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We investigate lattice simulations of scalar and non-Abelian gauge fields in Minkowski space-time. For
SU(2) gauge-theory expectation values of link variables in 3 + 1 dimensions are constructed by a
stochastic process in an additional (5th) “Langevin-time.” A sufficiently small Langevin step size and
the use of a tilted real-time contour leads to converging results in general. All fixed point solutions are
shown to fulfil the infinite hierarchy of Dyson-Schwinger identities, however, they are not unique without
further constraints. For the non-Abelian gauge theory the thermal equilibrium fixed point is only
approached at intermediate Langevin-times. It becomes more stable if the complex time path is deformed
towards Euclidean space-time. We analyze this behavior further using the real-time evolution of a
quantum anharmonic oscillator, which is alternatively solved by diagonalizing its Hamiltonian.
Without further optimization stochastic quantization can give accurate descriptions if the real-time extent

of the lattice is small on the scale of the inverse temperature.
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I. INTRODUCTION

Lattice gauge theory provides important insight into
strongly interacting theories such as quantum chromody-
namics (QCD). Typically, calculations are based on a
Euclidean formulation, where the time variable is analyti-
cally continued to imaginary values. By this the quantum
theory is mapped onto a statistical mechanics problem,
which can be simulated by importance sampling tech-
niques. Recovering real-time properties from the
Euclidean formulation is a formidable problem that is still
in its infancies. Direct simulations in Minkowski space-
time would be a breakthrough in our efforts to resolve
pressing questions, such as early thermalization or the
origin of seemingly perfect fluidity in a QCD plasma at
RHIC [1]. For real times standard importance sampling is
not possible because of a nonpositive definite probability
measure. Efforts to circumvent this problem include mim-
icking the real-time dynamics by computer-time evolution
in Euclidean lattice simulations [2,3]. A problem in this
case is to calibrate the computer time independently of the
algorithm. Another procedure amounts to separate a posi-
tive factor from the Boltzmann factor to be used for im-
portance sampling, and reweight the configurations with
the remaining (complex) part. These so-called “‘reweight-
ing methods” suffer from the problem of large cancella-
tions of contributions, induced by the oscillating signs in
the weight (“‘sign problem’) and from the difficulty of
ensuring a sufficient overlap between the simulated and the
target ensemble (“‘overlap problem’”).

Direct simulations in Minkowski space-time, however,
may be obtained using stochastic quantization techniques,
which are not based on a probability interpretation [4,5]. In
Ref. [6] this has been recently used to explore nonequilib-
rium dynamics of an interacting scalar quantum field
theory.
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In real-time stochastic quantization the quantum en-
semble is constructed by a stochastic process in an addi-
tional “Langevin-time” using the reformulation for the
Minkowskian path integral [7-9]: The quantum fields are
defined on a d-dimensional physical space-time lattice, and
the updating employs a Langevin equation with a complex
driving force in an additional, unphysical “time” direction.
This procedure does not involve reweighting, nor redefini-
tion of the Minkowski dynamics in terms of an associated
Euclidean one. Though more or less formal proofs of
equivalence of the stochastic approach and the path inte-
gral formulation have been given for Minkowski space-
time, not much is known about the general convergence
properties and its reliability beyond free-field theory or
simple toy models [8,9]. More advanced applications con-
cern simulations in Euclidean space-time with nonreal
actions [10,11]. Besides successful applications, major
reported problems in this case concern unstable Langevin
dynamics and incidences of convergence to ‘“unphysical”
results [10-12].

In this paper we discuss real-time stochastic quantiza-
tion for scalar field theory and SU(N) pure gauge theory
relevant for QCD. Similar to what has been observed in
Ref. [6] for scalar fields, also for the gauge theory we find
that previously reported unstable dynamics represents no
problem in practice. A combination of sufficiently small
Langevin step size and the use of a “tilted” real-time
contour leads to converging results in general. Our proce-
dure respects gauge invariance and appears to be well
under control. This is exemplified for SU(2) gauge theory
in 3 + 1 dimensions. For the scalar theory we consider, in
particular, a zero-spatial dimension example, namely, a
quantum anharmonic oscillator. The latter is solved in
addition by alternative methods using Hamiltonian diago-
nalization for comparison. We find that stochastic quanti-
zation can accurately describe the time evolution for
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lattices with sufficiently small real-time extent. This con-
cerns nonequilibrium and equilibrium simulations at weak
as well as strong couplings. However, when the real-time
extent of the lattice is enlarged the stochastic updating does
not converge to the correct solution. In particular, for the
non-Abelian gauge theory the thermal equilibrium solution
is only approached at intermediate Langevin-times. Its
lifetime in the course of the Langevin evolution becomes
longer if the complex time path is deformed towards
Euclidean space-time.

Since there appears more than one fixed point to which
the Langevin flow can converge, the solutions obtained by
real-time stochastic quantization are not unique in general.
Similar observations have been made before for Euclidean
theories with complex actions [12]. Euclidean theories
with real actions can be shown to have a unique solution
based on positivity arguments [4]. A similar argument fails
for real-time stochastic quantization. In general, here the
correct fixed point cannot be chosen a priori without
implementing further constraints. We prove that all pos-
sible fixed point solutions fulfil the same infinite set of
(symmetrized) Dyson-Schwinger identities of the quantum
field theory. However, solutions of Dyson-Schwinger equa-
tions without specifying further constraints are not unique
in general. We discuss how tests for differentiating them
can typically be devised and applied.

The paper is organized as follows. Section II reviews
stochastic quantization in Euclidean space-time, which
fixes the notation for the derivation of the real-time dy-
namics in Sec. III. Particular emphasis is put on the devel-
opments for gauge theories, since previous suggestions for
Langevin dynamics in the additional time dimension vio-
late Dyson-Schwinger identities of the original quantum
theory. In Sec. IV we prove Dyson-Schwinger equations to
follow from real-time stochastic quantization. Simulation
results and precision tests are discussed in Secs. V and VL.
We end with conclusions in Sec. VIL

II. EUCLIDEAN STOCHASTIC QUANTIZATION

The stochastic quantization algorithm calculates en-
semble averages in an extended space of variables, where
the lattice action S of the d-dimensional quantum theory
plays the role of a potential energy in a classical
Hamiltonian H of a (d + 1)-dimensional, embedding the-
ory. The ensemble averages of the original quantum theory
are computed from classical evolution in the additional
time dimension.

A. Euclidean scalar theory

We first consider classical dynamics for scalar fields in
d-dimensional Euclidean space-time with Hamiltonian
(see e.g. [13])

1= [ats(5m s + Lelptn) detrs)) )
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Here the field ¢ and momentum 7 depend on the
d-dimensional Euclidean space-time variable x, (u =
0, ...3) and on an additional time variable 5. The function
L depends on the field and its derivatives with respect to
x,. Itis taken to correspond to the Lagrange density of the
physical four-dimensional Euclidean field theory with
mass m and quartic self-interaction A where

1 A
Lg= 5{(3x€0(x; 15))? + m? o> (x; 15)} + 5904(359 ts). (2)

Since L contains no field derivatives with respect to t5 the
variable enters only as an additional field label in Eq. (2).

Expectation values of observables F(¢) are given by the
functional integral

(Fe)=27" [ DaDer()e = ()
with the normalization
zZ- f DrDgeHimel, @

The Gaussian integrals over the momentum fields can be
trivially performed and the overall constants cancel out in
the computation of field expectation values. Here the in-
troduction of the canonical field momenta is used to com-
pute expectation values of quantum fields from classical
Hamiltonian dynamics. This amounts to replacing the ca-
nonical ensemble averages (3) by microcanonical ones.
The latter can be obtained from solving Hamilton
equations.

The basis for the numerical simulations are the discre-
tized classical equations for the Hamiltonian (1). The
classical dynamics of the field ¢ and its conjugate momen-
tum 7 in f5-time is described by Hamilton equations of
motion

dpx;ts) _ OH

8t5 67T(X,t5) - W(X;IS); (5)
dts Se(x; ts) Se(x;ts)’

where the functional differentiation with respect to ¢ is for
fixed t5. The Euclidean action is

Se[e] = [ 3 Ly (o(x), 3, 0(). ™

In order to discretize Eqs. (5) and (6) in #5, we denote the
difference in subsequent f5-time steps by Ars=(f5),41 —
(t5),. Correspondingly, we will write {@((s5),41)s

w((t5),+1)} — @', 7'} and {@((15),), w((t5),)} = 1@, 7} A
suitable second-order discretization of (5) then reads
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0600y, 120
¢ = gl) + LA+ 5 AR
— ol + mtodis —3 D8 an )

Correspondingly, expanding 7' — 7 to order Azs and using
Eq. (6) the field momenta are (leapfrog) evolved with

5513[90] 8SE[§D/]
dp(x)  8¢'(x)

which yields reversible and area preserving discretized
dynamics [13].

The conjugate momenta in the classical Hamiltonian (1)
have a Gaussian distribution, which is independent of the
values of the field variables. If instead of stepping along a
single classical trajectory the momenta after every single
step are randomly refreshed, one recovers classical
Langevin dynamics in ts-time. It amounts to making the
substitutions

V27(x) — (%),

/() = m(x) — & At )
i )

%At? — €, (10)
with Gaussian noise
(n(x)), =0, (n)n(x)), =28 —x), (A1)

where the average of an observable A(¢; 17) over the noise
is given by

Jldn]A(e; n)exp{—§ [d*xn*(x)}
[ldnlexp{— [d*xn*(x)}

The discretized Langevin equation then reads’

(Alg; M)y = (12)

@'(x) = o(x) —

S;j[“’] ten@.  (3)

The sum over the Langevin steps, ¢ = > ¢, is called
Langevin-time, which replaces #; of the classical
dynamics.

This simplified description of the classical dynamics
forms the basis of stochastic quantization [4]. The stochas-
tic process (13) is associated to a distribution Pg(z5) for the
field ¢(x). Writing Pg((t5),+,) — Pg and Pg((t5),) — Pg
its evolution can be obtained from

ile') = ( [laelpdlel Jo( ') — o) + 2Sile]
~Ven)) (14

Expanding the §-functionals and keeping only terms up to
order € gives the Fokker-Planck equation

'Our discretization corresponds to Ito calculus for stochastic
processes.
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1 o (OP BS
<(Pe = Polle] = [t (S 4 P e

+ O(e), (15)

where we have used Eq. (11). For real action Sg one can
prove that it converges to the late Langevin-time limit

Pele] = e Selel + O(e). (16)

Therefore, expectation values (F(¢)) can be obtained from
noise averages or, assuming ergodicity, from Langevin-
time averages for sufficiently long classical trajectories.

B. Euclidean gauge theory

A similar discussion can be done for gauge theories. We
consider a non-Abelian pure gauge theory on an aniso-
tropic lattice of size (Nya,)® X N,a, with Euclidean action

SE[U] = _ﬂgz Z{m (Tar 0i + Tar ()l) 1}

N ’BEZ Z{ﬂ (Tl + TeU L) - 1}

i<j

a7

with spatial indices i, j = 1, 2, 3. It is described in terms of
the gauge-invariant plaquette variable

UX,,LLI/ = Ux,y,Ux+,&,1/U

x+o,u

Uc, (18)

where U} uw = Uy 4, Here U, , is the parallel transporter
associated with the link from the neighboring lattice point
x + /i to the point x in the direction of the lattice axis u =
0,1,2,3 with U,, = UZ!, _ . The link variable U, , is
an element of the gauge group G. Because of the aniso-
tropic lattice we have introduced the anisotropic bare
couplings g, for the timelike plaquettes and g, for the

spacelike plaquettes with

2yg Trl - 2Tr1
,80 = , Bs ,
Eg Eoge

19)

where yg = a,/a, is the anisotropy parameter.

For G = SU(N) one has U;}L = U}L’,,v. When we con-
sider Minkowski space-time below we will observe that the
latter no longer holds. Therefore, we keep U;}L,, in the
definition of the action (17), which will still be valid for the
Minkowskian theory.

In order to derive the fs-time dynamics of the 5-
dimensional theory one can follow the equivalent steps as
in Sec. I A. For the definition of the Langevin drift term
one has to define differentiation with respect to the non-
Abelian variable U, ,,. Differentiation in group space will
be defined by

Dx;wf(Ux,p,) =

d .
%f(ela)‘a Ux,,u,)la=0 (20)
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with the generators A, of the Lie algebra. For G = SU(N)
these are the a = 1, ..., N> — 1 traceless, Hermitian N X
N Gell-Mann matrices, which are normalized to
Tr(A,Ap) = 28, with [A, Ay] = 2if,peA,, Where the
structure constants f,,. are completely antisymmetric
and real. The derivatives then satisfy the commutation
relations [D, .4, Dyup] = 2f apeDspic-
For the Hamiltonian

1
H =35> Plults) + SelU(15)] 1)
xpa
with the above definitions the Hamilton equations for the
ts-time dynamics read
oU

a;‘s”‘ = iAP, .U,

P
A aX,U«a = _Dx;LaSE[U]'
Is

(22)

The discretized canonical equations of motion correspond-
ing to (8) and (9) are then given by

ouU 1 0°U
U,,=U,, +—FAts + - —3F
Tp B g T2 ol
_ , 19
== UX,,M + l/\an,uaUx,,uAtS + E 3_[5

2
Atz

X (i/\anaUx’M)Atg

1
= eXp{i)\u(Px’uaAt5 - ZDX,uaSE[U]Atg)}Ux,,UM
(23)

where the equalities hold up to corrections O(A#3). Here
P¢, is the ts-time conjugate momentum for U, , with

(leapfrog) discretized Hamilton equation (cf. (9))
ch,ua = Px,ua - %(Dxp,aSE[U] + D;C;LQSE[U/])AZS’ (24)

where D’ refers to the derivative with respect to U’.

The Langevin equation is obtained in the same way as
described for the scalar case by the corresponding substi-
tutions (10) with

V2P 0(6) = M), (25)
and a real Gaussian noise 7,,, satisfying
<77x,ua77y1/b>1] = 28,4/,1/6)())601)' (26)

The discretized Langevin equations for U, ,, to this order in
€ may then be written as

U)/c,,u, = exp{_i/\a(EDx,uaSE[U] - \/Enx,ua)}Ux,p,' (27)

Nyparn =0,

III. REAL-TIME DYNAMICS

A. Real-time scalar theory

Instead of the embedded d-dimensional Euclidean the-
ory discussed above, one may consider Minkowskian
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space-time. This requires an analytic continuation of the
Euclidean time in the action (7) to Minkowski time. For
this it is instructive to consider the one-parameter family of
actions S; for the field ¢(x) with x = (z, x) given by

Sle] = — | dixe i7¢/2 lnggo + lngoz + igo“
¢ 2 2 47
(28)
with d’ Alembertian
O = €™ 92 — V. (29)
For £ =0 one recovers from Eq. (28) the standard
Minkowski action, while for £ = 1 one has
S¢—y = iSg. (30)

The discretized Langevin equation (13) can be written
for the family of actions (28) as

0
o0 = gl +ie L+ Vel GD
with
el = e lOgp + et + 4 0], G2

The Gaussian noise 1(x) is defined as in the Euclidean case
in Eq. (11). The case ¢ = 0 forms the basis of real-time
stochastic quantization [8], and we will denote Sg,—g = S.
It is important to note that possible solutions of Eq. (31)
will not be real in general. For instance, for a real scalar
field theory with Minkowskian action S[¢] it will generate
complex field values for 75 > 0. For a complex field

¢(tr X) = QDR(t, X) + i(PI(t, X) (33)

also the conjugate momenta r(z, x) or, with (10), the
respective noise

n(t, x) = ng(t, x) + in,(t, x) (34)
can be complex. Equation (31) may then be written as
k(1. X) = @p(t, X) — €l (@, @131, X) + Jen(t, x),
@i(t,x) = @;(1,X) + €R(@p, @131, X) + Jen, (1, x),

(35)
where
8S:l¢]
Re(@p, @131, %) = Re(5 ¢ )
(1, X) | g=gptie, -
Ie(og, @11, X) = Im< 8Sele] >
5€D(l’ X) e=prtig;

It remains to consider suitable choices of the noise terms. A
particularly simple choice is a real noise, where 1; = 0.
However, for complex fields a real noise may not be
suitable in general, since the noise plays the role of the
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field conjugate momentum in the underlying classical dy-
namics (see (10)). For a complex noise one obtains from
(11)?

<77R(x)>7, =0, <771(x)>n =0,
mr@)n; (), =0, (Mr()ne(x)), = 256(x — X)),
M), (x)), = 2(s = Do(x — x'). (37

For real s > 1 the average of an observable A(¢; 77) over
the noise is defined as

Jldnglldn,JAexp{— [d*x(G; nk + 350p D}
JldnglldnJexp{— [d*x(; nk + s m)}
(38)
The case s = 1 corresponds to a real noise with 17; = 0 and
noise average as in Eq. (12) with n — m. We have

checked numerically that the different possible choices
do not affect the final result. Analytically this can beJ

), =

¢ ()@’ (Ve (2) = e e(y)e(2) + Vele(x) () n(z) + e(x)e(2)n(y) + e(y)e(2)n(x)} — 6{

AR
i So(y)

5S¢l e]
d¢(2)

e e(z) +

and correspondingly for higher powers of the field. In
Sec. IV we will see that the late Langevin-time limit of
these equations leads to an infinite hierarchy of Dyson-
Schwinger identities.

B. Real-time gauge theory

Following Sec. III A we replace the Euclidean action
(17) by the Minkowskian with

— SglU] = iS[U] (42)

on a real-time lattice of size (N;a,)® X N,a,. The real-time
classical action reads

1
SLUT=—BoY. Z{m (TrUo; + TrU,) = 1}

1 -
+ BY§ Z/{m (Tar,ij + Tar,ilj) - 1}, (43)

where the relative sign between the timelike and the space-
like plaquette terms reflects the Minkowski metric, and

*Note that the complex field ¢ yields a nonreal action S[¢],
which is not a functional of ¢*¢. Likewise, the conjugate
momentum or complex noise does not fulfil (n*(x)n(x')), =
26(x — x') but (11).
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understood from the fact that the fixed points of the
Langevin flow are independent of s, as shown in Sec. I'V.

Other observables F(¢(x)) follow similar evolution
equations, which are obtained like (8) from discretization
to second order in Ats,

IF(e(x))

1 9*F(g(x))
dts 2

F(¢'(0) = Flp() + Aty +5 =%
5

Az,
(39)

with the substitutions (10) and using Eq. (31); e.g. the
product of two fields follows the discretized equation

/ 1) — . 655[90] 8S§[§D]
¢060) = ¢(Wp0) +ie| TE o)+ TE o)
+en()n(y) + Vele()n() + o) ()}
(40)
For three powers of the field one finds
6;55;] e(y)e(2)

QD(X)QD()’)} + ele()n() 1) + e(M)nx)n(2) + e(@)n(x)n()} 1)

[

2vTrl 2Trl
Bo =13, =5, (44)
80 857

with the anisotropy parameter y = a,/a,.>
The discretized Langevin equations for U, , to second
order in € may then be written as

Uy = explir,(€iDy, o SIUT + Ven, uo)tUs - (45)
with
, 1 I
le,u,aS[U] = ﬁﬁoz{é‘ju Tr(/\a Ux,ij,jO - C)c,j()Ux,]1 )la)
J
+ 50,u Tr(Aa Ux,OCx,Oj - Cx,Oj U;é Aa)}

1
~5N 3326 i Tr(A U,

i#j

Cyji—CyjiUc A

X,J

13 ~ -
- _ﬁZﬁ,uuTr(/\a Ux,;LCx,,LW o CX»MVUX’.‘ILA“)'
=0

vFEWR

(46)

For a compact notation we have defined B;; = B, and

Boi = Biop = — By and

*See Sec. IIB for a, = —ia, and the replacement according to
Eq. (42).
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Uih +Ugl 5, UL

xta—vvx—d,u

Cx,,uv = Ux—z?,w
~ — -1 -1
CX,}LV - UX,VUx+f/,/.LU + U_X71A/,VU)C_I'),,U,UX+,[L_1>,V'

x+i,v
(47)

Ux+;l,VU_1

x+o,u

= UX,MV + anu(_,,) and CX,M,,U;}L =

one observes that the sum in Eq. (46) is

With U, ,C,
Ux_,lll«V + U):;IL(*V)
over all possible plaquettes containing U, ,,.

Specifying to SU(2) gauge theory A, = o, (a = 1,2, 3)
represent the Pauli matrices, and we can make further
simplifications using Tr(U~'0%) = —Tr(Uo*) for any ele-
ment U € SU(2). The latter simplification also holds for
U € SL(2, C). This is relevant since, similar to what has
been discussed for the scalar theory above, possible solu-
tions of Eq. (45) may respect an enlarged symmetry group.
Taking

¥

Upp = eAxpaTal2 (48)
the vector fields A, , need not be real, which is in contrast

to the Euclidean case discussed in Sec. II B. The complex
matrix A{,o, still remains traceless, however, the
Hermiticity properties are lost. As a consequence, it is no
longer possible to identify UT with U™! as is taken into
account in Eq. (17). This corresponds to an extension of the
original SU(2) manifold to SL(2, C) for the Langevin
dynamics. Only after taking noise averages the original
SU(2) gauge theory is to be recovered (see Sec. IV).
According to Eq. (26) the noise is given by

<77x,ua>n = O» <77x,ua77y1/b>1] = 28,4/,1/5)())501)' (49)

It is essential to use the same statistics for the noise as one
has in the Euclidean case. One may be tempted to replace
the &, on the right-hand side (RHS) of Eq. (49) by g, to
make the Langevin equation manifestly covariant [9].
However, in this case solutions of the Langevin evolution
would not respect the Dyson-Schwinger identities of the
underlying quantum field theory, as is shown in Sec. IV.
Only for observables one has to respect Lorentz symme-
tries which is still fulfilled with Eq. (49).

In general, observables F(U) follow similar evolution
equations, which are obtained from the second-order dis-
cretization equivalent to Eq. (39). For instance, for the
plaquette U, ,, given by (18) one has

oU

= U,y + 2 A +

UI
Ry dts

X, v

1 92U, M

- YA, (50
2 9z T .
with Egs. (22) and (42). This will be used to derive the
corresponding Dyson-Schwinger equation for the pla-
quette variable in Sec. IV B.
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IV. FIXED POINTS OF THE LANGEVIN FLOW
A. Scalar theory

Starting from some (arbitrary) initial field value ¢(x) at
ts = 0 we compute the Langevin-time flow according to
Eq. (31). A fixed point of the evolution equation is defined
by the condition for the noise-averaged field (¢'(x)), —
(¢(x)),, = 0. It simultaneously corresponds to a fixed point
in the space of all noise-averaged correlation functions
(X))}, (P(X)@(y)(2))y, etc. following Egs. (40)
and (41) and similarly for higher n-point functions.
According to Eq. (31) a fixed point for the one-point
function corresponds to

(et =" b

where we have used Eq. (11) or equivalently Eq. (37). It is
important to note that the result is independent of the
different possible implementations of the noise according
to Eq. (37). The two-point function described by Eq. (40)
then fulfils

<6$g[qo] ¢(y)>n N <5Sf[4’] ¢(X)>n = 2i8(x — y). (52)

do(x) So(y)

For the 3-point function one has from (41)

58Sl o] 88l o]
(Botn #0¢0), * (g0 #1000,
5S§[<P]
+ < S ¢<x>¢(y>>n
— 2 ()} (y — 2) + (@(1))y8x — 2)
+ (¢(2)),8(x — y)), (53)

and correspondingly for the higher n-point functions.
Equations (51)—(53) and the corresponding equations for
n > 3 are the symmetrized Dyson-Schwinger identities for
the time-ordered correlation functions of the scalar theory
in Minkowski space-time.

B. Gauge theory
For the plaquette variable (50) one has

92U 92U B B
<J> =< Sy UL, U]
n

12 12 xthp
azUerA
MV rr—1 -1
+ U, Py Ux+ﬁ’MUx,,,
5

2U—1
x+o,u —1
+ Ux,;LUx+/2,V atz X,V

5

92U}
—1 )

=0, (54)
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where we have used that noise averages over products of
first-order t5-derivatives vanish. The latter can be observed
from the fact that link and momentum variables are not
correlated such that their noise average factorizes.
According to Eq. (49) the averages over the corresponding
momenta vanish identically. The symmetrized Dyson-
Schwinger equation for the plaquette variable then follows
from Egs. (22), (25), and (42), i.e.

U, . .
o =D AaliDyuSTUDU
5 a
1
- Ezb‘)ta nx,u,a/\b Mxub Ux,,w
2y ‘ (55)
LU err—1 .
at% - lUx,,u.g(le,uaS[U])/\a

[N
_5 x,/lx,zb/\anxp.a)\bnx,ub’
with Eq. (49) and
1
Z(Au)aﬁ(/\u)yﬁ = 2<5a66ﬁ'y - ﬁ‘saﬁ(syﬁ)' (56)

By setting the first term of the sum in Eq. (54) to zero and
taking the trace, one obtains, using the notation of Eq. (46):

N?—1

.3
l = _
2 <Tar,/_LV>7] = N Z B#7<Tr(cx,MyUx,ﬁ1LUx,#y

y=0
YFER

- Ux,/.LCx,,qux,,uv)

1 —
= T TGy U

xXuv X,

- UX,MCX,M)> . (57
n

The first term on the RHS of this equation contains U, ,,
and its inverse such that the loop can be viewed as includ-
ing a departure in the y-direction. The second term con-
tains U, , twice: The loop can be viewed as including a
“crossed path” (see Fig. 1). The last terms contain sepa-
rately traced plaquettes. For U € SL(2, C) or SU(2) one
has TrU = TrU™! such that these last terms in Eq. (57)
vanish, i.e. Tr(U, ,C, ., — C. ., U; ) = 0in this case. A
similar analysis can also be done for the second to fourth
terms of Eq. (54), such that the sum is symmetric in all the
links of the plaquette U, ,,. In Fig. 1 the unsymmetrized
Dyson-Schwinger equation is displayed graphically, where
it is generalized to an arbitrary closed loop. When a certain
link appears more than once in the original loop then
additional ‘““‘contact’ terms appear. The respective analysis
follows along the same lines and will not be considered
here (see also Ref. [14]). For completeness, in the appendix
we derive the same equation in a standard way from the
invariance of the Haar measure of the gauge group.

PHYSICAL REVIEW D 75, 045007 (2007)

Z(NN»< " >=;;+zyﬁw{<ﬂﬁ%ﬁ>
L L
_A1/< S I >}

FIG. 1. Graphical representation of the Dyson-Schwinger
equation for a Wilson loop.

Fixed points of the Langevin flow for observables F[U]
representing gauge-invariant products of link variables
along closed loops are obtained from (92F[U]/0t%), =
0. The corresponding set of Dyson-Schwinger identities
constitute an infinite system of equations whose solution is
not unique in general without specifying further boundary
conditions. Accordingly, we will typically find more than
one possible fixed point below, when we solve the
Langevin equation numerically. They all solve the same
set of Dyson-Schwinger equations. In contrast to the case
of Euclidean space-time, where the associated Fokker-
Planck equation (15) can be shown to converge to a unique
solution at late Langevin-time, there seems no general
proof for real times, i.e. in the absence of a positive definite
probability weight.

V. ACCURACY TESTS I: SCALAR THEORY

In thermal equilibrium the fields obey the periodicity
condition ¢(0, x) = ¢(—iB, x) with inverse temperature
B. Accordingly, correlation functions in Euclidean space-
time can be computed using a purely imaginary time-path
from ¢t = 0 to —iB. Thermal equilibrium correlation func-
tions {@(x;)@(xy)...@(x,)) with real times 7,1, ...1,
have to be computed using a time-path that extends along
the real-time axis including these times. The curves on the
left of Fig. 2 give some examples of possible real-time
contours for thermal equilibrium along with other complex
contours that will be employed below. The upper two
curves (denoted as “Schwinger-Keldysh” and “right tri-
angle’”) both first run along the real-time axis and then turn
in different ways to —i3. The curves “isosceles triangle”
and “asymmetric triangle’’ exhibit a tilt with respect to the
real-time axis. Time is discretized uniformly along the
real-time axis, half the sites assigned to the upper branch
and half to the lower branch.* For nonequilibrium evolu-
tions we will use the isosceles triangle or asymmetric time-
path below, where a small tilt with respect to the real-time
axis can serve as a regulator to improve convergence. For

“For the Schwinger-Keldysh contour a third of the lattice sites
correspond to imaginary times, the rest of the sites are uniformly
distributed along the horizontal upper and lower branches, where
the lower branch is shifted to the negative imaginary time
direction by one imaginary time step.
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FIG. 2. Complex time-contours (left) and the corresponding
distribution of eigenvalues (right) characterizing the Langevin
dynamics for a free scalar theory as described in the main text.

the asymmetric triangle contour we typically use a 1% or
0.1% tilt, which means that the imaginary extent of the
upper branch is 1% or 0.1% of B, respectively.

We consider field theory for the different choices of
complex contours shown in Fig. 2. We discretize the con-
tours using the complex-time points C, with t =0, ..., N,
and ReC, = ReCy,. With the notation ¢,(x) = ¢(C,, x)
and A, = C,;, — C, a scalar theory on such a contour is
defined by the action

_1 (@i+1(x) — @/(x))
S = EZ[d3X{ AI

+ (0T () + 0,0V, (0]

— A[V(gri1 () + V(¢,<x>)]}. (58)

It is instructive to consider for a moment the free theory
with V(¢) = m?¢?/2 and neglect spatial dimensions for
simplicity. For the free theory the action (58) is quadratic in
the fields:

=G L

1

1 B 928
S = EZ%GH,%L (59)

11 a@tagot/

The complex inverse contour propagator G;,l is symmetric
and not Hermitian in general. With

SG s = ey (60)
t/

its eigenvectors ¢ and complex eigenvalues c“ can be
used to write the action as

PHYSICAL REVIEW D 75, 045007 (2007)

1
S = EZCGXQXG’ Xt = Zwm (61)

where we have used completeness and orthogonality rela-
tions Zt¢?¢/£} = 8% and Datbily = 8.

In Fig. 2 we show the distribution of complex eigenval-
ues ¢ for the different corresponding contours displayed
on the left. The eigenvalues can become small though they
are nonzero. They depend strongly on the chosen contour.
Its impact on the Langevin dynamics can be observed from
Eq. (31), which becomes here a set of independent
Langevin equations

X=Xt iecixt +Jen,  (nn’) =287, (62)

with n* = > ,in,, where 7, is the white noise in the
Langevin equation. For a purely imaginary time-contour
from zero to —if one has Rec? = 0, Imc? > 0 (for all a),
as for the Euclidean case described by Eq. (13). The
Langevin evolution in #5-time converges for Imc“ > 0 [8]
and one finds in the continuum limit

< a b> + 251117 — ei(c”+c”)19 (63)

XX i(c + cb) ’
Therefore, eigenvalues with small positive imaginary part
can converge slowly. However, this linear or free-field
theory analysis becomes invalid in the presence of suffi-
ciently strong interactions. The associated damping due to
interactions in realistic field theories typically leads to
rapid convergence, as can be observed from the numerical
results below. (See also Ref. [6].)

Fluctuations can grow large if the dynamics is governed
by a small real and imaginary part of the eigenvalues c“.
The linear analysis indicates that this should be a problem
for contours along the real-time axis. From the eigenvalue
distribution of Fig. 2 one observes that a nonvanishing tilt
of the contour with respect to the real-time axis may serve
as a regulator. For our simulations we employ a small tilt
such that the contour always proceeds downwards, i.e.
ImC, > ImC,;; for all z. Without or for a very small
regulator we encounter incidences of unstable Langevin
dynamics (see also [12]). Their appearance depends on the
random numbers and they are strongly suppressed by using
a smaller Langevin step size. We normally discard these
trajectorieg and typically employ a Langevin step size of
e~ 1073,

>For example, a scalar model on a 0.1% tilted asymmetric
triangle contour with A = 24, N, = 32, and a real-time extent
tina = 2 we find that 50% of the runs fail before ¥ = 71, 137,
1920 if € = le — 4, 5Se — 5, 1le — 5, respectively. The shown
plots are usually based on a Langevin-time averaging from ¢ =
50...100 of several hundred runs.
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A. Short-time evolution: thermal fixed point

We consider an interacting scalar theory with classical
action (58), where

1 A
_ 2.2 4
Vip) = FMe +—4! @4, (64)

in zero-spatial dimension. The Schrodinger equation for
the corresponding quantum anharmonic oscillator can be
solved numerically by diagonalization of the Hamiltonian.
We use the occupation number representation and truncate
the Hilbert space keeping 32 dimensions corresponding to
the lowest occupation numbers. Exponentiation of the
diagonalized Hamiltonian yields the time-translation op-
erator, which may be used for real as well as complex
times. We checked that the results are insensitive to an
enlargement of the truncation dimension. This is compared
to the results obtained from stochastic quantization by
solving the Langevin dynamics according to (31). In the
following all quantities will be given in appropriate units of
the mass parameter m. We first perform simulations in
thermal equilibrium, in which case the time contour ex-
tends along the imaginary axis to the inverse temperature 3
(see Fig. 2). Nonequilibrium is considered in Sec. V C.

Figure 3 shows the two-point correlation function
(¢(0)¢(t)),, as a function of real time ¢ for A = 24 and B8 =
1. The real-time extent of the asymmetric triangle contour
18 tna = 0.8, such that the upper branch has a tilt of 0.013
and the lower branch has a tilt of 0.998. Square symbols
denote the results from stochastic quantization for the real
part of the two-point function and crosses for the imaginary
part, respectively. For comparison the corresponding re-
sults from the Schrodinger equation are given, which agree
well.®

Figure 4 shows the real part of the two-point correlation
function as a function of real time ¢, where we employ a
much stronger coupling A = 96 and 8 = 1. Square sym-
bols denote the results from stochastic quantization. Here
the real-time extent of the time contour is #,,; = 0.5. The
upper branch of the ‘“asymmetric triangle” contour has a
tilt of 0.0018 with respect to the real-time axis, so it is
almost horizontal and, therefore, realizes to high accuracy
a real-time contour. For comparison results from the
Schrodinger equation are displayed as well. The solid
line corresponds to Minkowski time evolution ("’real con-
tour”’), whereas the dashed line gives the results for those
complex times with small imaginary part as employed in
the stochastic quantization simulations (”’complex con-
tour”). They all agree well. We fit the time evolution to

(0(0)(1)) = acos(w Ret)e 7 Re, (65)

“For Figs. 3—5 the total number of points along the contour
ranges from 32 to 64, with equal number of points on each
branch. The noise-average is obtained from the average over 10°
to about 10* runs. The Langevin step size is € ~ 10™* to 107°.
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FIG. 3 (color online). Real and imaginary part of the unequal-
time two-point correlation function for the quantum anharmonic
oscillator as a function of real time ¢. The results obtained from
stochastic quantization agree to very good accuracy to those
obtained from directly solving the Schrodinger equation.

which allows us to extract characteristic damping times.
We find from the stochastic quantization simulation
v/w = 0.018 and from the Schrodinger equation y/w =
0.013 (Minkowski) and y/@ = 0.014 on the contour. The
frequency is always w = 2.95.

Figure 5 shows a time evolution for smaller temperature
with 8 = 8 and A = 6. The real-time extent of the contour
iS tspa = 4. Using the fit (65) we find from the stochastic
quantization simulation y/w = 0.92 and from the
Hamiltonian diagonalization method y/w = 1.0 on the
contour. The frequency is w = 1.4.

Figure 6 verifies the validity of the Dyson-Schwinger
identity (52) for various real-time values. We use the
parameters A = 24 and 8 = 1. The real-time extent of
the contour is tg,, = 1 with 32 points in total on the
(isosceles triangle) contour. Plotted is the Langevin-time

0.25 ‘ —
stochastic |
Schrédinger: (real contour)
02 I (complex contour) = = |
A 015
=
S
v 0.1
0.05

t

FIG. 4 (color online). Similar evolution as in Fig. 3 but for
much stronger coupling A =96 and 8 = 1.
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FIG. 5 (color online). Similar evolution as in Fig. 3 but for
smaller temperature (8 = 8 and A = 6) on an isosceles triangle
contour.

evolution of the LHS and the RHS of the equation’
_ LA
ZGQ};«D;%/} — 6y = _l§<§0t¢t¢t¢ﬂ>r (66)
= !

where G, }; is the inverse propagator (59) of the free theory.
One observes that at sufficiently late Langevin-times both
sides agree to very good accuracy. In particular, one sees
that equal-time values at different real times agree, which
has to be the case for the time-translation invariant thermal
solution.

B. Long-time evolution: nonunitary fixed points

We observed above that stochastic quantization can
describe the real-time evolution very accurately for short
times. However, when the real-time extent of the lattice is
enlarged the stochastic updating may not converge to the
correct solution. As an example, Fig. 7 shows the two-point
correlation function as a function of real time ¢ for A = 24
and B =1, i.e. for the parameters of Fig. 3. From that
figure we have seen that for a real-time lattice with t5,, =
0.8 there is excellent agreement of stochastic quantization
and Schrodinger equation results. Correspondingly, Fig. 7
exhibits a constant real part and a vanishing imaginary part
of the equal-time correlator in thermal equilibrium for
tinal = 0.8. However, doubling the extent of the contour
leads to a qualitatively different behavior as indicated by
the cross symbols of Fig. 3. This difference persists also on
finer real-time grids. The nonvanishing imaginary part of
the equal-time correlator and the loss of time-translation
invariance reflects a nonunitary time evolution.

The properties of these nonunitary fixed point solutions
depend on the details of the time contour. This is in contrast
to the universal properties of the thermal solution. As an

7Equation (52) is the symmetrized form of (66).
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FIG. 6. Shown is the Langevin-time evolution of the two-point
function and four-point function given by the LHS and RHS of
the Dyson-Schwinger identity (66). The curves are for fixed real-
time values. At sufficiently late Langevin-time they agree to very
good accuracy, thus becoming related by the Dyson-Schwinger
equation.

example, Fig. 8 shows the equal-time two-point function
for same A = 24 and B =1 as in Fig. 7, however, with
different contour geometry (isosceles triangle). For #g,, =
1 one still observes the thermal fixed point solution, whose
properties agree very well with those obtained from lattices
with smaller #5,,. Stretching the temporal extent of the
contour to fg,, = 2 the Langevin dynamics converges to a
nonunitary fixed point as one can see from Fig. 8. The
detailed properties of this fixed point differ from those
shown in Fig. 7.

In Fig. 6 we have shown how the propagator fulfils for
the thermal fixed point the corresponding Dyson-

A o8 tfinal=?'g —
—_ [ . el —_——t |
;&, ) tf|nal—'
€ 0.6 xxxxxxxxxx b
S 04, x x i
‘\1/) :v+¢¢¢+v»¢+¢¢+¥++;;§;;;;§§*gﬁ;+
o 0.2 * *7
JAY
Z o2}t E
=
% 0l¢++¢~+++++++¢+¢Enk****"¢"¥**lﬁk*f
\ | * ® 4
L0z t", .
i ] x X
LR L
. A . . .

0 5 10 15 20 25 30
contour point index

FIG. 7. Real and imaginary part of the equal-time correlator as
a function of time (index of lattice site along the time contour)
for the parameters (A = 24 and 8 = 1) as well as the contour of
Fig. 3. Compared are two simulations where the real-time extent
of the lattice differs by a factor of 2. The larger lattice leads to a
qualitatively different, nonunitary behavior.
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FIG. 8. Similar evolution as in Fig. 7, but on an isosceles

triangle contour. While the thermal solution obtained for #,, =
1 does not depend on the contour details (see also Fig. 6), the
properties of the nonunitary fixed point obtained for #5,, = 2 are
contour dependent (see also Figs. 9 and 10).

Schwinger identity. According to the results of Sec. IV any
fixed point solution has to fulfil the same properly symme-
trized Dyson-Schwinger identities. For instance, the iden-
tity (52) reads

D Gy eien) + > Gyilei) + 28,
i f

A LA
= _l§<¢t¢t¢t¢t'> - l§<¢t¢t’¢t’¢t’>' (67)
We display the LHS and the RHS of this equation as a
function of Langevin-time in Fig. 9. Indeed, one observes
that the symmetrized Dyson-Schwinger equation (52)

0.05
0f .
...... :?._:{ N oo ——
-0.05 R - L DN
-0.1 |
LHS (0,00 ——
RHS (0,0) ——
- LHS (O,8) - - - - - |
o RHS (01) - - - - -
LHS (t1) — —
RHS (1) ——
-0.2 s s
4 6 8 10

Langevin time

FIG. 9. The left-hand side (LHS) and right-hand side (RHS) of
the Dyson-Schwinger equation (67) for the nonunitary fixed
point, which agree well at late Langevin-time. Contrary to the
properties of the thermal fixed point (see Fig. 6), the (0, 0) and
(¢, ) components are not equal, which reflects the loss of time-
translation invariance.
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holds within statistical errors at late Langevin-time for
the nonunitary solution. In Fig. 10 we check Eq. (66),
which is the nonsymmetrized version of Eq. (52). Here
the discrepancy we find for the nonunitary fixed point is
greater than the statistical error. In contrast, the thermal
fixed point solution respects, of course, both Egs. (66) and
(67) as required by any physical solution for the underlying
quantum field theory.

C. Nonequilibrium dynamics

Nonequilibrium dynamics can be described by the gen-
erating functional for correlation functions [15]:

210; p] = TripTge' [7020)

- [ doidesp(er, @) [ D el [HOHWe)

@1
(68)

The path integral (68) displays the quantum fluctuations for
a theory with Lagrangian L, and the statistical fluctuations
encoded in the weighted average with the initial-time (non-
thermal) density matrix p(¢;, ¢,). Here T, denotes con-
tour time ordering along a closed path C starting at
t=x"=0 with [, = [,dx’ [d?. This corresponds to
usual time ordering along the forward piece C., and anti-
temporal ordering on the backward piece C_. Denoting
fields on C, by ¢ (x) and on C_ by ¢_ (x), the initial fields
are fixed by ¢;(x) = ¢, (t =0,%x) and ¢,(x) = ¢ _(t =
0, x). Nonequilibrium correlation functions are obtained by
functional differentiation and setting J = 0.

With this notation the expectation value of a real-time
observable A (¢) can be written as

0.05
0
-0.05
-0.1
- - T LHS (0’0) -
015 tinai=2 RHS (0,00 ——
t=0.5 LHS (0,t) -----
RHS (0,t) -----
-0.2 : : :
0 2 4 6 8 10

Langevin time

FIG. 10. The LHS and RHS of Eq. (66), showing a discrepancy
beyond the statistical error.
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(Alp)) = fdso]d%p(% ®2)

8 [¢(0>—¢>2 Do Do, edle-isle-] A (e, )
0. (0)=¢p,

= jD¢—D¢+eiS”[‘°*"”*]ﬂ\(¢+)- (69)

Here S, contains the actions on both contour branches as
well as the density operator. In the following we consider
Gaussian initial density matrices for which, neglecting all
space dependence for simplicity, the most general S, reads
[15]

Syles, o 1=Sle ]—Sle-]

_5%@40=mﬂuu=ml (70)

y o’ +1
Sole v, o-1=ip(or — @ ) ———— 3 (o1 — ¢)?
+(p-— ¢)2)+—§((¢+ ¢ —(p-—¢)%)
2
+oE (e e~ ) D

The real parameters ¢, ¢, o, €, 1 determine a complete set
of independent initial one-point and two-point correlation
functions:

¢ = (et =0)),
¢ =(p(t=0)),
£ = (et =0)p(t = 0)),, (72)

né = 3ot = gt = 0) + plt = 016t = O),

o2
24 t=0)¢(=0
T = (= 06 = 0)..
Starting from a given initial density matrix the nonequi-
librium simulation is carried out using the Langevin equa-
tion (31) with the action replaced by (70), i.e.

P(0) = () + e B O]

updating all the points including ¢ (¢ = 0).

As an example, Fig. 11 shows the time evolution of the
expectation value {¢(7)) as a function of time, all in units of
the mass parameter m of Eq. (64). Here the coupling is A =
1 for zero-spatial dimension. The initial conditions are
(pt=0) =1, (pt=0)p(t=0)). =1, (o(t=
0)¢(r = 0)), = 0.25, and zero for the remaining quantities
of (72). The time contour is tilted with 5% slope, which is
denoted as a complex contour in Fig. 11. Results using
stochastic quantization are given for three different lengths
of the real-time extent of the contour (¢,,; = 2, 1, and 0.5).

+Ven(x), (73)
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FIG. 11 (color online). Nonequilibrium time evolution of the

field expectation value as a function of time. Shown are results

for different real-time extents of the lattice. Shorter f,,; lead to

improved agreement with results of the Schrodinger equation on
the employed complex contour.

For comparison we also show the results of the numerical
solution of the corresponding Schrodinger equation (see
Sec. VA) for real times as well as for the complex times on
the tilted contour. This also illustrates the contour depen-
dence of the results. One observes that the stochastic
quantization algorithm produces accurate results on the
contour for sufficiently short real-time extent. Like for
the thermal equilibrium results of Sec. VA, we find that
it becomes inaccurate for late-time evolution.

VI. ACCURACY TESTS II: NON-ABELIAN GAUGE
THEORY

In the following we perform a similar investigation for
SU(2) gauge theory as done above for the scalar theory.
Though some aspects of the application of real-time sto-
chastic quantization are comparable, we will find that there
are crucial additional restrictions concerning its range of
validity for non-Abelian gauge theories.

The equation for the Langevin evolution is given by
Eq. (45) for the action (43), where we employ the approxi-
mation that g, = g,. We use the U = al + ib,0¢, a* +
b2 = 1 representation for SU(2) matrices. For SL(2), the
representation with the same constraint can be used, but the
parameters a and b, are no longer real. We expand the
exponential to first order in €, which means we must
include the square of the noise term, which is proportional
to unity. The evolution equation then reads

= (al + i0,(€iD, SLUl + e,y Uy e (74)

To stay in group space the constant a is calculated from the

constraint a* + b% = 1 of the matrix transforming U, ,
As the starting configuration for the Langevin-time evo-

lution we take all link variables equal to unity. Typically
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FIG. 12. The spatial plaquette average as a function of
Langevin-time. Shown are results for different complex con-
tours. Here @ = 0 corresponds to a contour with an infinite
extent along the real-time axis, while @ = 7/2 denotes the
Euclidean contour. The longer the real-time component of the
contour the less accurately the thermal solution is reproduced.
The imaginary part is zero to a good approximation.

we employ 1/y = a,/a;, = 0.01 — 0.5. We use lattices of
spatial size N> = 43, The Langevin step used is ~107¢. All
quantities are given in units of a,. The triangle contour of
Fig. 2 is used, with 7, being the imaginary extent of the
contour on the forward part and 7_ on the backward part.
We calculate thermal distributions, with inverse tempera-
ture 7, + 7_ = 4.

Figure 12 shows the Langevin-time evolution of the
spatial plaquette average.® The solid line shows the result
for vanishing real-time extent, i.e. for a Euclidean contour.
The different dashed curves correspond to results for com-
plex contours on isosceles triangles (7, = 7_ = 2) each
having a different tilt & with respect to the real-time axis.
Here a = 0 would correspond to an infinite extent along
the real axis. One observes that with increased real-time
extent or smaller tilt a the correct thermal solution is
approached less accurately.

In particular, it is only approached at intermediate
Langevin-times, irrespective of the details of the nonvan-
ishing real part of the contour. This aspect differs from the
scalar case where short real-time extents lead to stable
thermal solutions. For the non-Abelian gauge theory the
correct thermal fixed point is approached at first. However,
it is not stable and the Langevin flow exhibits a crossover to
another (stable) fixed point. The fact that the thermal
solution is not a true fixed point for non-Euclidean con-
tours can be seen by monitoring for example
(Im(i Tr(U,, ,,0*))*), which is zero for SU(2) matrices in
the Euclidean theory. It is found to grow exponentially

8The plaquettes are also averaged in real (complex) time.
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while observables of the original SU(2) theory such as
the plaquette average still approach the thermal solution.

This is quantified in Fig. 13, where the Langevin-time
Urossovers at about which the crossover from the approxi-
mate thermal solution to another fixed point occurs, is
given for various time contours. One observes that the
time of the crossover is mostly dependent on the angle of
the slope of the contour. Connecting points with the same
T4, one sees that 6 over 1S approximately proportional to
the logarithm of the tangent of the tilt of the contour. Here
Uerossover Was measured on N, = 16 lattices, using = 5 runs
per parameters.

In Fig. 14 the spatial plaquette average is shown as a
function of the index of lattice sites along the time contour.
While the Langevin-time evolution approaches the thermal
solution it is time-translation invariant to rather good ac-
curacy. The observed small discrepancy is decreasing with
Langevin-time while the system stays close to the approxi-
mate thermal solution. In contrast, for the stable fixed point
at late Langevin-time the plaquette averages are not time-
translation invariant along the contour—at least for the
finite Langevin-times for which we followed the evolution.
Here we employed a contour with 7, = 0.5 and 7_ = 3.5
with a,/a, = 0.03 and N, = 20 from an average over 10
runs. The real-time evolution near the thermal solution has
been averaged over Langevin-time 0.75 < ¢ < 1.25, for
the nonunitary fixed point it has been averaged over 3.75 <
U <4.25.

As is shown is Sec. IV B, all converging solutions of the
stochastic dynamics method fulfil the same infinite set of
(symmetrized) Dyson-Schwinger identities of the quantum
field theory. This is remarkable in view of the different
“physical” and unphysical solutions that are observed. In
Fig. 15 this is visualized for the example of the Dyson-
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FIG. 13. The Langevin-time e over fOr the crossover away

from the approximate thermal solution to another fixed point.
(See Fig. 12.) It is displayed as a function of tan & for various
time contours. Contours with different real-time extent, but with
the same 7+ are connected with a line.
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FIG. 14. The spatial plaquette averages as a function of the
index of lattice sites along the time contour. One observes that it
is time-translation invariant to rather good accuracy for the

approximate thermal fixed point, while it is not for the nonuni-
tary fixed point.

Schwinger equation for a spatial plaquette variable. Plotted
are separately the LHS and the RHS of the Dyson-
Schwinger equation (57) for the plaquette (see also
Fig. 1). The plot displays the respective LHS and RHS as
a function of Langevin-time. The flow with Langevin-time
quickly leads to a rather accurate agreement of both sides
such that the Dyson-Schwinger equation is fulfilled.
However, after some Langevin-time they start deviating
again, finally leading to another stationary value where the
LHS and RHS agree to reasonable accuracy. Here the
fluctuations of measured quantities of the system are
much bigger. This is indicated by the given typical statis-
tical error bars, with a comparably huge statistical error for
the late Langevin-time evolution. We used median averag-
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FIG. 15. Numerical check of the Dyson-Schwinger equation

for a spatial plaquette variable. Displayed are separately the LHS
and the RHS of (57).
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ing for the right-hand side of the equations. For the contour
we employ 7, = 7_ = 2 with N, = 8 and q,/a, = 0.25.

VII. CONCLUSIONS

The motivation for this paper is the question of making
real-time, nonequilibrium quantum field theory amenable
to numerical simulations from first principles. This would
not only boost our knowledge directly, it would also allow
better testing of approximate analytical tools. This con-
cerns, in particular, strongly interacting theories such as
QCD, where reliable analytical approximations are diffi-
cult to find at phenomenologically relevant energies.
Despite its importance research on real-time lattice gauge
theory is still in its infancies. It has been a delicate problem
and the various attempts based on reweighting or on
Euclidean simulations have encountered major difficulties.
Our aim here was to study the applicability of stochastic
quantization to real-time, nonequilibrium problems. This
method does, a priori, not involve any reweighting, nor
redefinition of the Minkowski dynamics in terms of an
associated Euclidean one.

For setting up the procedure, both for scalar and for non-
Abelian gauge theory, we started from a five-dimensional
classical Hamiltonian dynamics supplemented by a sto-
chastic description and correctly accounting for the sym-
metries of the models. We then showed that the fixed points
of the Langevin (fifth-time) dynamics fulfil the infinite set
of Dyson-Schwinger equations associated with the respec-
tive quantum theory. We established in this way a set of
identities to be fulfilled by the expectation values. These
general results both allow checks of the simulations and
suggest means to understand convergence and stability
problems.

In the second part we undertook a numerical study of the
real-time stochastic quantization approach applied to sca-
lar and SU(2) gauge theory as a paradigmatic Yang Mills
model. The main aim being to understand the problems of,
and to develop means to control the method. Beyond
varying the parameters of the implementation we also
worked on various realizations of nonequilibrium and of
nonzero temperature problems, which correspondingly de-
fine various integration contours. Our findings can be
summarized as follows (both for scalar and Yang Mills
fields, unless explicitly distinguished):

(1) Instabilities of the Langevin dynamics are control-
lable: if the Langevin step size is chosen small
enough runaway trajectories are rather seldom and
the results do not suffer from discarding them.

(i1) Tilting the integration contour in the complex plane
is a gauge-invariant way to improve both the con-
vergence and the accuracy of the results. The physi-
cal effect of this tilt can be understood from exact
results (e.g., Schrodinger equation for the anhar-
monic oscillator) and small tilts can therefore be
used in the simulation.
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(iii) Short real-time physics in thermal equilibrium can
be reproduced reasonably well if the length of the
real-time contour is small on the scale of the inverse
temperature 3, the details depending also on other
parameters as explained in the main text. The
Langevin flow is here dominated by a thermal fixed
point which fulfils the unsymmetrized Dyson-
Schwinger identities and describes a physical solu-
tion. This fixed point is stable for the scalar theory
while it is metastable for the gauge theory, its life-
time depending then on the contour and the other
parameters of the problem. For the gauge theory
accurate results can be obtained if the Langevin
flow stays sufficiently long near the thermal fixed
point and the updating is terminated before it devi-
ates from it.

(iv) For longer contours the boundary conditions in
physical time do not seem to constrain enough the
Langevin flow and the lifetime of the thermal (physi-
cal) fixed point decreases (for gauge theory), or the
fixed point becomes fully unstable (for scalar the-
ory). A second, apparently stable fixed point devel-
ops for large Langevin-times. This latter fixed point
represents an unphysical, nonunitary regime, to be
recognized by nontranslational invariant expectation
functions and violation of the unsymmetrized
Dyson-Schwinger identities (while the symmetrized
ones are still satisfied, indicating convergence).

(v) For nonequilibrium problems similar observations
hold. For the scalar model all these findings have
been checked by comparing with results from a
numerical ~ solution of the corresponding
Schrodinger equation.

In view of these results we conclude that the Langevin
approach can be used in direct numerical simulations of
Minkowski theories, including Yang Mills theory, if a
number of rather severe restrictions are observed. In those
situations where physical solutions become unstable other,
unphysical solutions will develop, but tests for differenti-
ating them can typically be devised and applied.

We did not try to optimize so far. The method allows for
quite some flexibility as to which quantities are chosen to
define the stochastic process, or introducing a stochastic

PHYSICAL REVIEW D 75, 045007 (2007)

reweighting, which may allow one to reach later times.
This is work in progress.

Part of the numerical calculations have been performed
on HELICS of the IWR Heidelberg.

APPENDIX

For completeness, we derive in this appendix the Dyson-
Schwinger equations in Minkowski space-time using the
properties of Haar integration over group space, following
the lines of the corresponding Euclidean derivation pre-
sented in [14,16].

Let us consider the following average, for a loop which
contains the link U, , only once,”

<TI'(U1U2...)laUx”uUk...Un»

=f]‘[dUX,MTr(UlUZ...AaUx,#Uk...Un)efS. (A1)
X, 1

Using the invariance of the Haar-measure one has
[dUf(U) = [dUf(U'U). Expanding to linear order in
€ we take

Uy, = (1+ier) (A2)
and
F((1 +iea’)U) = f(U) + €D, f(U), (A3)

where we use differentiation in group space according to
Eq. (20). With

Upp— (1 +i€d)U, ,, (A4)

¢S — ¢S + €D, ,,(iS)e (A5)

on the right-hand side of Eq. (A1) the linear term in € gives
the Dyson-Schwinger equation as displayed in Fig. 1:
0= KTr(U,U, ... X*AU, Uy ... U,))
+ <TI‘(U1U2/\“UXMU](Un)DXMa(lS» (A6)
If taking a plaquette, it corresponds to Eq. (57) using
Eq. (46).

°If the loop contains a link twice, “contact terms™ appear,
which we do not consider here.
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