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We elaborate on the role of quantum statistics in twisted Poincaré invariant theories. It is shown that, in
order to have twisted Poincaré group as the symmetry of a quantum theory, statistics must be twisted. It is
also confirmed that the removal of UV-IR mixing (in the absence of gauge fields) in such theories is a
natural consequence.

DOI: 10.1103/PhysRevD.75.045009 PACS numbers: 11.10.Nx, 11.30.Cp

I. INTRODUCTION

Following the application of Drinfel’d’s twist for the
Poincaré group on the noncommutative Groenewold-
Moyal (GM) plane [1,2], much interest has been generated
in the study of its physical consequences. One such con-
sequence pointed out in [3,4] is that the usual statistics are
not compatible with the twisted action of the Poincaré
group. This is in agreement with what is already known
in quantum group theory. Among the consequences of this
result is the removal of UV-IR mixing [5] in the S-matrix in
the absence of gauge fields.

Recently there have been claims that this twisting of
statistics is unnecessary or even wrong, and that the re-
moval of UV-IR mixing is the result of a wrong choice of
interaction. In this paper we explain our point of view more
clearly, demonstrating that if one wants to retain the
twisted Poincaré symmetry in a quantum theory, then one
is forced to implement twisted statistics. Secondly, the
form of the interaction is dictated by quantum symmetry
as well.

The paper is organized as follows. After briefly review-
ing the Drinfel’d twist for Poincaré group in the Sec. II, we
elaborate on its implications for quantum statistics in
Sec. III. Section IV discusses the choice of the correct
twisted Lorentz-invariant interaction Hamiltonian. In
Sec. V, we show by an explicit calculation that the corre-
lation functions and hence the S-matrix of the noncommu-
tative quantum field theory (NCQFT) with usual statistics
are not invariant under the twisted symmetry, while the
same are manifestly so for the theory with twisted statis-
tics. Section VI discusses some issues related to the func-
tional integral for theories with twisted Poincaré symmetry.
Section VII describes the notion of locality in the twisted

statistics approach and Sec. VIII addresses some general
issues regarding the tensor products of fields.

II. THE TWIST

The action of a symmetry group on the tensor product of
representation spaces carrying the same representation � is
given by a coproduct �:

 g��� � �� � �� � ����g��� � ��: (2.1)

If the representation space happens to be an algebra as
well, we further have the compatibility condition

 m��� � ����g��� � ��� � ��g�m�� � �� (2.2)

where m is the multiplication map.
The GM plane is the algebra A� of functions f 2 Rn

with the product defined by

 f � g � m��f � g� � m0F �f � g� (2.3)

where m0 is the usual pointwise multiplication,

 F � e��i=2����P��P�; P� � �i@�; (2.4)

is called the twist element, and this rule for multiplication
is often called the star product. Explicitly (2.3) gives

 �f � g��x� � exp
�
i
2
���

@
@x�

@
@y�

�
f�x�g�y�

��������x�y
: (2.5)

The usual coproduct �0 on the Poincaré group,

 �0��� � ���; � 2 Poincar�e group; (2.6)

is not compatible with the star product. But a new copro-
duct �� obtained using the twist is compatible, where

 ����� � F�1�0���F : (2.7)

For details see [1,2]. Note that ���a� � �0�a� if a is a
translation.

III. TWISTED STATISTICS

Twisting the coproduct implies twisting of statistics in
quantum theory, as we will argue in this section. This result
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holds for an n-particle quantum mechanical system and
also for quantum field theory.

A. Quantum mechanics

The wave function of a two-particle system for ��� � 0
in position representation is a function of two variables,
hence it lives in A0 �A0, the tensor product of two
copies of the algebra of functions on commutative Rn,
and transforms according to the usual coproduct �0.
Similarly in noncommutative case, the wavefunction lives
in A� �A� and transforms according to the twisted
coproduct ��.

A general element of the tensor product has no particular
symmetry. Usually we require that the physical wave
functions describing identical particles are either symmet-
ric (bosons) or antisymmetric (fermions). This requires us
to work with either the symmetrized or antisymmetrized
tensor product

 � �S � �
1

2
�� � �	 � ���; (3.1)

 � �A � �
1

2
�� � �� � ��� (3.2)

which satisfy

 � �S � � 	� �S �; (3.3)

 � �A � � �� �A �: (3.4)

In a Lorentz-invariant theory, these relations have to hold
in all frames of reference. In other words, performing a
Lorentz transformation on � � � and then (anti-)
symmetrizing has to be the same as (anti-)symmetrization
followed by the Lorentz transformation.

It is not difficult to show that the twisted coproduct (2.7)
is not compatible with usual symmetrization/antisymmet-
rization (3.1) and (3.2). To see this, let us write F�1 and F
in the Sweedler notation (see for e.g. pg. 5 of [6]) as

 F �1 �
X
�

f�1�� � f�2�� ; F �
X
�

~f�1�� � ~f�2�� ; with

(3.5)

 F �1F � 1 � 1 �
X
�;�

f�1�� ~f�1�� � f�2�� ~f�2�� : (3.6)

Under a Lorentz transformation �,

 �: � � � ���! �� � ��������� � ��

�
X
�;�

��f�1���~f�1���� � ��f�2�� �~f�2�� ��: (3.7)

Subsequent symmetrization/antisymmetrization gives us
 X

�;�

���f�1���~f�1���� � ��f�2�� �~f�2�� ��


 ��f�2�� �~f�2�� �� � ��f
�1���~f�1����� (3.8)

whereas

 �� � ��������� �S;A �� �
X
�0�

���f�1���~f�1����

� ��f�2�� �~f�2�� ��


 ��f�1���~f�1����

� ��f�2�� �~f�2�� ��� (3.9)

which is not the same as (3.8) [See [4] for the same proof
which avoids Sweedler notation.]. The origin of this dif-
ference can be traced to the fact that the coproduct is not
cocommutative except when ��� � 0.

There is another way to phrase this compatibility (or
lack thereof) of Lorentz transformations and symmetriza-
tion. Let 	0 be the statistics (flip) operator associated with
exchange:

 	0�� � �� � � ��: (3.10)

In usual quantum theory, we have the axiom that 	0 is
superselected, i.e., all the observables commute with 	0.
What this means is that no operator in the physical Hilbert
space can change statistics. In particular the quantum
operators that implement Lorentz symmetry must com-
mute with the statistics operator. Also all the states in a
given superselection sector are eigenstates of 	0 with the
same eigenvalue. Given an element � � � of the tensor
product, the physical Hilbert spaces can be constructed
from the elements

 

�
1
 	0

2

�
�� � ��: (3.11)

As is obvious from Eq. (3.8) and (3.9),

 	0����� � �����	0 (3.12)

showing that the usual statistics is not compatible with the
coproduct. But notice that the new statistics operator

 	� � F�1	0F ; 	2
� � 1 � 1 (3.13)

does commute with the twisted coproduct. The states con-
structed according to

 � �S� � �
�
1	 	�

2

�
�� � ��;

� �A� � �
�
1� 	�

2

�
�� � ��

(3.14)

form the physical two-particle Hilbert spaces of (general-
ized) bosons and fermions and obey twisted statistics.

For plane waves ep�x� � e�ip�x we get

 

�
1
 	�

2

�
�ep � eq� � ep �S�;A� eq

� 
e�ip��
��q�eq �S�;A� ep; (3.15)
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�ep �S�;A� eq��x1; x2� � 
e
�i�@=@x�1 ��

���@=@x�2 ��ep �S�;A� eq�

� �x2; x1�: (3.16)

Using the antisymmetry of ���, 	� may also be equiv-
alently written as

 	� � F�2	0: (3.17)

This form of 	� allows to make contact with quantum
group theory, and identifies F�2 as the corresponding
R-matrix.

B. Statistics of quantum fields

A quantum field on evaluation at a spacetime point (or
more generally on pairing with a test function) gives an
operator acting on a Hilbert space. A field at x1 acting on
the vacuum gives a one-particle state centered at x1. When
we write ��x1���x2� we mean �� ����x1; x2�. Acting on
the vacuum we generate a two-particle state, where one
particle is centered at x1 and the other at x2. (We retain just
the creation operator part of � here.) Notice that it just
involves evaluation of the two functions in the tensor
product and not a multiplication map as we get a function
of two variables. On the other hand the star product is a
map from A� �A� to A� and gives a function of a
single variable. Hence there is no reason a priori to put a
starlike operation between ��x1���x2�. We will have more
to say about this in Sec. VIII.

If ap is the annihilation operator of the second-quantized
field ��x�, we want, as in standard quantum field theory,

 h0j�����x�aypj0i � ep�x�; (3.18)

 

1

2
h0j�����x1��

����x2�a
y
qa
y
pj0i

�

�
1
 	�

2

�
�ep � eq��x1; x2� � �ep �S�;A� eq��x1; x2�

(3.19)

[We suppress spin indices. Also here we retain only the
annihilation part of the field in ����]. Note the reversal of p
and q from LHS to RHS of (3.19). This is the standard
prescription used to establish the connection between
quantum field operators and (multi-)particle wavefunc-
tions. The correctness of this prescription can be verified
by applying it to the fermionic case, for ��� � 0.

This compatibility between twisted statistics and
Poincaré invariance has profound consequences for com-
mutation relations. For example when the states are labeled
by momenta, we have, from exchanging p and q in (3.19)

 jp; qiS�;A� � 
e
i���p�q� jq; piS�;A� (3.20)

This is the origin of the commutation relation

 aypa
y
q � 
ei�

��p�q�ayqa
y
p: (3.21)

The adjoint relation

 apaq � 
e
i���p�q�aqap (3.22)

also follows from the complex conjugate of (3.19) on using
(3.16).

The statistics induced on the free quantum fields by
(3.19) is given, on using (3.16), by

 �����x1��
����x2� � 
e

i����@=@x�2 ��@=@x
�
1 ������x2��

����x1�:

(3.23)

Any quantization has to be compatible with the above
statistics of the fields.

So far we have had no occasion to use the algebraic
properties of A�. All we have used is the assumption that
the symmetry of the theory is the twisted Poincaré group
symmetry. That, of course, was forced on us from auto-
morphism properties of A�.

IV. CHOICE OF INTERACTION HAMILTONIAN

It was claimed by [7] that the absence of UV-IR mixing
in noncommutative theories may be due to a specific
choice of the interaction Hamiltonian. Here we point out
that our choice of the Hamiltonian is forced on us from the
requirement of twisted Poincaré invariance.

The interaction Hamiltonian is built out of fields. We
need a multiplication map to write down a Hamiltonian
density starting from fields, as it is a scalar function of just
one variable. Also in order to have twisted Poincaré invari-
ance, one has to ensure that the Hamiltonian density trans-
forms like a scalar field. This will only happen if we choose
a star product (twisted multiplication map) between the
fields to write down the Hamiltonian density. Hence a
generic interaction Hamiltonian density involving just
one hermitean spin zero field (for simplicity) is

 H I�x� � ��x� ���x� � � � � ���x� (4.1)

where ��x� obeys twisted statistics. This form of
Hamiltonian and the twisted statistics of the fields is all
that is needed to show that there is no UV-IR mixing in this
theory [3,5].

We remark that the Hamiltonian used in [7] which uses
conventional statistics, is not invariant under the twisted
action of the Poincaré group.

The ‘‘S-operator’’ of the theory is the same as the
‘‘S-operator’’ of the corresponding commutative model,
while the asymptotic fields obey the twisted statistics.
(But this statement is not true when gauge fields are present
[8].)

We again emphasize that the above form of the interac-
tion Hamiltonian density is the only choice possible if the
theory is to be twisted Lorentz invariant. The Hamiltonian
must commute with the generators of the symmetry in
order for the dynamics to be invariant. In this regard,
both the star-product and twisted statistics are essential
and an interaction with only the star-product and usual
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statistics of fields is not invariant under the twisted
Poincaré symmetry.

V. ON THE INVARIANCE OF CORRELATION
FUNCTIONS

A. The twisted action on the tensor product of plane
waves

As a preliminary to the calculations, we first consider the
actions of the twisted coproduct of the Poincaré group on
the tensor products of plane waves.

On a single plane wave, the Lorentz transformation �
and translation P� acts according to

 ��ep��x� � ep���1x� � e�p�x�;

�P�ep��x� � �p�ep�x�
(5.1)

where we used ��1 � �T and P� � �i@�. Hence

 �ep � e�p; @�ep � �ip�ep: (5.2)

Let U denote the representation of the (enveloping alge-
bra of the) Poincaré group on arbitrary tensor products of
plane waves. The latter respond to translations in the usual
manner, so we focus on Lorentz transformations �. On ek,
the action of U��� is as in (5.1):

 U���ek � e�k: (5.3)

On ek1
� ek2

, we must find the action using the coproduct:
 

U���ek1
�ek2

������ek1
�ek2

�e��i=2�@�����@������e�i=2�@�����@�ek1
�ek2

�e�k1
�e��1=2���k1�����@��e�1=2�k1����@�|��������������������������{z��������������������������}

�1

ek2

�e�i=2�k1�
���k2e�k1
�e�k2

; (5.4)

where

 k1 � 
�� � k2 � k1��
�����k2�; 
�� � ��1��� �:

(5.5)

The action on ek1
� ek2

� ek3
is found using the copro-

duct on �1:

 ����1� � �e��1=2���k1���
��@� � e��1=2���k1���

��@��

� �e��i=2�@�����@�� ��e�i=2�@�����@��

� �e�1=2�k1����@� � e�1=2�k1����@��: (5.6)

It gives

 U���ek1
� ek2

� ek3
� e�k1

�����1��ek2
� ek3

� (5.7)

where

 

����1��ek2
� ek3

� � e�i=2�k1�
���k2e�k2
��2ek3

;

�2 � e��1=2���k1	�k2�����@�

��e�1=2��k1	k2�����@� : (5.8)

Thus

 

U���ek1
� ek2

� ek3
� e�i=2�k1�
���k2	�i=2��k1	k2��
���k3e�k1

� e�k2
� e�k3

: (5.9)

The action on ek1
� ek2

� ek3
� ek4

is found by splitting
�2 again with a ��. In this way we see that in general,

 U���ek1
� ek2

. . . � ekN � e�i=2�k1�
���k2	�i=2��k1	k2��
���k3	...�k1	k2...	kN�1��
���kNe�k1
� e�k2

. . . � e�kN : (5.10)

B. Correlation functions of NCQFT with untwisted
statistics

Consider the scalar field theory on the GM plane with
the Lagrangian (density)

 L � �
1

2
@�� � @���

1

2
m2� ���

�
4!

� �� �� ��;

(5.11)

where �y � �. Since statistics is not twisted, the annihi-
lation and creation operators cp, cyp of � are those for
��� � 0.

The correlation functions of (5.11) are not Lorentz-
invariant under the twisted coproduct. It is enough to prove
this result for the free field theory where � � 0.

The correlation functions for the product of an odd
number of fields is zero. We show now that the four-point
function is not Lorentz-invariant under the twisted copro-
duct. That can be adapted to show that the two-point
function is Lorentz invariant. (Translational invariance is
preserved by both untwisted and twisted statistics.)

The scalar field has the mode expansion

 ��x� �
Z d3p

�2��3=2�2p0�
�cpep�x� 	 c

y
pe�p�x�� (5.12)

where p0 � 	
���������������������
j ~pj2 	m2

p
and cp and cyp are the

annihilation-creation operators for ��� � 0:

 �cp; ck � 0 � �cyp; c
y
k ; �ck; c

y
k  � 2p0
3�p� k�:

(5.13)
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The four-point function in this case, with no statistics twist,
is
 

h0j��x1���x2���x3���x4�j0i

�D�x1� x2�D�x3� x4� 	D�x1� x3�D�x2� x4�

	D�x1� x4�D�x2� x3�

� I	 II	 III; (5.14)

 D�x� �
Z d3p

�2��3�2p0�
e�ip�x � D��x�: (5.15)

We now show that I and III are invariant (for the twisted
coproduct), but not II.

Consider I:
 

I �
1

�2��6
Z �Y

i

d3pi
�2pi0�

�
ep1
�x1�e�p2

�x2�ep3
�x3�e�p4

�x4�

� �2p10��2p30�
3�p1 � p2�
3�p3 � p4�: (5.16)

Applying (5.10) with k1 � p1, k2 � �p2, k3 � p3, k4 �
�p4, we find that the phase in (5.10) becomes 1 because of
the 
-functions and that

 �: I ! D���1�x1 � x2��D��
�1�x3 � x4�� � I: (5.17)

A similar calculation shows the Lorentz invariance of III.
Now consider II:

 

II �
1

�2��6
Z �Y

i

d3pi
�2pi0�

�
ep1
�x1�ep2

�x2�e�p3
�x3�e�p4

�x4�

� �2p10��2p20�
3�p1 � p3�
3�p2 � p4�: (5.18)

So with k1 � p1, k2 � p2, k3 � �p3, k4 � �p4 the phase
becomes e�i=2�p1�
���p2 and
 

�: II !
Z d3p1d

3p2

�2��6�2p10��2p20�
eip1�
���p2ei��p1���x1�x3�

� ei��p2���x2�x4� � II: (5.19)

It is not Lorentz-invariant.

C. Correlation functions of NCQFT with twisted
statistics

In this case the free field is

 ��x� �
Z d3p

�2��3=2�2p0�
�apep�x� 	 a

y
pe�p�x��: (5.20)

Let P� be the Fock space momentum operator:

 P � �
Z d3p

2p0
p�c

y
pcp: (5.21)

Then, as shown in [4,9], the operators ap, ayp can be written
as follows:

 ap � cpe
��i=2�p����P � ; ayp � cype	�i=2�p����P � :

(5.22)

Using (5.16) and (5.18), we calculate the four-point func-
tion with twisted statistics:
 

h0j��x1���x2���x3���x4�j0i

� I 	 III 	
1

�2��6
Z Y

i

d3pi
�2pi0�

eip1����p2�ep1
�x1�

� e�p2
�x2�ep3

�x3�e�p4
�x4� � �2p10��2p20�

� 
3�p1 � p3�

3�p2 � p4�: (5.23)

 � I 	 III 	 II0 (5.24)

where I and III are Poincaré invariant as shown before. As
for II0, we find, using (5.10) with k1 � p1, k2 � �p2,
k3 � p3, k4 � �p4 and the 
-functions,
 

�: II0 !
1

�2��6
Z Y

i

d3pi
�2pi0�

e�p1
�x1�e��p2

�x2�e�p3
�x3�

� e��p4
�x4�e

ip1����p2�eip1�
���p2�2p10�

� �2p20�
3�p1 � p3�
3�p2 � p4�: (5.25)

Since

 eip1����p2�eip1�
���p2 � ei��p1�������p2�� (5.26)

the Poincaré invariance of II0 also follows. The phase
eip1����p2� in (5.23) which comes from twisted statistics
is essential to reach this conclusion.

VI. FUNCTIONAL INTEGRAL

We saw above that in order to have twisted Poincaré
invariance in a quantum theory, we must also have twisted
statistics. This has implications for a functional integral
formulation of the quantum theory too. This is because
statistics of the fields is an input in a functional integral.
For example, in the case of usual fermions, statistics is not
derived from functional integral, but is rather inferred from
other considerations and then built into the functional
integral by use of anticommuting classical fields.

Similarly, in order to construct a functional integral
which gives a twisted Poincaré invariant quantum theory,
we must use the correct statistics as an input and construct
the functional integral out of classical fields which obey the
twisted statistics. In particular its full measure consists of
tensor products of individual measures at different points
and the individual measures must obey twisted statistics
among themselves in order for the total measure to be
Poincaré invariant. This again is in analogy to the case of
fermions, where individual measures anticommute among
themselves. We will not go here into the full details of the
construction of the functional integral which gives the
twisted quantum field theory. It has been done by Oeckl
[3]. It will suffice here to show that the conventional func-
tional integral does not give a twisted Poincaré invariant
theory.

The following functional integral was considered by
[10] and claimed to be twist-Poincaré invariant:
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 W �
Z Y

x

D���x��ei
R
d4xL��x� (6.1)

where L� is, for example, the star-Lagrangian (density)

 L ��x� �
1

2
@���x� � @���x� �

1

2
m2��x� ���x�

�
�
4!
��x� ���x� ���x� ���x� (6.2)

and D���x�� is the usual measure.
With the functional integral defined with this measure,

we obtain conventional quantization of noncommutative
field theory with no statistics twist, and its Feynman rules.

But this measure is not invariant under the twisted
Poincaré group. We can show this by a simple argument.

Consider

 

Z Y
x

D���x����x1���x2���x3���x4�e
i
R
d4xL��x�

� h0jTf��x1���x2���x3���x4�gj0i: (6.3)

It is enough to consider � � 0. It is clear that if the measure
is not invariant for � � 0, turning on the interactions
cannot suddenly make it invariant. Let us suppose for
convenience that x0

1 > x0
2 > x0

3 > x0
4. Then

 h0jTf��x1���x2���x3���x4�gj0i

� h0j��x1���x2���x3���x4�j0i: (6.4)

which is the same as (5.14). But we saw above that

 h0j��x1���x2���x3���x4�j0i

� ��h0j��x1���x2���x3���x4�j0i: (6.5)

Hence it follows that

 

Z Y
x

D���x����x1���x2���x3���x4�e
i
R
d4xL��x�

�
Z Y

x

D���x�������x1���x2���x3���x4��e
i
R
d4xL��x�

(6.6)

showing that the measure is not twist-Poincaré invariant.

VII. LOCALITY

A. ��� � 0, untwisted statistics

The conventional quantization of a scalar field on the
noncommutative plane leads to nonlocal physics. However
this nonlocality is due to nonlocal interaction terms and
does not show up in the free theory. As remarked earlier the
free theory is identical to the scalar field theory for ��� �
0.

B. ��� � 0, twisted statistics

The situation is quite different when one quantizes using
twisted statistics. In this case, even the free theory is non-

local. We have
 

���x�;��y� �
Z d3pd3k

�2��3�2p0��2k0�

� �e�i�p�x	k�y��1� e�i�
��p�k��apak

	 ei�p�x	k�y��1� e�i�
��p�k��aypa

y
k

	 e�i�p�x�k�y�f�1� ei�
��p�k��apa

y
k

� �2p0�

3�p� k�g

	 ei�p�x�k�y�f�1� ei�
��p�k��aypak

	 �2p0�
3�p� k�g (7.1)

This operator is not zero when x and y are spacelike
separated. For example, we can calculate it between two
single-particle momentum eigenstates jqi and jri. We have
 

hqj���x�;��y�jri � �ei�
��q�r� � 1��e�ir�x	iq�y� eiq�x�ir�y�

	 �2q0�

3�q� r�

� �D�x� y� �D�y� x� (7.2)

where D�x� y� was defined in (5.15). The last two terms
together vanish for spacelike separations, but the first term
is in general nonzero for q � r.

Although the free theory is (twisted) Poincaré invariant,
it is nonlocal. Hence the spin-statistics theorem does not
apply to it and there is no internal inconsistency coming
from this theorem.

VIII. ON TWISTED TENSOR PRODUCT

In [10], it has been suggested that the �-product and the
twist of statistics are one and the same.

We feel that this remark is incorrect. It is well-known in
Hopf algebra theory [6] that the coproduct on a (quasitri-
angular) Hopf algebra is associated with an ‘‘R-matrix’’
and that the latter fixes statistics. In our case, R � F�2 and
that gives the representation of the permutation group via
(3.13).

Incidentally, a ‘‘twisted’’ tensor product has been used in
[10] in connection with the Drinfel’d twist. Its connection
to the �-product is vague at best. It leads to twisted statis-
tics, but not the correct one. We can see this as follows.

The twisted tensor product considered is

 ��	�0 �T ��	�0 � e�i=2�@�����@���	�0 ���	�0 (8.1)

where the field ��	�0 is the creation part (say) of a free field
constructed from the standard creation and annihilation
operators in the usual manner. We have,

 ��	�0 �x��
�	�
0 �y� � ��	�0 �y��

�	�
0 �x� (8.2)

so that

 ���	�0 �T ��	�0 ��x; y� � �e
�i=2�@�����@�����	�0 ���	�0 ��x; y�

(8.3)
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 � exp
�
i
2

@
@x�

���
@
@y�

�
��	�0 �x��

�	�
0 �y� (8.4)

 � exp
�
�
i
2

@
@y�

���
@
@x�

�
��	�0 �y��

�	�
0 �x� (8.5)

 � e�i@���
��@����	�0 �T ��	�0 ��y; x� (8.6)

This does not agree with (3.23).
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