!�� k� q�. The factor 1=��� i0� is
the spurion propagator and the �-integration is performed
in infinite limits. To avoid misunderstanding, we empha-
size that spurions are not true particles and do not affect
particle counting. They serve as a convenient way to
describe the departure of intermediate particles off the
energy shell. The term ‘‘spurion’’ itself is used for shorter
wording only. For this reason, the intermediate state in the
self-energy (2a) contains one fermion and one scalar boson
only. The self-energy is supposed to be off-energy-shell,
i.e., �1 � 0.

Integrating by means of the delta functions over d4q, d�,
and dk0, we get

 

�2b�p� ��
g2

�2��3
Z �p6 � k6 �!6 ��m���! � �p� k�	

2! � �p� k��
d3k
2"k

;

(3a)

�fc�p� �
g2!6

�2��3
Z 1

2! � �p� k�
d3k
2"k

; (3b)

where "k 
 k0 �
������������������
k2 ��2

p
and

 � �
m2 � �p� k�2

2! � �p� k�
: (4)

Let us go over to the LF variables. First, we denote x �
�! � k�=�! � p� (equivalent to k�=p� in standard nonco-
variant LFD on the surface t� z � 0). We then split the
three-vector k into two parts: k � k? � kk, which are,
respectively, perpendicular and parallel to the three-vector
!. Since ��p� is an analytic function of p2, we may
calculate it for p2 > 0, while its values for p2 � 0 are
obtained by the analytical continuation. If p2 > 0, we
may perform our calculation in the reference frame where
p � 0. Using the kinematical relations from Appendix A,
one can rewrite Eqs. (3) as

 p1

q

p1

k

ωτ

ωτ1 ωτ1

+
p1 p1

kωτ1 ωτ1

− /ω
2ω. (p− k )

(a) (b)

FIG. 1. Two contributions to the LFD fermion self-energy
���p�: the two-body intermediate state (a) and the contact
term (b). The solid, dashed, and dotted lines represent, respec-
tively, the fermion, the boson, and the spurion. Here p � p1 �
!�1, where !�1 is the four-momentum attached to the initial (or
final) spurion line. See text for the explanation.
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�2b�p� � �
g2

16�3

Z
d2k?

Z 1

0

�p6 � k6 �m�dx

k2
? �m

2x� p2x�1� x� ��2�1� x�
�

g2!6

32�3�! � p�

Z
d2k?

Z 1

0

dx
x�1� x�

; (5a)

�fc�p� �
g2!6

32�3�! � p�

Z
d2k?

Z �1
0

dx
x�1� x�

: (5b)

Both �2b�p� and �fc�p� are expressed through integrals
which diverge logarithmically in x and quadratically in
jk?j. Possible regularization procedures are discussed
below.

Following Ref. [7], we will use the matrix representation
 

�2b�p� � g2

�
A�p2� �B�p2�

p6
m
� C�p2�

m!6
! � p

�
; (6a)

�fc�p� � g2Cfc
m!6
! � p

; (6b)

where the coefficients A, B, and C are scalar functions
which depend on p2 only. They are independent of !. The
coefficient Cfc is a constant. The self-energy is thus ob-
tained by summing up Eqs. (6):

 ��p� � g2

�
A�p2� �B�p2�

p6
m
� �C�p2� � Cfc	

m!6
! � p

�
:

(7)

Note that in expression (7) an additional spin structure
proportional to !6 appears, as compared to the standard
four-dimensional Feynman approach.

2. Regularization with rotationally noninvariant cutoffs

In order to regularize the integrals over d2k?, we in-
troduce a cutoff �?, so that k2

? <�2
?. Since some inte-

grals over dx diverge logarithmically at x � 0 and/or
x � 1, we also introduce (where it is needed) an infinitesi-
mal positive cutoff �, assuming that x may belong to the
intervals � < x < 1� � and 1� � < x <�1. The corre-
sponding analytical expressions for the functions A�p2�,
B�p2�, C�p2�, and Cfc were found in Ref [7]:

 

A�p2� � �
m

16�2

Z �2
?

0
dk2
?

Z 1

0
dx

1

k2
? �m

2x� p2x�1� x� ��2�1� x�
; (8a)

B�p2� � �
m

16�2

Z �2
?

0
dk2
?

Z 1

0
dx

1� x

k2
? �m

2x� p2x�1� x� ��2�1� x�
; (8b)

C�p2� � �
1

32�2m

Z �2
?

0
dk2
?

Z 1��

0
dx

k2
? �m

2 � p2�1� x�2

�1� x��k2
? �m

2x� p2x�1� x� ��2�1� x�	
; (8c)

Cfc �
1

32�2m

Z �2
?

0
dk2
?

�Z 1��

�

dx
x�1� x�

�
Z �1

1��

dx
x�1� x�

�
: (8d)

We imply in the following that �2
? � maxfjp2j; m2; �2g and � 1. The dependence of physical results on the cutoffs is

eliminated by taking the limits �? ! 1, �! 0. Retaining in Eqs. (8) all terms which do not vanish in these limits, we get
 

A�p2� � �
m

8�2 log
�?
m
�

m

16�2

Z 1

0
dx log

�
m2x� p2x�1� x� ��2�1� x�

m2

�
; (9a)

B�p2� � �
m

16�2 log
�?
m
�

m

16�2

Z 1

0
dx�1� x� log

�
m2x� p2x�1� x� ��2�1� x�

m2

�
; (9b)

C�p2� � �
�2
?

32�2m
log

1

�
�
m2 ��2

16�2m
log

�?
m
�

1

32�2m

�
m2 ��2 � 2�2 log

m
�

�
; (9c)

Cfc �
�2
?

32�2m
log

1

�
: (9d)

We have not integrated over dx in Eqs. (9a) and (9b) because the results of the integrations are rather long. It is interesting
to note that C�p2� does not depend on p2. Because of this, we will denote in the following C�p2� 
 C � const and, for
shortness, ~C 
 C� Cfc.

Each of the two quantities, C and Cfc, diverges like �2
? log�1=��. The strongest divergencies cancel in the sum ~C �

C� Cfc, but the latter differs from zero and, moreover, has no finite limit when �? ! 1:
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~C��
m2��2

16�2m
log

�?
m
�

1

32�2m

�
m2��2� 2�2 log

m
�

�
:

(10)

Since the two diagrams shown in Fig. 1 exhaust the full set
of the second-order diagrams which contribute to the fer-
mion self-energy, we might expect the disappearance of
every!-dependent contribution from the amplitude. As far
as this does not take place, the only source of the
!-dependence is the use of the rotationally noninvariant
cutoffs for the LF variables k2

? and x. Indeed, if we write
these variables in the explicitly covariant form
 

k2
? � 2

�! � k��k � p�
! � p

� p2

�
! � k
! � p

�
2
��2; x �

! � k
! � p

;

it becomes evident that both of them depend on !.
Introducing the cutoffs �2

? and �, we restrict an
!-dependent integration domain, which inevitably brings
!-dependence into the regularized quantities. We will
demonstrate this feature in more detail in Sec. IV by using
a very simple and transparent example. Note that, without
adding new, !-dependent, counterterms in the interaction
Hamiltonian, this dependence is not killed by the standard
renormalization. The renormalization recipe must be there-
fore modified [7].

3. Invariant Pauli-Villars regularization

As we learned above, the source of the appearance of the
extra (!-dependent) term in the regularized fermion self-
energy is the !-dependence of the integration domain. A
standard way free from this demerit is the use of the PV

regularization, since in that case the cutoffs have no more
relation to !. In the language of LFD, the PV regulariza-
tion consists in changing the propagators as
 

��! � k���k2 ��2� ! ��! � k����k2 ��2� � ��k2 ��2
1�	

for scalar bosons, and
 

�q6 �m���! � q���q2 �m2�

! ��! � q���q6 �m���q2 �m2� � �q6 �m1���q
2 �m2

1�	

for fermions. This procedure is equivalent to introducing
additional particles (one PV fermion with the mass m1 and
one PV boson with the mass �1), whose wave functions
have negative norms. If needed, more subtractions can be
done until all integrals become convergent. After the cal-
culation of the integrals and the renormalization, the limits
�1 ! 1 and m1 ! 1 should be taken. In the case of the
fermion self-energy, we may regularize either the boson
propagator only, or the fermion one, or both simulta-
neously. Hereafter we will supply PV-regularized quanti-
ties with the superscript ‘‘PV, b’’ (when only the bosonic
propagator is modified) or ‘‘PV, b� f’’ (when both bo-
sonic and fermionic propagators are modified).

Let us now calculate the PV-regularized coefficients
A�p2�, B�p2�, and ~C. We can start from the expressions
(9), in spite of their dependence on the ‘‘old’’ cutoffs �?
and �. Indeed, the integrals in Eqs. (5) become regular,
provided enough PV subtractions have been made. If so,
they have definite limits at �? ! 1 and �! 0.

The integrals for A�p2� and B�p2� become convergent
after the regularization by a PV boson only:

 

APV;b�p2� �A�p2; m;�� �A�p2; m;�1� �
m

16�2

Z 1

0
dx log

�
m2x� p2x�1� x� ��2�1� x�

m2x� p2x�1� x� ��2
1�1� x�

�
; (11a)

BPV;b�p2� � B�p2; m;�� �B�p2; m;�1� �
m

16�2

Z 1

0
dx�1� x� log

�
m2x� p2x�1� x� ��2�1� x�

m2x� p2x�1� x� ��2
1�1� x�

�
: (11b)

The situation differs drastically for the coefficient ~C.
After the bosonic PV regularization we get

 

~CPV;b �
1

32�2m

�
��2 ��2

1�

�
1� 2 log

�?
m

�

� 2�2 log
m
�
� 2�2

1 log
m
�1

�
: (12)

Since the result is still divergent for �? ! 1, this regu-
larization is not enough. The additional fermionic PV
regularization requires some care because ~C is a coefficient
at the spin structure m!6 =�! � p� which itself depends on
m. Hence, one should regularize the quantity m ~C:

 

�m ~C�PV;b�f � m ~C�m;�� �m ~C�m;�1� �m1
~C�m1; ��

�m1
~C�m1; �1� � 0: (13)

We see that after the double PV regularization the extra
structure in Eq. (7), proportional to !6 , disappears, as it
should. Note that Eq. (13) holds for arbitrary (i.e., not
necessary infinite) PV masses m1 and �1.

4. Renormalization procedure

The renormalized self-energy is obtained by using the
standard procedure:

 �PV;b�f
ren �p� � �PV;b�f�p� � c1 � c2�p6 �m�; (14)

where
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c1 �
�u�p��PV;b�f�p�u�p�

2m

��������p2�m2
; (15a)

c2 �
1

2m

�
�u�p�

@�PV;b�f�p�
@p6

u�p�
�
p2�m2

: (15b)

Finally,

 �PV;b�f
ren �p� � g2

�
Aren�p

2� �Bren�p
2�
p6
m

�
; (16)

with
 

Aren�p
2� �A�p2� �A�m2� � 2m2�A0�m2� �B0�m2�	;

(17a)

Bren�p2� � B�p2� �B�m2� � 2m2�A0�m2� �B0�m2�	:

(17b)

In order to calculate Aren�p
2� and Bren�p

2� we can use the
initial functions A�p2� and B�p2� regularized either by
the noninvariant cutoffs, Eqs. (9a) and (9b), or by means of
the PV regularization, Eqs. (11). Any choice leads to the
same result:
 

Aren�p
2� �

m

16�2

Z 1

0
dx��1�x� ��2�x�	; (18a)

Bren�p2� �
m

16�2

Z 1

0
dx�1� x���1�x� ��2�x�	; (18b)

where

 �1�x� � log
�
m2x� p2x�1� x� ��2�1� x�

m2x2 ��2�1� x�

�
;

�2�x� �
2m2x�2� 3x� x2�

m2x2 ��2�1� x�
:

The remaining integrations over dx in Eqs. (18) are simple
but lengthy.

B. Calculation in the four-dimensional Feynman
approach

1. Regularization with rotationally noninvariant cutoffs

We showed above that the regularized fermion self-
energy calculated within LFD with the traditional trans-
verse (�?) and longitudinal (�) cutoffs contains an extra
spin structure depending on !. In order to understand the
reasons of this behavior, we calculate here the self-energy
in another way, following Ref. [9]. We start from the
standard four-dimensional Feynman expression

 �F�p� �
ig2

�2��4

�
Z
d4k

p6 � k6 �m

�k2 ��2 � i0	��p� k�2 �m2 � i0	
;

(19)

but perform the integrations in terms of the LF variables,
with the corresponding cutoffs. For this purpose, we in-
troduce the minus, plus, and transverse components of the
four-momentum k:

 k� � k0 � kz; k� � k0 � kz; k? � �kx; ky�;

and analogously for p. As in Sec. II A 1, we take, for
convenience, the reference frame where p � 0. In this
frame p� � p2=p�. Denoting k� � xp�, we get

 

�F�p� �
ig2p�
32�4

Z
d2k?

Z �1
�1

dx
Z �1
�1

dk�

�
1

�k�p�x� k2
? ��

2 � i0	

�
�p6 � k6 �m�

��p� � k��p��1� x� � k2
? �m

2 � i0	
(20)

with

 k6 �
1

2
��k� �

x
2
��p� � �? � k?:

The integral over dk� is calculated by using the principal
value prescription:

 

Z �1
�1

dk��� � �� � lim
L!1

Z L

�L
dk��� � ��: (21)

This integral is well defined unless x � 0 or x � 1. If x �
0 or x � 1, the integral (21) diverges on the upper and
lower limits. So, the infinitesimal integration domains near
the points x � 0 and x � 1 (the so-called zero modes)
require special consideration. We introduce a cutoff � in
the variable x and represent ��p� as a sum

 �F�p� � �p�a�p� ��zm�p�; (22)

where �p�a�p� incorporates the contributions from the
regions of integration over dx (�1< x<1), excluding
the singular points x � 0 and x � 1, while the zero-mode
part �zm�p� involves the integrations in the �-vicinities of
these two points.

The calculation is carried out in Appendix B. After
closing the integration contour by an arc of a circle (see
Appendix B), the integral for �p�a�p� is represented as a
sum of the pole and arc contributions and has the form

V. A. KARMANOV, J.-F. MATHIOT, AND A. V. SMIRNOV PHYSICAL REVIEW D 75, 045012 (2007)

045012-6



 �p�a�p� � �
g2

16�3

Z
d2k?

Z 1��

�

�p6 � k6 �m�dx

k2
? �m

2x� p2x�1� x� ��2�1� x�
�

g2!6

32�3�! � p�

Z
d2k?

Z �1
1��

dx
x�1� x�

: (23)

Comparing Eq. (23) with Eqs. (5), we see that

 �p�a�p� � �2b�p� ��fc�p�; (24)

where both terms on the right-hand side are regularized at
x � 0 and x � 1. The pole plus arc contributions to
Eq. (20) reproduce the result given by the sum of the two
LFD diagrams shown in Fig. 1. Hence,

 �p�a�p� � g2

�
A�p2� �B�p2�

p6
m
� Cp�a

m!6
! � p

�
; (25)

where A�p2� and B�p2� are defined by Eqs. (9a) and (9b),
while Cp�a coincides with ~C, Eq. (10).

As mentioned above, the zero-mode contribution results
from the divergence (at L! 1) of the integral over k�,
which occurs when x � 0, 1. This divergence is deter-
mined by the leading k�-term in the numerator of
Eq. (20), that is by 1

2��k�. In explicitly covariant LFD,
the matrix �� turns into !6 . The zero-mode contribution is
therefore

 �zm�p� 
 g2Czm
m!6
! � p

; (26)

where Czm is calculated in Appendix B and has the form
 

Czm �
m2��2

16�2m
log

�?
m
�

1

32�2m

�
m2��2� 2�2 log

m
�

�
:

(27)

We thus find

 Cp�a � Czm � 0; (28)

since Cp�a � ~C is given by the right-hand side of Eq. (10).
Substituting Eqs. (25) and (26) into Eq. (22), and taking
into account Eq. (28), we finally get

 �F�p� � g2

�
A�p2� �B�p2�

p6
m

�
: (29)

We see that, after the incorporation of the pole, arc, and
zero-mode contributions, the!-dependent term in the self-
energy disappears, even before the renormalization. Note
that, although we used the same cutoffs, the formula (29)
does not coincide with the expression (7) obtained by using
the LFD graph technique rules, since the sum C�p2� � Cfc
is not zero [it is given by Eq. (10)]. One might think that the
dependence of the self-energy (7) on ! is an artifact of the
LFD rules, whereas the independence of the Feynman
approach on ! is natural, since we started with the
Feynman expression (19) which ‘‘knows nothing’’ about
!. It is not so, since the initially divergent integral for ��p�
acquires some sense only after regularization, and the latter
has been done in terms of the cutoffs imposed on the LF
variables. The independence of �F�p� on ! looks thereby
as a coincidence. We shall see in Sec. III B that, in the
EMV case, in contrast to the self-energy one, the LF cut-
offs applied to the initial Feynman integral do result in
some dependence of the EMVon the LF plane orientation.

After the renormalization, Eq. (29) reproduces the ex-
pression (16) obtained earlier for the self-energy found
within LFD and regularized by the invariant PV method.

2. Invariant regularization

We briefly recall in this section familiar results known
from the standard four-dimensional Feynman formalism
which is completely independent from LFD. It may serve
as an additional test of the results obtained above.

The fermion self-energy is given by Eq. (19). It is
convenient to use the following decomposition:

 �F�p� � g2

�
AF�p2� �BF�p2�

p6
m

�
; (30)

where AF�p2� and BF�p2� are scalar functions. Note that
they do not coincide with A�p2� and B�p2� from Eq. (29),
since we use here another regularization procedure.
Applying the Feynman parametrization, we can rewrite
Eq. (19) as

 �F�p� �
ig2

16�4

Z
d4k0

Z 1

0
dx

�1� x�p6 � k6 0 �m

�k02 �m2x� p2x�1� x� ��2�1� x� � i0	2
; (31)

where we introduced k0 � k� xp. Going over to Euclidean space by means of the Wick rotation k00 � ik04 with real k04 and
regularizing the divergent integrals by an invariant cutoff jk02j � k02 � k024 <�2 (assuming that �2 � fm2; �2; jp2jg), we
can perform the four-dimensional integration and get

 �F�p� � �
g2

16�2

Z 1

0
dx��1� x�p6 �m	

�
log

�
�2

m2x� p2x�1� x� ��2�1� x�

�
� 1

�
: (32)

The terms of order 1=�2 and higher are omitted. Comparing the right-hand sides of Eqs. (30) and (32), we find
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AF�p
2� � �

m

16�2

�
log

�2

m2 � 1
�
�

m

16�2

Z 1

0
dx log

�
m2x� p2x�1� x� ��2�1� x�

m2

�
; (33a)

BF�p2� � �
m

32�2

�
log

�2

m2 � 1
�
�

m

16�2

Z 1

0
dx�1� x� log

�
m2x� p2x�1� x� ��2�1� x�

m2

�
: (33b)

The renormalized self-energy �F;ren�p� is found from
Eq. (14), changing �PV;b�f�p� by �F�p�. The correspond-
ing renormalized functions AF;ren�p

2� and BF;ren�p
2� co-

incide with Aren�p2� and Bren�p2� given by Eqs. (18). We
thus reproduce again Eq. (16) for �F;ren�p�.

It is easy to verify that using the PV subtraction for the
boson propagator (instead of the cutoff �2),

 �PV;b
F �p� � �F�p;m;�� � �F�p;m;�1�;

leads, in the limit �1 ! 1, to the same expression (16) for
the renormalized self-energy. We have therefore

 �F;ren�p� � �PV;b
F;ren�p� � �PV;b�f

ren �p�: (34)

To conclude, any of the considered ways of regulariza-
tion (either with the noninvariant cutoffs �? and � or with
the single bosonic PV subtraction) can be used in order to
get the correct expression for the renormalized self-energy
in the Feynman approach, while the double (bosonic�
fermionic) PV subtraction is required in the case of LFD.

III. FERMION ELECTROMAGNETIC VERTEX

We can now proceed to the calculation of the spin-1=2
fermion elastic EMV, �	, which is connected with the
matrix element of the electromagnetic current J	 by the
relation

 J	 � e �u�p0��	u�p�; (35)

where e is the physical electromagnetic coupling constant,
p and p0 are the initial and final on-mass-shell fermion
four-momenta (p02 � p2 � m2). Assuming P-, C-, and
T-parity conservation, �	 is defined by two form factors
depending on the momentum transfer squared Q2 �
��p0 � p�2:

 �u 0�	u � �u0
�
F1�Q2��	 �

iF2�Q
2�

2m

	�q�

�
u: (36)

We omit for simplicity the bispinor arguments and denoted
q � p0 � p, 
	� � i��	�� � ���	�=2.

We consider here, as in Sec. II, the Yukawa model which
takes into account interaction of fermions with scalar
bosons, while the EMV ‘‘dressing’’ due to fermion-photon
interactions is neglected. The fermion-boson interaction is
treated perturbatively, up to terms of order g2.

At that order, the EMV must be renormalized. The
standard renormalization recipe consists in the subtraction
�ren
	 � �	 � Z1�	 with the constant Z1 found from the

requirement �u�p��ren
	 u�p� � �u�p��	u�p�. This leads to the

following well-known expressions for the renormalized
form factors:

 Fren
1 �Q

2� � 1� F1�Q
2� � F1�0�; Fren

2 �Q
2� � F2�Q

2�:

(37)

We shall follow the same ideology that we exposed
above for the self-energy: independent calculations of the
EMV are performed, within covariant LFD and the
Feynman approach, both for noninvariant and invariant
regularization. However, in contrast to the self-energy
case, the use of rotationally noninvariant cutoffs results
in the appearance of new structures (and form factors) in
the EMV, even if one starts from the standard four-
dimensional Feynman expression. By this reason, the re-
normalization of the two physical form factors only, as
prescribed by Eqs. (37), is not enough to get the full
renormalized EMV.

A. Calculation in light-front dynamics

1. Light-front interaction Hamiltonian involving
electromagnetic interaction

Before going over to the consideration of the EMV in
covariant LFD, one should derive the interaction Hamil-
tonian which involves both fermion-boson and fermion-
photon interactions. Although all the diagrams calculated
below are generated by the graph technique rules formu-
lated in Ref. [1], this is another way to explain their origin.

We will not give here a detailed derivation. The corre-
sponding procedure is exposed in Ref. [7]. We derived
there the LF Hamiltonian describing a system of interact-
ing fermion and massless vector boson fields. This expres-
sion holds also for a fermion-photon system. When the
photon field is taken in the Feynman gauge, the
Hamiltonian in Schrödinger representation has the form

 Hint�x� � �e � A6  � e2 � A6
!6

2i�! �DA�
A6  ; (38)

where  and A are the free fermion and photon fields,
respectively, and the operator 1=�i! �DA� in coordinate
space acts on the coordinate along the four-vector ! (for
convenience we denote it for a moment as x�, since ! in
standard LFD has only the minus-component):

 

1

i! �DA
f�x�� � exp

�
�

e
i! � @

! � A
�

1

i! � @

�

�
exp

�
e

i! � @
! � A

�
f�x��

�
(39)

V. A. KARMANOV, J.-F. MATHIOT, AND A. V. SMIRNOV PHYSICAL REVIEW D 75, 045012 (2007)

045012-8



and 1=�i! � @� is the free reversal derivative operator:

 

1

i! � @
f�x�� � �

i
4

Z
dy���x� � y��f�y��; (40)

where ��x� is the sign function. The operators 1=�i! � @�
inside the exponents act on the functions ! � A only, while
that standing between the exponents acts on all the func-
tions to the right of it. In momentum representation, the
action of the operator 1=�i! � @� on a function f�x� reduces
to the multiplication of its Fourier transform f�k� by the
factor 1=�! � k�.

It is easy to modify the Hamiltonian (38) in order to
incorporate interactions between fermions and scalar bo-
sons. The equation of motion for the Heisenberg fermion
field operator �, in the absence of scalar bosons, looks like
�i@6 �m�� � �eA6 �, where A is the Heisenberg pho-
ton field operator. If we introduce a scalar boson field �,
the equation of motion becomes �i@6 �m�� � ��eA6 �
g���. Since the latter equation of motion is obtained from
the previous one by the substitution A6 !A6 � �g=e��, it
is enough to make the same substitution in the Hamiltonian
(38), everywhere except in the operator 1=�i! �DA� [7].
The Hamiltonian thus becomes

 

Hint�x� � � � �g’� eA6 	 � � �g’� eA6 	
!̂

2i! �DA

� �g’� eA6 	 : (41)

We see that the LFD interaction Hamiltonian (41) involves
also, besides the usual term � � �g’� eA6 	 describing
ordinary fermion-boson and fermion-photon interactions,
the so-called contact terms which are nonlinear in the
coupling constants. Note that if we expand the Hamil-
tonian (41) in powers of e, this expansion contains an
infinite number of terms. Such a peculiarity is connected
with the photon spin and with the gauge we have chosen.

In this paper, we are not interested in studying electro-
magnetic effects, but focus on the interaction between
fermions and scalar bosons. We therefore restrict the
Hamiltonian to the first order in the electromagnetic cou-
pling constant e, neglecting the terms of order e2 and
higher. The result is

 Hint � Hfb1 �Hfb2 �Hem1 �Hem2 �Hem3; (42)

where

 

Hfb1 � �g �  ’; (43a)

Hfb2 � g2 � ’
!6

2i! � @
’ ; (43b)

Hem1 � �e � A6  ; (43c)

Hem2 � eg � 
�
’

!6
2i! � @

A6 � A6
!6

2i! � @
’
�
 ; (43d)

Hem3 �
1

2
eg2 � ’

�
!6

i! � @

�
1

i! � @
! � A

�

�

�
1

i! � @
! � A

�
!6

i! � @

�
’ : (43e)

The contact terms are Hfb2,Hem2, and Hem3. The operators
1=�i! � @� inside the squared brackets act on ! � A only.

2. Light-front diagrams and their amplitudes

Since the amplitude of the process which we are inter-
ested in is proportional to eg2, we should collect together
the matrix elements from the Hamiltonian (42) in the first,
second and third orders of perturbation theory. It can be
written schematically as

 hH2
fb1Hem1i � hHfb1Hem2i � hHem3i:

Note that although the matrix element of the second order
of perturbation theory, hHfb2Hem1i, is also of order eg2, it
does not result in irreducible diagrams. The Hamiltonian
(42) produces therefore the five contributions to the EMV,
shown in Figs. 2–5. The triangle and pair creation dia-
grams are generated by hH2

fb1Hem1i, the left and right
contact terms come from hHfb1Hem2i, while hHem3i is
responsible for the double contact term. Applying the rules

 

p

k1

k1

p

k
ωτ1

ωτ

q

FIG. 3. Pair creation by a photon. The double solid line stands
for an antifermion.

 

p

k1 k1

pk

ωτ ωτ

q

FIG. 2. Triangle LF diagram.

REGULARIZATION OF THE FERMION SELF-ENERGY AND . . . PHYSICAL REVIEW D 75, 045012 (2007)

045012-9



of the LFD graph technique [1] to these diagrams,1 we can
find analytical expressions for the corresponding ampli-
tudes. However, before writing them down, one should
note the following. When calculating the form factors in
covariant LFD, the condition ! � q � 0 on the momentum
transfer is usually imposed (equivalent to q� � q0 � qz �
0 in the noncovariant version of LFD). It comes from the
analysis of the pure scalar ‘‘EMV’’ (i.e., when all the
particles, including the photon, are spinless), where it
forbids the pair creation diagram. Indeed, since the plus
component of the pair momentum is always positive, the
pair cannot be created by a virtual photon with q� � 0. As
a result, when q� ! 0, the corresponding phase space
volume tends to zero, and the amplitude of the pair creation
diagram disappears. For systems involving fermions and/or

vector photons, the amplitude of the pair creation diagram
becomes indefinite if ! � q exactly equals zero, since it is
given by an integral with an infinitely large integrand and
zero phase space volume. For this reason, one has to take
! � q � 0. We set ! � q 
 ��! � p�, where � is a constant
which we take positive, for definiteness. We will see below
that, for the rotationally noninvariant cutoffs discussed in
Sec. II, a nonzero contribution to the EMV from the pair
creation diagram survives, and moreover, it tends to infin-
ity when �! 0.

We can now proceed to the calculation of the LF dia-
gram amplitudes. The contribution of the triangle diagram
on Fig. 2 reads

 

��tri�	 �
g2

�2��3
Z
��! � k���k2 ��2�d4k�p6 0 � k6 �!6 �0 �m���! � �p0 � k�	���p0 � k�!�0�2 �m2	

d�0

�0

� �	�p6 � k6 �!6 ��m���! � �p� k�	���p� k�!��2 �m2	
d�
�

�
g2

�2��3
Z
d2k?

Z 1��

�

dx
2x

�p6 0 � k6 �!6 �0 �m��	�p6 � k6 �!6 ��m�

2! � �p0 � k��02! � �p� k��
: (44)

We have introduced here new integration LF variables k? and x in a standard fashion (see Sec. II A 1). The singularities of
the integrand at x � 0 and x � 1 are excluded by introducing an infinitesimal positive cutoff �. The values of �’s are found
from the conservation laws imposed by the delta functions. Namely,

 

2! � �p� k�� � m2 � �p� k�2 � �1� x�
�k2
? �m

2

1� x
�

k2
? ��

2

x
�m2

�
; (45a)

2! � �p0 � k��0 � m2 � �p0 � k�2 � �1� x0�
�k02? �m

2

1� x0
�

k02? ��
2

x0
�m2

�
; (45b)

where x0 � ! � k=! � p0 � x=�1� ��, k0? � k? � x0�, and � is the part of the three-vector q, transversal to!. Note that

 � 2 � Q2�1� �� � �2m2: (46)

The formulas (45) and (46) follow from the kinematical relations listed in Appendix A.
The contribution of the pair creation diagram, Fig. 3, is given by

 

p

k1

pk

q

− /ω
2ω. (p− k ) ωτ

+
p

k1

pk

q

− ω
2ω. (p − k )ωτ

(a) (b)

/

FIG. 4. Left (a) and right (b) contact terms.

 

p pk

q

− ω
2ω. (p− k ) − ω

2ω. (p − k )

FIG. 5. Double contact term.

1The rules incorrectly prescribe to use the theta function ��! � k� for the contact term. This theta function should be removed.
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��pair�
	 �

g2

�2��3
Z
��! � k���k2 ��2�d4k�p6 0 � k6 �!6 �0 �m���! � �p0 � k�	���p0 � k�!�0�2 �m2	

d�0

�0

� �	�p6 � k6 �!6 �0 �!6 �1 �m���! � �k� p�	���p� k�!�0 �!�1�
2 �m2	

d�1

�1
:

The line carrying the four-momentum k1 corresponds to an antifermion and is described by the propagator �m� k6 1���! �
k1���k2

1 �m
2�. It is convenient to introduce a new variable � � �0 � �1, instead of �1:

 

��pair�
	 �

g2

�2��3
Z d3k

2"k
�p6 0 � k6 �!6 �0 �m���! � �p0 � k�	���p0 � k�!�0�2 �m2	

d�0

�0
�	�p6 � k6 �!6 ��m�

� ��! � �k� p�	���p� k�!��2 �m2	
d�

��0 � ��

� �
g2

�2��3
Z
d2k?

Z 1����

1��

dx
2x

�p6 0 � k6 �!6 �0 �m��	�p6 � k6 �!6 ��m�

2! � �p0 � k��02! � �p� k���0 � ��
: (47)

The ‘‘shifted’’ � enters the delta function and is determined by the same formula (45a) as � in other �’s. We can therefore
use the same kinematics. The integration over d� by means of the delta function ���p� k�!��2 �m2	 brings the factor
j! � �p� k�j in the denominator. We used that j! � �p� k�j � �! � �p� k� inside the integration interval 1� � < x <
1� �� �.

The contribution of the left contact term to the EMV is shown in Fig. 4(a). The corresponding amplitude has the form

 ��lct�
	 �

g2

�2��3
Z
��! � k���k2 ��2�d4k�p6 0 � k6 �!6 �0 �m���! � �p0 � k�	���p0 � k�!�0�2 �m2	

�
d�0

�0
�	

�
�

!6
2! � �p� k�

�

� �
g2

�2��3
Z
d2k?

Z 1����

�

dx
2x

�p6 0 � k6 �!6 �0 �m��	!6

2! � �p0 � k��02! � �p� k�
: (48)

For the right contact term, Fig. 4(b), we get
 

��rct�
	 �

g2

�2��3
Z
��! � k���k2��2�d4k

�
�

!6
2! � �p0 � k�

�
�	�p6 � k6 �!6 ��m���! � �p� k�	���p� k�!��2�m2	

d�
�

� �
g2

�2��3
Z
d2k?

Z 1��

�

dx
2x

!6 �	�p6 � k6 �!6 ��m�

2! � �p0 � k�2! � �p� k��
: (49)

Finally, the double contact term, Fig. 5, yields

 ��2ct�
	 �

g2

�2��3
Z
d2k?

Z �1
�

dx
2x

�
!6

2! � �p0 � k�
�	

!6
2! � �p� k�

: (50)

The full EMV is the sum of all the five contributions (44)
and (47)–(50). Note that the limits of integrations over dx
are different in these contributions. In order to make the
calculations easier, we split the whole region of possible
values of x into the three subregions: (i) � < x < 1� �;
(ii) 1� � < x < 1� �� �; (iii) 1� �� � < x <�1.
We then represent each of the vertices ��lct�

	 and ��2ct�
	 as

a sum of integrals over these integration subregions, re-
moving the singularities by means of the same cutoff �:

 ��lct�
	 � ��1;lct�

	 � ��2;lct�
	 ;

where

 ��1;lct�
	 � �

g2

64�3

1

�! � p�2
Z
d2k?

Z 1��

�

dx
x

�
�p6 0 � k6 �!6 �0 �m��	!6

�1� �� x��1� x��0
;

��2;lct�
	 � �

g2

64�3

1

�! � p�2
Z
d2k?

Z 1����

1��

dx
x

�
�p6 0 � k6 �!6 �0 �m��	!6

�1� �� x��1� x��0
;

and, analogously,

 ��2ct�
	 � ��1;2ct�

	 � ��2;2ct�
	 ;

where
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 ��1;2ct�
	 �

g2

64�3

!6 �	!6

�! � p�2

�
Z
d2k?

Z 1��

�

dx
x�1� �� x��1� x�

;

��2;2ct�
	 �

g2

64�3

!6 �	!6

�! � p�2

�
Z
d2k?

Z 1����

1��

dx
x�1� �� x��1� x�

�
g2

64�3

!6 �	!6

�! � p�2

�
Z
d2k?

Z 1
1����

dx
x�1� �� x��1� x�

:

After some rearrangement of the contributions, we can
represent the full EMV as

 �	 
 ��A�	 � ��B�	 � ��C�	 (51)

with

 

��A�	 � ��tri�	 � ��1;lct�
	 � ��rct�

	 � ��1;2ct�
	 � ��0�	 ; (52a)

��B�	 � ��pair�
	 � ��2;lct�

	 � ��1�	 ; (52b)

��C�	 � ��2;2ct�
	 � ��0�	 � ��1�	 : (52c)

The two new integrals,
 

��0�	 �
g2

64�3�1� ��

!6 �	!6

�! � p�2
Z
d2k?

Z 1��

�

dx
x
; (53a)

��1�	 �
g2

64�3�

!6 �	!6

�! � p�2
Z
d2k?

Z 1����

1��

dx
x�1� �� x�

(53b)

have been introduced in order to make the integrands of
��A�	 and ��B�	 nonsingular in x, although each term on the
right-hand sides of Eqs. (52a) and (52b) contains logarith-
mic divergencies either at x � 0 or at x � 1, or at x �
1� �.

Taking the sums (52a) and (52b), we easily find

 

��A�	 �
g2

16�3

Z
d2k?

Z 1

0

dx
x

�
�p6 0 � k6 �m��	�p6 � k6 �m�

��2 � 2p0 � k���2 � 2p � k�
�

!6 �	!6

4�1� ���! � p�2

�
; (54a)

��B�	 �
g2

64�3�! � p�2
Z
d2k?

Z 1��

1

dx
x�1� �� x�

�
�p6 0 � k6 �!6 �0 �m��	�p6 � k6 �!6 �0 �m�

�x� 1��0��0 � ��
�
!6 �	!6

�

�
: (54b)

Since the regularization in x is no more required, we set
� � 0.

The remaining part of the EMV, ��C�	 , is given by a sum
of regularized integrals:

 

��C�	 �
g2

64�3

!6 �	!6

�! � p�2
Z
d2k?

�
1

1� �

Z 1��

�

dx
x

�
1

�

Z 1����

1��

dx
x�1� x�

�
Z �1

1����

dx
x�1� �� x��1� x�

�
: (55)

3. Electromagnetic form factors

We represent the EMV via the following decomposition:
 

�u0�	u � �u0
�
F1�	 �

iF2

2m

	�q�

� B1

�
!6

! � p
�p� p0�	 � 2�	

�
� B2

m!	

! � p

� B3

m2!6 !	

�! � p�2

�
u; (56)

which is similar, although not identical, to the one used in
Ref. [20]. We shall come back to this difference in Sec. IV.

The decomposition is determined by the five2 form factors
F1;2, B1–3. We shall call F1;2 the physical form factors, in
contrast to the nonphysical ones, B1–3, which must be
absent in the physically observed EMV. The appearance
of the three extra form factors is a property of LFD. Note
that they appear in standard noncovariant LFD as well, but
in this approach they cannot be separated out from the
physical form factors, and an illusion may occur that the
EMV structure is determined, according to Eq. (36), by the
two form factors, as in the Feynman case. This is however
not so, because the electromagnetic current operator in
LFD has five independent matrix elements, not two. One
may argue that, even if each particular LF diagram pro-
duces a contribution of the form (56) to the EMV, the extra
three structures disappear (i.e., one has B1–3 � 0) after
summing up all the contributions, at least in a given order
of perturbation theory. It would be so if the amplitudes of
the LF diagrams were given by convergent integrals, which
happens for the pure scalar case (scalar bosons plus scalar
‘‘photon’’ and no fermions). For systems involving fermi-
ons, however, the amplitudes strongly diverge. Their regu-
larization, as will be shown below, may give rise to the
appearance of extra (!-dependent) spin structures in the
perturbative and nonperturbative regularized EMV’s. In

2The coincidence of the number of form factors with the
number of LF diagrams is, of course, by chance.
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this sense the situation is analogous to the case of the
fermion self-energy discussed in the previous section.

The procedure to calculate the form factors is quite
similar to that exposed in Ref. [20]. We define the matrix

 O	 �
�p6 0 �m��	�p6 �m�

4m2 (57)

and the following contractions:

 c1 � TrfO	�	g; c2 �
iq�
2m

TrfO	
	�g;

c3 �
�p� p0�	

! � p
TrfO	!6 g; c4 �

m!	

! � p
TrfO	g;

c5 �
m2!	

�! � p�2
TrfO	!6 g:

(58)

Now, using Eq. (56), we can get the following relations
between the form factors and the quantities c1–5:
 

c1 � �2� 4�F1 � 6F2 � 2�4� ��B1 � �2� ��B2

� 2�1� ��B3;

c2 � 6F1 � 2�2� �F2 � 2�4� ��B1

� �2� ��B2 �
�2

2
B3;

c3 � 2�2� ��F1 � 2�2� ��F2 � 4�2�1� �� � �	B1

� �2� ��2B2 � 2�2� ���1� ��B3;

c4 � �2� ���F1 � F2 � �B1	;

c5 � 2�1� ��F1 �
�2

2
F2 � 2��1� ��B1; (59)

where  � Q2=�4m2�. Solving the system of linear equa-
tions (59) with respect to F1;2 and B1–3, we express them
through c1–5. These expressions are lengthy and we do not
give them here. Then, substituting formulas (54) and (55)
for ��A�	 , ��B�	 , and ��C�	 into Eq. (57), calculating the traces
(58), and expressing the scalar products of the four-vectors
p, p0, k, and ! through the two-dimensional vectors k?,
�, and the scalars x, �, we cast each form factor in the
form of a three-dimensional integral over d2k?dx. The
expressions for the scalar products through the integration
variables and the momentum transfer are given in
Appendix A.

4. Regularization with rotationally noninvariant cutoffs

We give here the final expressions for the form factors
found by using the rotationally noninvariant cutoffs �?
and � imposed on the variables jk?j and x. As we said
above, the vertex functions ��A�	 and ��B�	 do not require to
introduce a cutoff in x. As far as ��C�	 is concerned, it is
represented by a sum of integrals, each requiring regulari-
zation and thus depending on �. However, as can be
established by direct integration in Eq. (55), the sum itself

has a finite limit when �! 0:

 ��C�	 �
g2�2

?

32�2

log�1� ��
��1� ��

!6 !	

�! � p�2
: (60)

We therefore remain with the cutoff �? only. Note that the
mutual cancellation of the terms singular in x, which
happens for the full EMV, is connected with rather weak
(logarithmic) divergence of the corresponding integrals, so
that the cutoff �? is enough to make them finite. The same
took place in the fermion self-energy case (see Sec. II A 2).
As we shall see below [Eq. (C11) in Appendix C], the
quadratically divergent term �!6 !	�2

? results also from

��B�	 (but not from ��A�	 ) and cancels in the sum with ��C�	 .
The details of calculations of all the contributions

�A;B;C� are given in Appendix C. Adding all of them
together, we arrive at the following final result for the
form factors:
 

F1 �
g2

16�2 log
�?
m
�

g2

4�2

�
log
m
�
�

7

8

�

�
g2Q2

24�2m2

�
log
m
�
�

9

8

�
�O�Q4�; (61a)

F2 �
3g2

16�2 �
g2Q2

32�2m2 �O�Q
4�; (61b)

B1 � �
g2

64�2 ; (61c)

B2 � �
g2

32�2 ; (61d)

B3 � �
g2�m2 ��2�

16�2m2 log
�?
m

�
g2

32�2m2

�
Q2

�
��2

�
2 log

m
�
� 1

��
: (61e)

Note that the terms � log�?
m cancel in the form factors B1

and B2. These form factors are finite and do not depend on
any cutoff, in contrast to B3 which does not have a finite
limit when �? ! 1. As we have already mentioned,
neither of the form factors depend on the cutoff �. At the
same time, the amplitude of each of the LF diagrams
shown in Figs. 2–5, diverges like �2

? log�. It means that
the senior divergent terms ��2

? log� and ��2
? cancel

after the incorporation of all the LF diagrams. However,
the form factors B1–3 which must be absent in the physical
EMV remain nonzero values. The same happened for the
�!6 term in the full self-energy, Eq. (7).

We also see that B3 has a pole at � � 0. One cannot set
here Q2 � 0, since it is impossible to keep fixed � � �! �
q�=�! � p� when q! 0. More precisely, since �2 � 0,
from Eq. (46) we have Q2 � �2m2

1�� . However, nothing pre-
vents us to take �! 0 at fixed Q2. As the inspection
shows, the singular term �1=� in B3 results from ��pair�

	 ,
Eq. (47).
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The standard renormalization procedure (37) affects the
form factor F1 only, so that

 Fren
1 � 1�

g2Q2

24�2m2

�
log
m
�
�

9

8

�
�O�Q4�: (62)

The cutoff-dependent term � log��?=m� cancels, as it
should. The renormalized form factor Fren

2 coincides with
F2, Eq. (61b). It is important to note that, in order to
eliminate the three extra form factors B1–3, one should
introduce new !-dependent counterterms into the interac-
tion Hamiltonian. Since B3 nontrivially depends on q
through Q2 � �q2 and � � ! � q=! � p, its decomposi-
tion in powers of q contains an infinite number of terms.
Therefore, to eliminate B3 we need an infinite number
of local counterterms, for this particular type of
regularization.

5. Invariant Pauli-Villars regularization

We can now calculate the form factors within LFD, but
using the invariant PV regularization instead of the LF
cutoffs �? and �.

Regularization by a PV boson.—We start with the regu-
larization by one PV boson only. Since each of the LF
diagrams contains one bosonic propagator, this regulariza-
tion reduces to a simple subtraction

 F PV;b � F �Q2; m;�� �F �Q2; m;�1�:

As before, F denotes any of the form factors Fi or Bi. In
the limit of large �1 we have

 F1�Q2; m;�1� �
g2

16�2 log
�?
m
�

g2

16�2

�
log
�1

m
�

1

4

�
;

F2�Q
2; m;�1� � 0;

for arbitrary finite Q2. Subtracting these expressions from
those given by Eqs. (61a) and (61b), respectively, we get

 

FPV;b
1 �

g2

16�2 log
�1

m
�

g2

4�2

�
log
m
�
�

15

16

�

�
g2Q2

24�2m2

�
log
m
�
�

9

8

�
�O�Q4�; (63a)

FPV;b
2 �

3g2

16�2 �
g2Q2

32�2m2 �O�Q
4�: (63b)

In spite of the fact that Eq. (63a) differs from Eq. (61a),
both equations lead to the same renormalized form factor
Fren

1 , Eq. (62). The renormalized physical form factors
obtained for the invariant and noninvariant types of regu-
larization do therefore coincide.

Concerning the nonphysical form factors, the situation is
quite different. Since B1–3 were calculated for arbitrary �,
we find from Eqs. (61c)–(61e)

 

BPV;b
1 � BPV;b

2 � 0; (64a)

BPV;b
3 � �

g2��2
1 ��

2�

16�2m2�1� ��
log

�?
m

�
g2

32�2m2

�
�2

1 ��
2 � 2�2 log

m
�
� 2�2

1 log
�1

m

�
:

(64b)

The formulas (63) are valid for�! 0 and �1 ! 1, while
Eqs. (64) hold for arbitrary � and �1. The nonphysical
form factors B1;2 turned into zero, while BPV;b

3 � 0 and still
diverges logarithmically.

Regularization by one PV boson plus one PV fermion.—
Since the PV regularization by one boson only does not
cancel the form factor B3, we have to introduce in addition
a PV fermion. In that case, no contact terms appear at all,
and the only diagrams which contribute to the EMVare the
triangle (Fig. 2) and pair creation (Fig. 3) diagrams. Each
of them contains two fermion propagators, both being
subject to the PV regularization. For this reason we need
to know the vertex with different internal fermions. We
denote the masses of these fermions bymi andmi0 , with the
indices i and i0 being either 0 or 1. Let m0 
 m and m1 be
the physical and PV fermion masses, respectively.
Analogously, we denote the physical and PV boson masses
by �0 
 � and �1.

The PV-regularized EMV is defined by

 �PV;b�f
	 �

X1

i;i0;j�0

��1�i�i
0�j�	�mi;mi0 ; �j�;

where the notation �	�mi;mi0 ; �j� stands for the corre-
sponding initial EMV calculated for the internal particles
with the masses mi, mi0 , and �j. The quantity
�	�mi;mi0 ; �j� itself is given by a sum of Eqs. (54), chang-
ing everywhere
 

p6 � k6 �m! p6 � k6 �mi;

p6 0 � k6 �m! p6 0 � k6 �mi0 ;

�!
m2
i � �p� k�

2

2! � �p� k�
;

�0 !
m2
i0 � �p

0 � k�2

2! � �p0 � k�
;

and �! �j. The vertex ��C�	 , Eq. (55), turns into zero
already by the boson PV regularization and does not con-
tribute to the PV-regularized form factors.

It can be shown that we do not need to introduce the PV
fermion to regularize the form factors F1;2 and B1;2. In
other words, in the limit m1 !1 we would obtain the
same formulas (63) and (64a) as without the PV fermion at
all. So, the only thing to do is to calculate BPV;b�f

3 . This
calculation is in principle quite similar to that performed
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above, but the algebra is more lengthy. We represent
BPV;b�f

3 as follows:

 BPV;b�f
3 �

X1

i;i0�0

��1�i�i
0
X

N�A;B

B�N�PV;b
3 �mi;mi0 �; (65)

where

 B�N�PV;b
3 �mi;mi0 � �

X1

j�0

��1�jB�N�3 �mi;mi0 ; �j� (66)

and B�N�3 �mi;mi0 ; �j� is found through the vertex

��N�	 �mi;mi0 ; �j�. Though the order of summations in
Eqs. (65) and (66) does not matter, it is convenient to
calculate first B�N�PV;b

3 �mi;mi0 �, separately for the two ver-
tices, then add the results, and finally sum over the PV
fermion indices. Omitting rather tiresome manipulations,
we give here the expressions for the functions
B�N�PV;b

3 �mi;mi0 �, in order to see the details of the cancel-
lations:

 

B�A�PV;b
3 �mi;mi0 � � �

g2��2
1 ��

2��2� ��

16�2m2�1� ��2
log

�?
m
�

g2

32�2m2

�
2�2

1 log
�1

m
� 2�2 log

m
�
� 3��2

1 ��
2�

�
� R�mi;mi0 �; (67a)

B�B�PV;b
3 �mi;mi0 � �

g2��2
1 ��

2�

16�2m2�1� ��2
log

�?
m
�
g2��2

1 ��
2�

16�2m2 � R�mi;mi0 �; (67b)

where

 R�mi;mi0 � � �
g2��2

1 ��
2�

64�2m2Q2

�
�m2

i �m
2
i0 � log

m2
i

m2
i0

� 2Q2 log
mimi0

m2

� sQ log
�
�m2

i �m
2
i0 �

2 � �Q2 � sQ�
2

�m2
i �m

2
i0 �

2 � �Q2 � sQ�2

��

and sQ �
��������������������������������������������������������������������������
m4
i � 2m2

i �m
2
i0 �Q

2� � �m2
i0 �Q

2�2
q

. Both
contributions (67) are rather complicated functions de-
pending on the physical and PV masses, as well as on
Q2. In their sum, however, the dependence on the fermion
mass m1 and on Q2 drops out completely, and forP
N�A;BB

�N�PV;b
3 �mi;mi0 � we arrive at the same expression

(64b) found previously without any fermion PV regulari-
zation. The final summation over the fermion PV indices,
as prescribed by Eq. (65), turns B3 into zero:

 BPV;b�f
3 � 0: (68)

We can thus formulate the main results of this section:
the full cancellation of the three nonphysical form factors
is achieved by the double (i.e., bosonic� fermionic) PV
regularization, whereas the single boson PV regularization
cancels only two of the three nonphysical form factors. The
renormalized physical form factors obtained by using the
PV regularization (both single and double) coincide with
those calculated through the rotationally noninvariant
cutoffs.

B. Calculation in the four-dimensional Feynman
approach

The amplitude of the Feynman triangle diagram which
determines the EMV in the given order of perturbation
theory is

 �	 �
ig2

�2��4
Z
d4k

1

�k2 ��2 � i0	

�
�p6 0 � k6 �m��	�p6 � k6 �m�

��p� k�2 �m2 � i0	�p0 � k�2 �m2 � i0	
;

(69)

where p2 � p02 � m2. As we shall see, the spin structure
of the Feynman EMV depends on how it is regularized, in
contrast to the self-energy, Eq. (19). In order to avoid
overloading the formulas by additional indices indicating
the type of the cutoffs, we use in this section the same
notations for the Feynman EMVand the form factors as for
the LFD ones.

1. Regularization with rotationally noninvariant cutoffs

As we did for the self-energy, Sec. II B 1, we first find the
form factors by integrating the Feynman amplitude (69) in
terms of the LF variables restricted by the transverse and
longitudinal cutoffs. We shall see that such a procedure
generates extra (nonphysical) form factors B1–3 [see
Eq. (56)], in a very similar way as the use of the LFD rules.

Rewriting the integrand in Eq. (69) through the plus,
minus, and transverse components of the four-vector k, we
get
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 �	 �
ig2

32�4

Z
d2k?dk�dk�

�p6 0 � k6 �m��	
��p0� � k���p

0
� � k�� � �p0? � k?�2 �m2 � i0	

�
�p6 � k6 �m�

��p� � k���p� � k�� � �p? � k?�2 �m2 � i0	

1

�k�k� � k2
? ��

2 � i0	
: (70)

We take the reference frame where p � 0. We then choose
p� � p0�. The latter condition is equivalent, in the lan-
guage of covariant LFD, to � � �! � q�=�! � p� � 0. In
our LFD calculation of the form factors in Sec. III A, we
initially kept � to be nonzero and went over to the limit
�! 0 after summing up all the LF contributions. A
smooth limit �! 0 was important in the LFD framework,
since the amplitudes of different diagrams shown in
Figs. 2–5 depend on �. The Feynman amplitude (69) is
well defined for any values of its arguments p and p0, in
particular, for p� � p0�. We can therefore safely set p� �
p0� � 0 from the very beginning.

Similarly to Eq. (22) for the self-energy, we represent
the full EMV as a sum of the two terms:

 �	 
 ��p�a�	 � ��zm�	 ; (71)

corresponding to the ‘‘normal’’ contribution and the zero
modes, respectively.

Like the self-energy case, the normal part ��p�a�	 is
determined by the sum of the pole and arc contributions.
It is calculated in Appendix D, Sec. D 2. The result reads

 ��p�a�	 �
g2

16�3

Z
d2k?

Z 1

0

dx
x

�
�p6 0 � k6 �m��	�p6 � k6 �m�

��2 � 2p0 � k���2 � 2p � k�
�

!6 �	!6

4�! � p�2

�
: (72)

Comparing the right-hand sides of Eq. (72) for ��p�a�	 and Eq. (54a) for the part ��A�	 of the EMV calculated within LFD, we
see that they exactly coincide with each other at � � 0:

 ��p�a�	 � ��A�	 j��0: (73)

We have already encountered a similar situation above, in Sec. II B 1, where it was shown that the pole plus arc contribution
to the Feynman expression for the self-energy exactly coincided with the full LFD self-energy [see Eq. (24)]. Evidently, the
vertex ��p�a�	 can be also represented via form factors, in the form of the decomposition (56), but with its ‘‘own’’ form
factors F�p�a�1;2 , B�p�a�1–3 . Form factors for ��A�	 were found in Appendix C. Because of the identity (73), in order to derive the
form factors F�p�a�1;2 and B�p�a�1–3 , we can make use of Eq. (C2) with the coefficients from Eqs. (C7)–(C9), taken at � � 0.
We thus find

 

F�p�a�1 �
g2

16�2 log
�?
m
�

g2

4�2

�
log
m
�
�

7

8

�
�

g2Q2

24�2m2

�
log
m
�
�

9

8

�
�O�Q4�; (74a)

F�p�a�2 �
3g2

16�2 �
g2Q2

32�2m2 �O�Q
4�; (74b)

B�p�a�1 �
g2

16�2 log
�?
m
�

g2

64�2 �
g2

16�2 ’�Q
2�; (74c)

B�p�a�2 � �
g2

8�2 log
�?
m
�

g2

32�2 �
g2

8�2 ’�Q
2�; (74d)

B�p�a�3 � �
g2

32�2m2 �6m
2 � 4�2 �Q2� log

�?
m
�

g2

32�2m2

�
�2

�
2 log

m
�
� 1

�
� �4m2 � 2�2 �Q2�’�Q2�

�
; (74e)

where the function ’�Q2� is given by Eq. (C10). Note that ’�0� � 0. As before, the form factors F�p�a�1;2 are calculated for
�! 0 and decomposed in powers of Q2, whereas B�p�a�1–3 are exact in this sense.

The zero-mode contribution ��zm�
	 is calculated in Appendix D, Sec. D 3. The expression for ��zm�

	 is given by Eq. (D21).
We represent it in the form of decomposition (56). Then the form factors in this decomposition have the form
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F�zm�
1 � 0; (75a)

F�zm�
2 � 0; (75b)

B�zm�
1 � �

g2

16�2 log
�?
m
�

g2

16�2 ’�Q
2�; (75c)

B�zm�
2 �

g2

8�2 log
�?
m
�

g2

8�2 ’�Q
2�; (75d)

B�zm�
3 �

g2

32�2m2 �6m
2 � 4�2 �Q2� log

�?
m
�

g2

32�2 �
g2

32�2m2

�
�2

�
2 log

m
�
� 1

�
� �4m2 � 2�2 �Q2�’�Q2�

�
: (75e)

The final expressions for the form factors are given by the sum of the corresponding quantities from Eqs. (74) and (75):

 

F1 �
g2

16�2 log
�?
m
�

g2

4�2

�
log
m
�
�

7

8

�
�

g2Q2

24�2m2

�
log
m
�
�

9

8

�
�O�Q4�; (76a)

F2 �
3g2

16�2 �
g2Q2

32�2m2 �O�Q
4�; (76b)

B1 � �
g2

64�2 ; (76c)

B2 � �
g2

32�2 ; (76d)

B3 �
g2

32�2 : (76e)

The expressions for B1–3 are exact, i.e., these formulas are
valid for anyQ2 and�. That is, theQ2-dependence coming
from B�p�a�1–3 , Eqs. (74c)–(74e), as well as the
�?-dependent terms are exactly canceled by the corre-
sponding zero-mode contributions B�zm�1–3 . The form factors
F1;2 and B1;2 are the same as those obtained from the LFD
diagrammatic approach, in Eqs. (61), while B3’s in
Eqs. (61e) and (76e), are different. Moreover, B1–3 are
not zeros, though we started from the Feynman expression
for the EMV, which initially had no relation to the light
front (i.e., to the four-vector !). We will discuss this
situation in more detail below, in Sec. IV.

2. Invariant regularization

To complete our analysis, we give here the form factors
obtained from Eq. (69) by using an invariant regularization
of the divergent integral over d4k. The standard recipe
consists in using the Feynman parametrization, then mak-
ing the Wick rotation and imposing a cutoff �2 on the
modulus of the Euclidean four-momentum squared, simi-
larly to how it has been done in Sec. II B 2. After that,
identifying the structure of the EMV (69) with the decom-
position (36), we reproduce the well-known result:3

 

F1 �
g2

32�2 log
�2

m2 �
g2

4�2

�
log
m
�
�

15

16

�

�
g2Q2

24�2m2

�
log
m
�
�

9

8

�
�O�Q4�; (77a)

F2 �
3g2

16�2 �
g2Q2

32�2m2 �O�Q
4�: (77b)

Equation (77b) exactly coincides with Eq. (76b)
obtained for the rotationally noninvariant cutoffs. The
formulas (76a) and (77a) differ by a constant (i.e.,
Q2-independent) part. The corresponding form factors
Fren

1 however also coincide after the renormalization (37).
In principle, one might identify the structure of the

Feynman EMV (regularized by means of an invariant cut-
off) with the LF decomposition (56) containing five form
factors. In this case the formulas (77) would be found for
F1;2, while one would arrive at the evident result B1–3 � 0
for the other form factors.

The regularization of the EMV (69) by means of one PV
boson results in the same formulas (77), changing �2 to
�2

1.

IV. DISCUSSION

We have shown above that the perturbative spin-1=2
fermion self-energy and the EMV calculated in LFD de-
pend on the orientation of the LF plane, when the tradi-

3F2�Q2 � 0� is an anomalous magnetic moment. Introducing
the coupling constant � � g2=�4��, we get in the Yukawa model
F2�0� � 3�=�4��, which differs by a factor of 3=2 from the
QED value �=�2��.
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tional regularization in terms of the transverse and longi-
tudinal cutoffs is applied to the corresponding amplitudes.
This dependence reveals itself in the appearance of extra
spin structures in the decompositions of the self-energy and
the EMV in invariant amplitudes. In covariant LFD on the
plane ! � x � 0 with !2 � 0, it is conveniently parame-
trized through the four-vector !. The corresponding de-
compositions for the self-energy and the EMVare given by
Eqs. (7) and (56), respectively. The structure of the LF self-
energy is characterized by the three scalar functions A, B,
and ~C � C�p2� � Cfc, instead of the two usual ones, while
the on-energy-shell EMV contains five form factors, the
two standard F1;2 and the three extra, B1–3, ones.

Performing calculations of the self-energy by integrating
the Feynman amplitude written in terms of the LF variables
with the same cutoffs as in LFD, we did not encounter any
!-dependence in the final result, Eq. (29). The latter there-
fore does not coincide with the LFD self-energy (7). For
the EMV, both methods lead to !-dependent structures
with five form factors. However, the EMV calculation by
means of the LFD rules results in the set of form factors
(61), whereas the calculation of the Feynman amplitude in
terms of the LF variables gives a different set of form
factors (76). Though this difference concerns the form
factor B3 only, the corresponding EMV’s do not coincide
nevertheless with each other.

The extra form factors do not, of course, appear when
the Feynman amplitude is calculated with a spherically
symmetric cutoff in four-dimensional space. This can be
achieved, e.g., by imposing a direct cutoff on the Wick
rotated integration variable in Euclidean space jk2j �
k2 � k2

4 <�2 or by using the PV regularization. In the
case of LFD, we deal with three-dimensional integration
variables. Therefore, constructing rotationally invariant
(i.e., !-independent) cutoffs which restrict a three-
dimensional integration domain encounters serious diffi-
culties since the integration domains in LFD amplitudes
differ from each other, and it is not easy to restrict them
simultaneously in a self-consistent way. This is a reason
why the PV regularization looks much more preferable. It
is naturally generalized to LFD and allows us to remove
ultraviolet divergencies in an !-independent way. We
showed that in order to cancel completely all
!-dependent terms in the LF self-energy and the EMV it
is necessary to use the PV subtractions for both the boson
and fermion propagators. Note that this cancellation occurs
for arbitrary (finite) PV masses. Simultaneously, all ultra-
violet divergencies disappear. After that, the regularized
LFD results coincide exactly with the Feynman ones cal-
culated with the same PV subtractions.

The physical quantities, like the functions A and B
in the self-energy or the form factors F1;2 in the EMV, can
be easily extracted from the corresponding amplitudes.
Once we know the self-energy ��p� explicitly, taking the
traces

 

Trf��p�g � 4g2A�p2�;

Trf��p�!6 g �
4g2�! � p�

m
B�p2�

allows one to get A�p2� and B�p2�, because the term �!6
in the self-energy (7) does not contribute to these traces. To
separate the physical electromagnetic form factors F1;2

from the nonphysical ones, B1–3, it is enough to consider
the plus-component of the current (or, in terms of covariant
LFD, the contraction of the current with !	) written in the
form (56). Indeed, in the limit ! � p � ! � p0,

 �u 0��u 
 �u0�! � ��u � �u0
�
F1!6 �

iF2

2m

	�!	q�

�
u:

As we see, B1–3 dropped out from here. This is however
not always the case since the decomposition (56) is not
unique. Take, for instance, the decomposition of the same
EMV given in Ref. [20]:
 

�u0�	u � �u0
�

~F1�	 �
i ~F2

2m

	�q� � B1

�
!6

! � p
�

1

m�1� �

�

� �p� p0�	 � B2

m!	

! � p
� B3

m2!6 !	

�! � p�2

�
u; (78)

where  � Q2=4m2. It is easy to see that the form factors
B1–3 in Eqs. (56) and (78) are identical, while

 

~F 1 � F1 �
2B1

1� 
; ~F2 � F2 �

2B1

1� 
:

If we now identify ~F1;2 with the physical form factors, they
will differ from F1;2, unless B1 � 0. If we used for the
regularization the LF cutoffs �? and �, we would get B1 �
�g2=64�2 [see Eqs. (61c) and (76c)] and
 

~F1 �
g2

16�2 log
�?
m
�

g2

4�2

�
log
m
�
�

7

8

�

�
g2Q2

24�2m2

�
log
m
�
�

21

16

�
�O�Q4�;

~F2 �
7g2

32�2 �
5g2Q2

128�2m2 �O�Q
4�:

~F1;2 do not coincide either with the Feynman form factors,
given by Eqs. (77) (if we identify �? with �), or with the
LFD ones defined by Eqs. (76a) and (76b). The regulari-
zation by the PV boson kills B1 and this ambiguity dis-
appears. However, if the nonphysical form factors are not
canceled completely, the result is sensitive to the form of
the EMV representation.

Although one can use the plus-component of the current
(56) to extract the physical form factors in hadron phe-
nomenology, it is not enough in many other cases, when the
knowledge of the full matrix structure of the vertex is
needed. For example, this occurs in LFD nonperturbative
approaches, when the EMV enters as an off-energy-shell
subgraph into a more complicated diagram. In such a case,
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one cannot simply ignore the extra spin structures, because
they may contribute to observable quantities. The latter
statement concerns the self-energy as well.

As our results show, the dependence on the LF plane
orientation appears not only in LFD amplitudes, but also in
Feynman ones, if we put the cutoffs in the LF variables k2

?

and x, i.e., constrain the integration domain by a spheri-
cally nonsymmetric region, the orientation of which fol-
lows the orientation of the LF plane. At first glance, this
seems contradictory: (i) the extra form factors B1–3

[Eqs. (76c)–(76e)] originate from the spherically nonsym-
metric cutoffs, but (ii) they do not depend on the cutoff
values. This is in fact a normal situation which can be
illustrated by the following toy example. Consider the
three-dimensional integral:

 Iij �
Z kikjd

3k

�k2 �m2 �Q2�5=2

 F1�ij: (79)

It is logarithmically divergent at infinity: F1 �
R
djkj=jkj.

Let us introduce the spherically symmetric cutoff jkj<L.
A simple calculation gives

 F1 �
2�
3

log
L2

m2 �Q2 �
4�
9
�log8� 4� �O

�
1

L

�
:

Let us now regularize this integral by a cutoff imposed on
the two-dimensional variable k? in the plane orthogonal to
an arbitrary direction n. That is, we set k2

? � k2 � �k �
n�2 <�2

?. In other words, we integrate over the volume of
a cylinder of the radius �? and of infinite length, with the
axis directed along n. The initial integral turns into
 

Ireg
ij �

Z kikj
�k2 �m2 �Q2�5=2

���2
? � k2 � �k � n�2	d3k


 ~F1�ij � B1��ij � ninj�: (80)

The integral along n (or over dkz, if n is parallel to z)
converges, similarly to the convergence of the integral over
dx in the Feynman amplitude written through the LF
variables. We see that the spherically nonsymmetric cutoff
�? generates one extra form factor B1, like this happens
for the Feynman amplitude. We obtain
 

~F1 �
2�
3

log
�2
?

m2 �Q2 �O
�

1

�?

�
;

B1 � �
2�
3
�O

�
1

�?

�
:

The leading terms / logL in F1 and ~F1 coincide, provided
we identify �? with L. However, there is a difference in
the finite parts: F1 � ~F1 �

4�
9 �log8� 4�, like the differ-

ence between the term 15
16 in Eq. (77a) and 7

8 in Eq. (76a).
The transverse cutoff �? generates a finite extra form
factor B1, which itself does not depend on �?, similarly
to B1–3 in the EMV. This example clearly mimics the
properties of the above calculation of the electromagnetic

form factors from the Feynman amplitude regularized by
the LF cutoffs.

It is therefore misleading to think that one can derive
some ‘‘true’’ LF amplitude starting with the covariant
Feynman amplitude and calculating it in the LF variables:
I �

R
. . . d4k �

R
. . . d2k?dxdk�. This integral diverges

(except for some particular cases) and it has no sense
without regularization. It depends on the size, shape, and
orientation of the integration domain constrained by the
regularization procedure. In other words, there is no ‘‘co-
variant Feynman amplitude’’ in itself. There exists only an
inseparable couple: the covariant Feynman amplitude to-
gether with the rules to regularize it.

When we calculate amplitudes by means of the LFD
graph technique rules, the noninvariant integration domain
is not the only source of the!-dependence. Another source
is hidden in the rules themselves. Indeed, these rules are
not obliged to reproduce exactly the amplitude which
follows from the Feynman approach, even for the same
integration domain D. The divergent (and, after regulari-
zation, cutoff-dependent) terms are treated nonidentically
in the two approaches and may be different. This fact is
illustrated by the above calculation of the form factor B3

[cf. Eq. (61e) obtained within LFD with Eq. (76e) coming
from the Feynman approach]. The renormalization proce-
dures may be different too. However, the renormalized,
observed amplitudes must be the same.

When the !-dependent contributions to the self-energy
and EMV survive, one has to cancel them with appropriate
extra counterterms in the interaction Hamiltonian. These
counterterms are inherent to the LFD Hamiltonian and
should not be confused with the traditional charge and
mass counterterms in the original Lagrangian. The need
for such a counterterm for the renormalization of the self-
energy was already advocated in Ref. [7], where the non-
perturbative fermion mass renormalization was studied in
the two-body approximation within covariant LFD. This
new counterterm cancels the contribution �!6 in the self-
energy (7).

However, the introduction of additional specific counter-
terms may help only if their number is finite and tractable.
For the case of the fermion self-energy we would need only
one !-dependent counterterm, since the coefficient ~C is a
constant. In the case of LFD calculations of the EMV, the
form factor B3 depends nontrivially on the momenta
(through Q2 and �), which would generate an infinite
number of local counterterms to kill it, even in perturbation
theory. For this reason, the use of counterterms cannot
serve as a universal tool for the calculation of renormalized
quantities in LFD with the traditional transverse and lon-
gitudinal cutoffs.

If the renormalization is done correctly, the dependence
of any renormalized amplitude on the cutoffs disappears
and the final result is the same, regardless of the type of the
regularization used. However, from the practical point of
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view, the difficulty of calculations rapidly increases with
introducing extra counterterms. Therefore, rotationally in-
variant regularization (like the PV one) seems by far more
preferable in the LFD framework. The approach developed
in Ref. [21], regularizing field theory by defining fields as
distributions, could provide another method of rotationally
invariant regularization.

V. CONCLUSION

We have calculated perturbatively the fermion self-
energy and the EMV in the Yukawa model, in two different
ways: (i) by the LFD graph technique rules, taking into
account all necessary diagrams; (ii) by integrating the
Feynman amplitudes in terms of the LF variables (i.e.,
the transverse and longitudinal parts of momenta) and
summing up the pole, arc, and zero-mode contributions.
For the same set of the cutoffs imposed on the LF variables,
both methods give different results for the regularized
amplitudes. This difference disappears if the invariant PV
regularization is used instead of the rotationally noninvar-
iant one.

Such properties follow from the fact that the cutoffs
constrain a spherically nonsymmetrical integration do-
main, the symmetry being destroyed by the choice of a
distinguished direction defined by the orientation of the LF
surface. The dependence of regularized amplitudes on the
LF plane orientation is conveniently taken into account in
the explicitly covariant version of LFD by constructing
extra spin structures. To exclude these structures from the
physically observed quantities, one may introduce new
counterterms in the interaction Hamiltonian, which also
depend on the LF plane orientation. Taking them into
account, one can calculate the renormalized amplitudes.

The use of spherically symmetric (in four-dimensional
space) regularization, like, for instance, the PV one, con-
siderably simplifies calculations. In perturbation theory it
allows one to avoid the presence of these extra counter-
terms at all.
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APPENDIX A: KINEMATICAL RELATIONS

We give below some kinematical relations used in the
self-energy and EMV calculations within covariant LFD.
Amplitudes of the LF diagrams are expressed through the
three-dimensional integrals over d3k="k. Take the four-
vectors k � �"k;k� and p � �p0;p�, and construct a new
four-vector R � k� xp with x � �! � k�=�! � p�. Since

! � R � 0 and !2 � 0, in the reference frame, where p �
0, we have "k � xp0 � jkkj � 0. Taking into account that

"k �
�������������������������������
k2
? � k2

k
��2

q
and changing p0 to

������
p2

p
, we arrive

at the relations

 jkkj �
k2
? ��

2 � x2p2

2x
������
p2

p ; "k �
k2
? ��

2 � x2p2

2x
������
p2

p :

In the variables k? and x, the invariant phase space ele-
ment becomes

 d3k="k � d2k?dx=x: (A1)

We can now express the scalar product k � p entering the
quantity �, Eq. (4), through k2

? and x. For this purpose, we
represent the invariant quantity R2 in two different ways:

 R2 � �k� xp�2 � �2 � 2x�k � p� � x2p2

and

 R2 � �"k � xp0�
2 � k2

? � k2
k
� �k2

?:

Equating the right-hand sides of these expressions yields

 k � p �
k2
? ��

2 � x2p2

2x
: (A2)

In the calculation of the EMV we have one more four-
vector p0. We define two new four-vectors R � k� xp and
R0 � k� x0p0, where x0 � �! � k�=�! � p0� � x=�1� ��.
From the equalities ! � R � ! � R0 � 0, in the reference
frame, where p � 0, follows R2 � �R2

? � �k2
?, R02 �

�R02? � ��k? � x
0��2, where � � p0? � q?.

Analogously to Eq. (A2), we get from here
 

k � p �
k2
? ��

2 � x2m2

2x
; (A3a)

k � p0 �
�k? � x0��2 ��2 � x02m2

2x0
: (A3b)

From these formulas follow the expressions (45a) and
(45b). For completeness, we give here the other scalar
products which are needed for the EMV calculations:
 

! � k � x�! � p�; ! � p0 � �1� ���! � p�;

p � p0 �
Q2

2
�m2; !2 � 0;

p2 � p02 � m2; k2 � �2:

After integrating over the azimuthal angle of the vector
k?, the form factors depend on �2, and one should relate it
with the invariant square of the momentum transfer Q2 �
��p0 � p�2. If one had ! � p � ! � p0 (equivalent to � �
0), it would be simply Q2 � �2. In our case the relation is
more complicated. Indeed, since ! � p � !0m, we have,
on the one hand, ! � p0 � �1� ��!0m, and, on the other

hand, ! � p0 � !0�
�������������������������������
�2 � p02

k
�m2

q
� jp0

k
j�. We thus find
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 jp0
k
j �

�2 �m2��2� ��
2m�1� ��

and

 Q2 � �
�������������������������������
�2 � p02

k
�m2

q
�m�2 ��2 � p02

k

�
�2 � �2m2

1� �
: (A4)

From here Eq. (46) follows.

APPENDIX B: DERIVING THE LIGHT-FRONT
SELF-ENERGY FROM THE FEYNMAN

APPROACH

Proceeding from the Feynman amplitude (19) for the
self-energy, Sec. II B, we calculate here the pole, arc, and
zero-mode contributions.

1. Pole and arc contributions

We first consider the integral over dk� in Eq. (20) for the
x-integration in the limits �1< x<��, � < x < 1� �,
and 1� � < x <�1, determining �p�a�p�. It can be
calculated directly (by primitive). However, in order to
get the results in a form closer to LFD, we will use the
residues. The integrand has two poles in the points

 k� � k�1�� 

k2
? ��

2 � i0

xp�

and

 k� � k�2�� 
 p� �
k2
? �m

2 � i0

�1� x�p�
:

If �1< x<�� or 1� � < x <�1, both poles lay,
respectively, above or below the real axis. If � < x < 1�
� the poles are situated on the opposite sides from the real
axis. We close the integration contour by an arc of a circle
of the radius L, either in the upper half-plane or in the
lower one, so that the pole k�2�� is always outside the
contour. The situation is illustrated in Fig. 6, where the
integration contour is shown for the case � < x < 1� �.

Note that the order of integrations we have chosen in
Eq. (20) requires some care in treating the cutoffs. Since
the integration over dk� is performed first, we should keep
L arbitrary large, while the other cutoffs � and �? are
considered as being finite. In other words, we imply that
L� �2

?=�m��. Such a convention ensures mutual position
of the poles and the contour, as exposed above. Then
�p�a�p� is represented as
 

�p�a�p� �
ig2p�
32�4

Z
d2k?

�Z 1��

�
��pole � �arc;low�dx

�
Z ��
�1

�arc;lowdx�
Z �1

1��
�arc;updx

�
; (B1)

where �pole is the residue at the pole k�1�� , multiplied by
�2�i, while �arc;low and �arc;up come from the integrations
along the arcs in the lower and upper half-planes, respec-
tively. The result for �pole reads

 �pole �
2�i�p6 � k6 �m�

p��k2
? �m

2x� p2x�1� x� ��2�1� x�	
:

(B2)

The four-vector k here is an on-mass-shell four-vector
(k2 � �2) with the components expressed through k?
and x as follows: k 
 �k�; k�;k?� � �

k2
?
��2

xp�
; xp�;k?�.

To calculate �arc;low and �arc;up, we should move along
the arc in the clockwise and counterclockwise directions,
respectively. In the points of the arc k� � Lei� and dk� �
iLei�d�, where � is an azimuthal angle. In the limit L!
1, we retain in the integrand the dominating k�-term. We
thus obtain

 �arc;low � ��arc;up � �
�i

2p2
�

��
x�1� x�

: (B3)

Substituting Eqs. (B2) and (B3) into Eq. (B1) and going
over to the explicitly covariant notations by means of the
identities �� � !6 , p� � ! � p, we obtain that �p�a�p� is
given by Eq. (23).

2. Zero modes

Consider now the zero-mode term �zm�p�. We denote

 �zm�p� 
 ��0�zm�p� ���1�zm�p�;

where the two items on the right-hand side correspond to
the contributions to Eq. (20) from the infinitesimal inte-
gration regions �� < x < � and 1� � < x < 1� �, re-
spectively. Take first ��0�zm�p� (bosonic zero modes). If
x � 0, the term k�p�x in the denominator of the integrand
disappears and the integral over dk� diverges linearly. This
infinite contribution should therefore be proportional to
��x�. We take x! 0 and keep in the numerator and in
the denominator of the integrand in Eq. (20) the leading
k�-terms (where k� is not multiplied by x) only. That is

 

arc

k−

k (2)

k (1)
+ L− L

FIG. 6. Contour of the integration over dk�. Positions of the
poles are shown for � < x < 1� �.
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��0�zm �
ig2p�
32�4

Z
d2k?

Z �

��
dx
Z L

�L
dk�

�
1

�k�p�x� k2
? ��

2 � i0	

� 1
2��k�

��k�p��
: (B4)

The double integral over dxdk� is of the type of Eq. (E1)
with b � �k2

? ��
2�=p� and h � 0 (see Appendix E).

Using Eq. (E2), we obtain, in the covariant notations:
 

��0�zm�p� �
g2!6

32�3�! �p�

Z
d2k?

�
log
�! �p�L

k2
?��

2� log
1

�
�
i�
2

�
:

(B5)

Changing the variable x! 1� x, for ��1�zm�p� (fermionic
zero modes) we similarly get
 

��1�zm�p� �
g2!6

32�3�! �p�

Z
d2k?

�
log
�! �p�L

k2
?�m

2� log
1

�
�
i�
2

�
:

(B6)

Taking the sum of (B5) and (B6), we find that it has the
form of Eq. (26): �zm�p� 
 g2Czm

m!6
!�p with

 Czm �
g2

32�2

Z �2
?

0
dk2
? log

k2
? �m

2

k2
? ��

2 :

Calculating this integral, we find Eq. (27) for Czm.

APPENDIX C: LIGHT-FRONT CONTRIBUTIONS
TO THE FORM FACTORS

In this Appendix, starting with the LF vertices ��A�	 , ��B�	 ,
and ��C�	 found in Sec. III A 2, Eqs. (52a)–(52c), we calcu-
late their contributions to form factors F1;2, B1–3.

1. Preliminary transformations

Each contribution to a form factor F (F 
 Fi or Bi)
from the vertices ��A�	 , ��B�	 , or ��C�	 can be written as an
integral of the form

 F �
Z xmax

xmin

dx
Z �2

?

0
dk2
?

Z 2�

0
d�f�k2

?; x;�;Q
2; ��;

(C1)

where � is the angle between the two-dimensional vectors
k? and �, f is a given function (f’s are different for
different form factors), and the modulus of � is expressed
throughQ2 by Eq. (46). The limits xmin and xmax depend on
which vertex is considered.

The analysis of the dependence of the form factors on
the cutoff �? (when it tends to infinity) allows one to
represent each of them as

 F � a1�2
? � a2 log

�?
m
� areg; (C2)

where the coefficients a1, a2, and areg are regular functions
depending on the particle masses, Q2, and �, but indepen-
dent of �?. If � � 0, no other divergencies (i.e., cutoff-
dependent terms) excepting those listed in Eq. (C2) appear.
Since the coefficients a1 and a2 determine the dependence
of the form factors on the cutoff, we will calculate them at
arbitrary �, in order to see in detail how the cutoff dis-
appears (if so) after taking into account all the contribu-
tions ��A�	 , ��B�	 , and ��C�	 to the full EMVand its subsequent
renormalization. As far as the coefficients areg are con-
cerned, we will find them in the limit �! 0, retaining
nonvanishing terms only. This simplifies calculations a lot,
but leads to the same final result as if � was nonzero.

Although direct integrations over d� and dk2
? can al-

ways be done analytically for arbitrary Q2 and �, the
results turn out to be very cumbersome, so that the final
integration over dx (if it can be done analytically) takes too
much time. To make the computations more effective, we
will proceed in the following way. We take the initial
expression for a given form factor in the form of
Eq. (C1) and study the behavior of the integrand as a
function of k2

? in the asymptotic region jk?j ! 1. For
this purpose we decompose it in a Laurent series:
 

f�k2
?; x; �;Q

2; �� � f0�x;Q2; �� �
f1�x;Q2; �� cos�

jk?j

�
f2�x;�;Q2; ��

k2
?

� � � � : (C3)

We use this decomposition in order to define the functions
f0 and f2 (the term with f1 drops out after the integration
over d�). We then represent f as a sum
 

f�k2
?; x; �;Q

2; �� 
 freg�k2
?; x;�;Q

2; �� � f0�x;Q
2; ��

�
�2�x;Q

2; ��

k2
? �m

2��x�
; (C4)

where

 �2�x;Q2; �� �
1

2�

Z 2�

0
f2�x;�;Q2; ��d� (C5)

and ��x� is a positive function which can be chosen in any
convenient way in order to avoid the singularity at k2

? !

0. Equation (C4) should be considered as a definition of the
function freg�k2

?; x;�;Q
2; ��. The latter, after the integra-

tion over d�, decreases faster than 1=k2
? in the asymptotic

region, and its integration over dk2
? does not require any

regularization. The functions f0�x;Q2; �� and �2�x;Q2; ��
are rather simple, so that the two last addenda on the right-
hand side of Eq. (C4) can be easily integrated over all the
variables.

After separating out the terms which slowly decrease
when jk?j ! 1, we remain with a set of regular functions
freg. At arbitrary �, these functions are even more compli-
cated than the initial integrands f. However, we calculate
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the regular contributions to the form factors in the limit
�! 0. So, it is enough to consider the limiting functions
freg�k2

?; x;�;Q
2; �! 0� which are much simpler than

f�k2
?; x;�;Q

2; ��. If freg is singular at �! 0, we decom-
pose it in powers of � and retain all nonvanishing terms.

The trick exposed above allows one to find the coeffi-
cients in Eq. (C2). Indeed, substituting Eq. (C4) into
Eq. (C1), we get

 

a1 � 2�
Z xmax

xmin

f0�x;Q
2; ��dx; (C6a)

a2 � 4�
Z xmax

xmin

�2�x;Q2; ��dx; (C6b)

areg �
Z xmax

xmin

dx
��Z 1

0
dk2
?

Z 2�

0
d�freg�k2

?; x;�;Q
2; �! 0�

�
� 2��2�x;Q

2; �! 0� log��x�
�
: (C6c)

The integrations over d� and dk2
? can be done analytically

for all the five form factors. For F1;2 the results of the
remaining integrations over dx at arbitrary Q2 and � are
not expressed through elementary functions. In order to
simplify the formulas, we decompose both F1;2 in powers
of Q2 up to terms of order Q2 and take the limit �! 0.
Concerning the form factors B1–3, all the integrations are
performed analytically without any approximation.

Below, in Secs. C 2–C 4, we list the coefficients a1, a2,
and areg entering Eq. (C2), pointing out in superscripts
which form factor the given coefficient belongs to. The
coefficients are calculated by means of Eqs. (C6), sepa-

rately for the vertices ��A�	 , ��B�	 , and ��C�	 [see Eqs. (54) and
(55)].

2. Contribution to the form factors from ��A��

It is convenient to set in Eq. (C4) ��x� � x2 � �2

m2 �

�1� x�. The limits of the x-integration are xmin � 0,
xmax � 1. Then

 aF1
1 � aF2

1 � aB1
1 � aB2

1 � aB3
1 � 0; (C7)

 aF1
2 �

g2�2�1� ��Q2 � �2�2� �2�m2	

16�2�1� ��2z�
; aF2

2 � 0; aB1
2 �

g2�2� ����1� ��Q2 � �2m2	

16�2�1� ��2z�
;

aB2
2 �

g2

16�2�1� ��

�
4�2�2� 2�� �2�m2 � �8� ��2� ���8� 2�� �2�	Q2

�1� ���2� ��z�
� 4

�
;

aB3
2 �

g2

16�2m2�1� ��2

�
�2� ���2 �

�3� 3�� �2�m2

1� �
�
Q2��1� ��Q2 � �2m2	

z�

�
;

(C8)

where z� � �2� 2�� �2�Q2 � 2�2m2, and

 aF1
reg �

g2

4�2

�
log
m
�
�

7

8

�
�

g2Q2

24�2m2

�
log
m
�
�

9

8

�
�O�Q4�; aF2

reg �
3g2

16�2 �
g2Q2

32�2m2 �O�Q
4�;

aB1
reg �

g2

64�2 ��1� 4’�Q2�	; aB2
reg � �

g2

32�2 �1� 4’�Q2�	;

aB3
reg �

g2

32�2m2

�
�2

�
2 log

m
�
� 1

�
� �4m2 � 2�2 �Q2�’�Q2�

�
;

(C9)

with

 ’�Q2� � 1�

������������������
1�

4m2

Q2

s
log

� ���������������������
Q2 � 4m2

p
�

������
Q2

p
2m

�
: (C10)

3. Contribution to the form factors from ��B��
We set ��x� � 1, xmin � 1, xmax � 1� �. We thus get
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aF1
1 � aF2

1 � aB1
1 � aB2

1 � 0;

aB3
1 � �

g2

32�2m2

log�1� ��
��1� ��

;

aF1
2 �

g2

16�2

�
1�

2�1� ��Q2 � �2�2� �2�m2

�1� ��2z�

�
;

aF2
2 � 0;

aB1
2 � �

g2�2� ����1� ��Q2 � �2m2	

16�2�1� ��2z�
;

aB2
2 � �

g2

16�2�1� ��

�
4�2�2� 2�� �2�m2 � �8� ��2� ���8� 2�� �2�	Q2

�1� ���2� ��z�
� 4

�
;

aB3
2 � �

g2

16�2m2�1� ��2

�
�2 �

�2� ��m2

1� �
�
Q2��1� ��Q2 � �2m2	

z�

�
:

(C11)

While integrating over dx in Eq. (C6c), we introduce a
new variable � � �x� 1�=�. Then

 

Z 1��

1
dx�� � �� � �

Z 1

0
d��� � ��:

After that the integrands freg should be decomposed in
powers of � up to terms of order 1=�. Performing this
transformation, we obtain the following result:

 aF1
reg � aF2

reg � 0; aB1
reg � �

1

2
aB2

reg � �
g2

16�2 ’�Q
2�;

aB3
reg �

g2

32�2m2

�
Q2

�
� �4m2 � 2�2 �Q2�’�Q2�

�
(C12)

with ’�Q2� given by Eq. (C10).

4. Contribution to the form factors from ��C��

The matrix structure of the vertex ��C�	 is the same as the
one in front of the form factor B3 in the decomposition
(56). For this reason ��C�	 contributes to B3 only. From
Eq. (60) we easily find

 aB3
1 �

g2

32�2m2

log�1� ��
��1� ��

; (C13)

all the other coefficients being zero.

APPENDIX D: DERIVING THE LIGHT-FRONT
ELECTROMAGNETIC VERTEX FROM THE

FEYNMAN APPROACH

Proceeding from the Feynman amplitude (69) for the
EMV, Sec. III B, we calculate here the pole, arc, and zero-
mode contributions.

1. Preliminary transformations

Under the condition p0� � p� � 0, the LF components
of the four-vectors p and p0 are

 p? � 0; p� �
m2

p�
; p0? � q?;

p0� �
q2
? �m

2

p�
;

(D1)

where q? is the transversal part of the three-dimensional
momentum transfer:

 q? � p0? � p?; Q2 � ��p0 � p�2 � q2
?:

Introducing a new variable x by means of the relation k� �
xp� and using the notations

 a �
k2
? ��

2

p�
; b �

k2
? �m

2

p�
;

b0 �
�k? � q?�2 �m2

p�
;

(D2)

we cast Eq. (70) in the form

 �	 �
ig2

128�4p2
�

Z
d2k?

Z �1
�1

dx
Z �1
�1

dk��k��� �M0	�	�k��� �M	

v1v2v
0
2

; (D3)
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where

 v1 � xk� � a� i0;

v2 � �x� 1�k� � b� �x� 1�p� � i0;

v02 � �x� 1�k� � b
0 � �x� 1�p0� � i0;

(D4)

 M � �x� 1�p��� � p��� � 2k? � �? � 2m;

M0 � �x� 1�p��� � p
0
��� � 2�k? � q?� � �? � 2m:

(D5)

The matrices M and M0 do not depend on k�.
The integral in Eq. (D3) diverges at jk?j ! 1. If x � 0

or x � 1, it diverges also at k� ! �1. We constrain the
integration over dk2

? in d2k? �
1
2dk2

?d� by the cutoff
�2
?, and introduce also the cutoffs L in k�, as in Eq. (21),

and � in x, splitting the region of the integration over dx
into three normal regions �1< x<��, � < x < 1� �,
1� � < x <�1, and two infinitesimal ones�� < x < �,
1� � < x < 1� �. The integrals over the normal regions
are calculated by summing up the residue and arc contri-
butions, as in Sec. II B 1. The contributions (if any) from
the two infinitesimal regions of the integration over dx,
which do not vanish in the limit �! 0, correspond to the
zero modes. Because of rather weak (logarithmic) diver-
gence of the initial integral (69), we expect that the result
of the full integration over dk� and dx has a finite limit at
L! 1 and �! 0, while the remaining integration over
d2k? produces logarithmic dependence of the EMVon the
cutoff �?.

2. Pole and arc contributions

We start with the calculation of ��p�a�	 . The procedure is
quite similar to that exposed in Appendix B 1 and in the
papers [9,10,15–17]. The integrand in Eq. (D3) has three
poles:

 k�1�� �
a� i0
x

; k�2�� �
b� �x� 1�p� � i0

x� 1
;

k�3�� �
b0 � �x� 1�p0� � i0

x� 1
:

(D6)

If �1< x<�� or 1� � < x <�1, all of them are,
respectively, either in the upper half-plane of k� or in the
lower one. If � < x < 1� �, the pole k�1�� is in the lower
half-plane, while the poles k�2�� and k�3�� are in the upper one.
We can thus write, analogously to Eq. (B1):
 

��p�a�	 �
ig2

128�4p2
�

Z
d2k?

�Z 1��

�
��pole

	 � �arc;low
	 �dx

�
Z ��
�1

�arc;low
	 dx�

Z �1
1��

�arc;up
	 dx

�
; (D7)

where �pole
	 equals the residue of the integrand in the pole

k� � k�1�� , multiplied by �2�i:

 �pole
	 � �

8�ip2
�

x

�p6 0 � k6 �m��	�p6 � k6 �m�

��p0 � k�2 �m2	��p� k�2 �m2	

(D8)

with k2 � �2, and the arc contributions are

 �arc;low
	 � ��arc;up

	 � �
�i

x�1� x�2
���	��: (D9)

Substituting Eqs. (D8) and (D9) into Eq. (D7), we find

 ��p�a�	 �
g2

16�3

Z
d2k?

�Z 1��

�

dx
x

�p6 0 � k6 �m��	�p6 � k6 �m�

��p0 � k�2 �m2	��p� k�2 �m2	
�
���	��

4p2
�

log
1

�

�
: (D10)

We substitute here log�1=�� by
R

1
� dx=x and take the limit

�! 0. The latter is achieved simply by setting � � 0 in the
integration limits, because the integrand is no more singu-
lar either at x � 0 or at x � 1. We also return to the
covariant notations, replacing �� by !6 and p� by ! � p.
In this way we find that ��p�a�	 is given by Eq. (72).

3. Zero modes

Let us now consider the zero-mode contribution to
Eq. (D3). It can be written as

 ��zm�
	 �

ig2

128�4p2
�

Z
d2k?�G

�x�0�
	 � G�x�1�

	 	; (D11)

where

 

G�x�0�
	 �

Z �

��
dx
Z L

�L

dk��k��� �M0	�	�k��� �M	

v1v2v02
;

(D12a)

G�x�1�
	 �

Z 1��

1��
dx
Z L

�L

dk��k��� �M0	�	�k��� �M	

v1v2v02
:

(D12b)

In order to calculate these integrals, we need their asymp-
totical limit when L! 1 and �! 0. As explained in
Sec. II B 1, one should take the limit L! 1 first, while
keeping � finite, and then allow �! 0.
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We represent G�x�0�
	 as

 G �x�0�
	 �

Z �

��
dx
Z L

�L
dk�

�
���	��

k2
�

v1v2v
0
2

� �M0�	�� � ���	M�
k�

v1v2v
0
2

�M0�	M
1

v1v2v
0
2

�
:

For further calculations, we will make use of the formulas

 

kn�
v1v2v02

�
Dn�x�
v1
�
En�x�
v2
�
Fn�x�
v02

; n � 0; 1; 2;

(D13)

where v1, v2, and v02 are defined by Eqs. (D4), and the
functions Dn�x�, En�x�, and Fn�x� are
 

D0�x� �
x2

t1t
0
1

; E0�x� �
x� 1

t1t2
; F0�x� � �

x� 1

t01t2
;

D1�x� �
ax
t1t01

; E1�x� �
b� �x� 1�p�

t1t2
;

F1�x� � �
b0 � �x� 1�p0�

t01t2
; D2�x� �

a2

t1t01
;

E2�x� �
�b� �x� 1�p�	2

�x� 1�t1t2
;

F2�x� � �
�b0 � �x� 1�p0�	

2

�x� 1�t01t2
; (D14)

with

 t1 � �x� 1��xp� � a� � bx;

t01 � �x� 1��xp0� � a� � b0x;

t2 � b� b0 � �p� � p
0
���x� 1�:

The values of a, b, and b0 are defined by Eqs. (D2).
After the transformation (D13), the problem of finding

G�x�0�
	 reduces to the calculation of integrals of the follow-

ing three types:

 

Z �

��
dxf�x�

Z L

�L

dk�
v1

;
Z �

��
dxf�x�

Z L

�L

dk�
v2

;

Z �

��
dxf�x�

Z L

�L

dk�
v02

;
(D15)

with various functions f�x�, being either Dn�x�, En�x�, and
Fn�x�, or their products with M and M0. It is easy to see
that the latter two integrals in Eqs. (D15) always give zero
in the limit �! 0, while the first one is of the type of the
integral (E4) from Appendix E. Using the formula (E4) and
taking into account that D2�0� � 1, we get

 G �x�0�
	 � ���	��

Z �

��
dxD2�x�

Z L

�L

dk�
v1

� ����	��

�
�2 � 2�i

�
log
L
a
� log

1

�

��
:

(D16)

The calculation of G�x�1�
	 is similar, but the algebra is more

lengthy. Changing the variable x! x� 1, we have

 G �x�1�
	 �

Z �

��
dx
Z L

�L
dk�

�
���	��

k2
�

u1u2u02

� �M0
1�	�� � ���	M1�

k�
u1u2u02

�M0
1�	M1

1

u1u2u02

�
;

where

 u1 � �x� 1�k� � a� i0;

u2 � xk� � b� xp� � i0;

u02 � xk� � b
0 � xp0� � i0;

(D17)

 

M1 � xp��� � p��� � 2k? � �? � 2m;

M0
1 � xp��� � p

0
��� � 2�k? � q?� � �? � 2m:

(D18)

We have now, instead of Eq. (D13):

 

kn�
u1u2u02

�
Dn�x� 1�

u1
�
En�x� 1�

u2
�
Fn�x� 1�

u02
;

n � 0; 1; 2: (D19)

Again, we encounter integrals of the types (D15), v’s being
changed by u’s. The terms with u2 and u02 in the denom-
inators contribute only, while those with u1 disappear in the
limit �! 0, after the integration over dx. Using the for-
mulas (E4) and (E5) from Appendix E, we obtain after
some transformations

 

G�x�1�
	 ����	��

�
�2�2�i

�
log
L
a
� log

1

�

�
�2�iH1�k?�

�
�2�ip��M

0
10�	������	M10	H2�k?�;

(D20)

where
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M10 � �p��� � 2k? � �? � 2m;

M0
10 � �p

0
��� � 2�k? � q?� � �? � 2m;

H1�k?� �
p� � p0�
b� b0

� log
a
b

�
�a� b0��b� b0� � bp0� � b0p�

�b� b0�2
log

b
b0
;

H2�k?� �
1

p��b� b
0�

log
b
b0
:

In order to find the form factors F �zm� from the vertex
��zm�
	 , it is convenient to cast the latter in an explicitly

covariant form. For this purpose we introduce the four-
vectors
 

r 
 �r�; r�; r?� � �p�; 0;�k?�;

r0 
 �r0�; r
0
�; r

0
?� � �p

0
�; 0;q? � k?�:

Then, taking the sum of Eqs. (D16) and (D20), substituting
it into Eq. (D11), and changing everywhere �� ! !6 ,
p� ! ! � p, we arrive at the desired result:
 

��zm�
	 ��

g2

32�3

Z
d2k?

� !6 !	

�! �p�2
H1�k?�

�

�
�r6 0 �m��	

!6
! �p

�
!6
! �p

�	�r6 �m�
�
H2�k?�

�
:

(D21)

To find the form factors, one should substitute ��zm�
	 into

Eq. (57), instead of �	, then find c1–5 by means of
Eqs. (58), and finally revert the system of linear equa-
tions (59) taken for � � 0. We give here the result:

 F�zm�
1 � F�zm�

2 � 0; B�zm�
i � �

g2

32�3

Z
d2k?bi�k?�;

where

 b1�k?� � H2�k?�; b2�k?� � �2H2�k?�;

b3�k?� �
1

m2 �H1�k?� � 2�k? � q? �m2�H2�k?�	:

It is convenient to use the following representations:
 

H1�k?� �
Z 1

0
dz
�
zp� � �1� z�p

0
� � a� b

0

bz� b0�1� z�

�
a� b

az� b�1� z�

�
;

H2�k?� �
1

p�

Z 1

0

dz
bz� b0�1� z�

;

which can be checked by direct integration. Calculating
first the integrals over d2k? and then over dz, we find the
zero-mode contribution to the form factors, Eqs. (75).

APPENDIX E: CALCULATION OF THE
ZERO-MODE INTEGRALS

Finding the zero-mode contribution to the self-energy
and EMV requires calculation of the asymptotic value of
the integral

 I1 �
Z �

��
dx
Z L

�L

dk�
xk� � b� xh� i0

(E1)

at L!1 and �! 0 (b and h are considered as finite
quantities independent both of k� and x). As we shall see
below, the real part of I1 is finite in this limit, so that

 Re I1 � Re
Z �

��
dx
Z �1
�1

dk�
xk� �b� xh� i0

� Im
�

lim
�!0

Z �

��
dx
Z �1
�1

dk�
Z �1
�

dyei�xk��b�xh�i0�y
�

� 2� Im
�

lim
�!0

Z �1
�

dye�i�b�i0�y
Z �

��
dxe�ihxy��xy�

�

��2�
Z �1

0
dy

sinby
y
���2 sgn�b�:

The imaginary part of I1 is divergent in L and �, and we
have to retain finite values of the cutoffs:

 Im I1 � ��
Z �

��
dx
Z L

�L
dk���xk� � b� xh�:

Using the identity ��z� � ���z�, we can easily see that
ImI1 does not change under the transformation b! �b. It
is thus legitimate to substitute b by jbj. Calculating the
integral by means of the �-function, we get

 Im I1 � ��
�Z �jbj=�L�h�
��

dx
jxj
�
Z �

jbj=�L�h�

dx
x

�

� ��
�
log
L2 � h2

b2 � 2 log�
�
:

Collecting the results together and neglecting the terms of
order �1=L�2 and higher, we finally obtain

 I1 � ��2 sgn�b� � 2�i
�
log

L
jbj
� log

1

�

�
: (E2)

Let us now consider the integral needed for the calcu-
lation of the zero-mode contribution to the EMV:

 I2 �
Z �

��

dx
x

Z L

�L

dk�
xk� � b� xh� i0

; (E3)

where the principal value prescription for the pole at x � 0
is implied. The real part of I2 is found by direct integration:

 Re I2 �
Z �

��

dx
x

�
P:V:

Z L

�L

dk�
xk� � b� xh

�

�
Z �

��

dx

x2 log

��������xL� b� xhxL� b� xh

��������� 4h
�L
�O

��
h
�L

�
3
�
:

We have expanded the result in a series in powers of
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1=��L�, retaining the leading term only. Note that accord-
ing to our prescription we should first tend L to infinity,
while keeping � finite, and then tend � to zero. Under such
a convention, we obtain ReI2 � 0. The imaginary part of I2

reads

 Im I2 � ��
Z �

��

dx
x

Z L

�L
dk���xk� � b� xh�

� ��
Z �

��

dx

x2

Z xL�b�xh

�xL�b�xh
dy��y� �

2�h
b

:

Finally,

 I2 �
2�ih
b

:

From the results obtained above it is easy to derive the
following expressions for the generalized integrals:

 

~I 1 �
Z �

��
dxf�x�

Z L

�L

dk�
xk� � b� xh� i0

� �

�
�2 sgn�b� � 2�i

�
log

L
jbj
� log

1

�

��
f�0�; (E4)

 

~I2 �
Z �

��
dx
f�x�
x

Z L

�L

dk�
xk� � b� xh� i0

�
2�ih
b

f�0��
�
�2 sgn�b�� 2�i

�
log

L
jbj
� log

1

�

��
f0�0�;

(E5)

where f�x� is an arbitrary function supposed to be smooth
and finite at x � 0.
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