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It has been believed since the paper by Fischler, Kogut, and Susskind that in QED2 at finite charge
density the chiral condensate exhibits a spatially inhomogeneous, oscillating behavior. In this paper we
demonstrate that this inhomogeneity is due to the explicit breaking of the translational invariance by a
uniform background charge density. Moreover, we investigate in the context of a simple statistical model
what happens if the neutralizing background is composed instead of heavy, but dynamical, particles. We
find that in contrast to the standard picture of Fischler et al., the chiral condensate will not exhibit coherent
oscillations on large distance scales, unless the heavy neutralizing particles themselves form a crystal and
the density is high.
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I. INTRODUCTION

Over the past years there has been a lot of interest in the
phase diagram of QCD at finite temperature and baryon
density. The phase diagram would provide one with the
answer to the childish question, ‘‘What happens to matter
when you heat it up or squeeze it?’’ This question is
relevant for the analysis of such extreme natural
environments as the early universe or the dense interiors
of neutron stars. The interest in the phase diagram of QCD
has in turn sparked studies of models of QCD in nontrivial
environments.

Two-dimensional quantum electrodynamics, QED2,
commonly referred to as the Schwinger model, has served
as a playground for QCD theorists for many years. In the
massless limit this model is exactly solvable and displays
many features similar to QCD, most notably the generation
of a mass gap and the appearance of a chiral condensate.
The chiral condensate in this case is a manifestation of
explicit chiral symmetry breaking by the axial anomaly
and is generated in sectors with topological charge �1.

The first study of the Schwinger model at finite density
has been performed in [1]. It must be noted that in this case
we are talking about electric charge density, which unlike
the baryon number density, is the zeroth component of a
current associated with a gauged rather than global sym-
metry. Thus, to study the 1-flavor Schwinger model at finite
density one needs to introduce background charge in order
to satisfy the Gauss law. The natural choice for such a
background that was adopted in [1] is just a finite external
charge uniformly smeared along the spatial direction.

The massless Schwinger model remains exactly solvable
at finite density. One of its most surprising features is that
once an arbitrary small charge density is introduced, the
chiral condensate is no longer spatially uniform, but in-
stead supports a plane-wave structure [1,2],

 h �  �x�i � h �  i0 cos�2��x� ��; (1)

where � is the number density, � is the topological angle of
QED2, and h �  i0 denotes the chiral condensate at zero
temperature, density, and � parameter. Thus, the chiral
condensate experiences oscillations with the period given
by inverse number density. On the other hand, as long as
the quark mass is vanishing the fermion density itself is
uniform. So the model does not develop a conventional
crystal but rather a ‘‘chiral crystal.’’

Once a finite quark mass m is introduced, the nonun-
iformity of the chiral condensate is translated into a non-
uniformity of fermion density and to leading order in m=e
[1],

 h � �0 �x�i � �
�
1�

4�m

!2 h
�  i0 cos�2��x� ��

�
; (2)

where ! � e=
����
�
p

and e is the gauge coupling constant.
There have been a number of studies of the Schwinger

model at finite density both in the Hamiltonian [2,3] and
path-integral formalism [4] since the work [1], all of which
have confirmed the oscillations of the chiral condensate.
However, the ultimate reason for the breaking of the trans-
lational invariance in this model remains somewhat un-
clear. Indeed, one generally cannot spontaneously break
continuous symmetries in 1� 1 dimensions. Moreover, the
ground state of the Schwinger model at finite density is
unique (once the topological � angle is fixed) and the
lowest lying excitations are separated by a mass gap !.

Yet, it is important to understand the precise reason for
this phenomenon not only because it is curious by itself,
but also as similar behavior of the chiral condensate occurs
in a large number of other models. In particular, both the
2D Gross-Neveau model and the two-dimensional QCD in
the large Nc limit are believed to exhibit exactly the same
spatial oscillations of the chiral condensate at finite density
[5]. The period of oscillations is again given precisely by
the inverse fermion density. The stability of the chiral
crystal against quantum fluctuations in these models is
argued on the basis of the large Nc limit: once Nc � 1
one is allowed to circumvent the Mermin-Wagner theorem.*Electronic address: mmetlits@phas.ubc.ca
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Moreover, four-dimensional dense QCD in the large Nc
limit is also expected to support a periodically modulated
chiral condensate [6]. Thus, it would be valuable to first
fully understand the origin of translational symmetry
breaking in QED2, which is considerably simpler than
the above zoo of models.

We demonstrate, that the reason for this phenomenon is
the presence of the background charge density, which leads
to the inability to simultaneously maintain invariance
under translational and large gauge transformations.
Alternatively, in the path-integral language, translational
invariance is violated by sectors with a finite topological
charge. These findings naturally explain the particular form
of the chiral condensate at finite density and provide a
more conclusive explanation for the loss of translational
invariance than those present in the literature. We show that
although both the chiral and translational symmetries are
explicitly broken at finite density, in the massless limit a
linear combination of them remains intact, which implies,

 hO�x�i � e��iq�xhO�0�i; (3)

where O�x� is an arbitrary local operator and q is the axial
charge of O.

Having thoroughly understood the reason why the uni-
form background density leads to explicit breaking of
translational symmetry we ask the following question.
Does the theory with the uniform background charge
ever correctly model a theory where the neutralizing
charge is heavy, but dynamical? Clearly, any theory where
the neutralization of charge is performed solely by dynami-
cal fields will not exhibit explicit breaking of translational
invariance. Moreover, in the absence of ‘‘special arrange-
ments’’ such as Nc � 1 the translational invariance will
not be broken in two dimensions spontaneously either.
However, relics of the chiral crystal might remain intact
on some finite, but large, distance scale.

To answer the above question we consider a system
where the neutralizing charge is modeled by dynamical
classical particles of integer charge. We expect that this
model corresponds to a theory where one fermion species
is massless and the other is very heavy (of mass M), in the
regime T � M, e� M, where T is the temperature, pro-
vided that T is sufficiently large so that the quantum effects
for the heavy particles can be neglected. We integrate out
the light degrees of freedom (photons and massless fermi-
ons) and are left with a classical statistical mechanics
model for the heavy degrees of freedom. These heavy
degrees of freedom have a size of roughly 1=!, interact
via a Yukawa potential, and should probably be identified
with B-like mesons, consisting of one light and one heavy
quark.

We find that the chiral condensate in this model will not
reproduce the standard picture of [1] (see Eq. (1)), which
exhibits for arbitrary density spatial oscillations with a
density independent amplitude. Instead, the form of the

condensate will depend crucially on the density and on the
emergent dynamics of the mesons. In the regime where the
model is tractable (i.e. when the mesons form a weakly
interacting gas), the chiral condensate does not reproduce
any of the features of Eq. (1). Instead, in the dilute
limit �� !, the chiral condensate is uniform and its
magnitude decreases slightly with density. The correlator
h � 1��5

2  �x� � 1��5

2  �0�i does not experience any oscilla-
tions. In the high density limit, �	 ! the chiral conden-
sate decreases exponentially with density. The correlator
h � 1��5

2  �x� � 1��5

2  �0�i exhibits oscillations with period
��1 on distance scales x� !�1, which, however, disap-
pear for x	 !�1. These oscillations on short distances are
the only visible remnants of the chiral crystal in the gase-
ous regime.

Thus, we shall argue that the chiral condensate has a
chance to reproduce the plane-wave behavior (1) on suffi-
ciently large distance scales only if the density �	 ! and
the heavy degrees of freedom themselves are close to
crystallization.

II. WHAT’S NONUNIFORM IN A UNIFORM
BACKGROUND DENSITY

This section is devoted to a detailed analysis of the
reason for the appearance of the chiral crystal in a model
with a uniform background density. The literature on this
subject generally supports the following argument present
in the original paper [1]. If the spatial manifold is an
infinite line R, one prefers not to introduce a background
charge distribution that stretches across the whole of R to
avoid infrared difficulties. Instead, one chooses a back-
ground charge density to be uniform in a certain finite
region of the real line (say �L < x< L) and zero every-
where else. Once all the calculations are done one takes
L! 1. Then the ‘‘small’’ explicit breaking of transla-
tional symmetry present in the form of the endpoints of
the charge distribution is carried by the long-range
Coulomb forces across the whole system and leads to the
chiral crystal structure (1).

In principal, the above invocation of the long-range
forces allows one to circumvent the general theorems on
the lack of spontaneous symmetry breaking in 1� 1 di-
mensions. However, the above argument can no longer be
directly applied once the spatial manifold is compactified
to a circle with the background charge uniformly smeared
along its length, apparently removing the ‘‘endpoints’’ of
the charge distribution. We adopt precisely such a com-
pactification of the spatial coordinate in what follows.

Moreover, let us compare the situation to the Schwinger
model at zero density, where one observes breaking of the
chiral symmetry. The modern philosophy regarding the
origin of this phenomenon is that chiral symmetry is lo-
cally explicitly broken by the axial anomaly. Globally, one
cannot simultaneously maintain invariance of the theory
under chiral and large gauge transformations. Translating
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the last statement into the path-integral formalism: axial
charge is not conserved in nontrivial topological sectors.

We now show that a similar picture holds for the break-
ing of translational invariance in the Schwinger model at
finite density.

A. Hamiltonian formalism

We start with the Lagrangian for QED1�1,
 

L � �1
4F��F

�� � � i��D� �m �  ;

D� � @� � ieA�:
(4)

Local U�1� symmetry of the theory takes the form
 

U�1�:  �x� ! ei��x� �x�;

A��x� ! A��x� �
1

e
@���x�:

(5)

For the moment we work in Minkowski space, with the
conventions �5 � �0�1, �01 � 1. For definiteness, we take
the spatial manifold to be a circle of length L1 and pick the
gauge where all fields obey periodic boundary conditions
on this circle.

The energy momentum tensor for this theory is

 T�� � � i��D� � F�	F�	 � g
��L: (6)

We have not symmetrized T�� as it is not essential for our
purposes.

Now let us couple the theory to a conserved external
current j�ext�x�, such that @�j

�
ext � 0. The Lagrangian be-

comes

 Lj � L� j�extA�: (7)

Once this term is added, the energy momentum tensor
satisfies

 @�T
�� � F�	j	ext: (8)

Clearly, an external current violates the conservation of
energy and momentum. Now, let us take j� to represent a
uniform, neutralizing charge density,

 j�ext � ��e�; 0� (9)

so that � � N=L1, where N is the total dynamical charge.
The Eq. (8) becomes

 @�T
�0 � 0; (10)

 @�T
�1 � �e�F; (11)

where F � F01, is the electric field. Thus, the uniform
background charge density explicitly breaks spatial but
not temporal translational invariance. In particular, defin-
ing the total momentum operator

 P �
Z
dx1T01 (12)

we obtain

 

d
dt
P � �e�

Z
dx1F: (13)

If we integrate Eq. (13) over time,

 �P � �e�
Z
d2xF: (14)

We recognize the integral on the right-hand side of Eq. (14)
as the topological charge of the theory.

Thus, translational invariance is broken both locally and
globally. One could try to redefine the energy momentum
tensor as

 T̂ �1 � T�1 � e����A� (15)

and likewise the total momentum

 P̂ � P� e�
Z
dx1A1 (16)

so that

 @�T̂
�1 � 0;

d
dt
P̂ � 0: (17)

However, the local current T̂�1 is clearly not a gauge
invariant operator. The global object P̂ is invariant under
small gauge transformations characterized by ��L1� �
��0�, where ��x� is the transformation parameter of
Eq. (5). However, P̂ is not invariant under large gauge
transformations U,

 U �x1�Uy � e2�ix1=L1 �x1�; UA1U
y � A1 �

2�
eL1

;

(18)

whereby1

 UP̂Uy � P̂� 2��: (19)

Thus, at finite background charge density, we cannot
simultaneously preserve the invariance of the theory under
both translational and large gauge transformations. The
usual procedure, at least at zero density, is to formulate
the theory in a way, which preserves the latter symmetry
and to constrain oneself to states in the Hilbert space
satisfying

 Uj�i � ei�j�i: (20)

Then a finite translation with the operator P̂will take us out
of the gauge invariant Hilbert space and into a different
�-vacuum:

 eiP̂aj�i � j�� 2��ai: (21)

1To our knowledge Eq. (19) stating that the operator P̂ is not
invariant under large gauge transformations has been first noted
in [7] in the context of QED3�1.
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Thus, for any local operator O�x�,

 hO�x�i� � hO�0�i��2��x: (22)

This interplay between the � angle and the loss of transla-
tional invariance is clear from the expressions for the chiral
condensate and baryon density (1) and (2). We would like
to point out that we have not anywhere used the fact that
our dynamical matter is fermionic. Thus, Eq. (22) would
remain valid in a theory with any dynamical matter fields
neutralized by a uniform background charge density.

Note that a lattice subgroup of the translational group
remains unbroken. Indeed, the operator

 S � eiP̂�
�1

(23)

is invariant under the transformation (18). But S is an
operator that performs translations by a distance
a � ��1—the average charge spacing. Thus, our theory
will respect this symmetry as can be explicitly seen from
(1) and (2).

The above discussion is precisely analogous to the phi-
losophy behind the breaking of axial symmetry in QED1�1.
Recall that the gauge invariant axial current, j�5 �
� ���5 suffers from an anomaly

 @�j�5 � �
e

2�
���F�� � 2im � �5 �x�: (24)

Equation (24) is an operator identity and should not be
affected by infrared effects such as temperature or finite
density. Let us define the following current,

 l� � T�1 � ��j�5: (25)

Observe that l� is a gauge invariant operator, satisfying

 @�l
� � �2�im� � �5 : (26)

So in the massless limit m � 0,

 @�l� � 0: (27)

Thus, at finite density, both the axial and the translational
symmetries are broken. However, in the massless limit, a
linear combination of them remains intact. Defining the
global charge,

 Q �
Z
dx1l0�x� � P� ��Q5;

d
dt
Q � 0: (28)

The conservation of Q dictates the structure of all ‘‘non-
uniformities’’ provided that the symmetry associated with
the conservation of Q is not spontaneously broken.
Consider an arbitrary local operator of axial charge q,

 
Q5; O�x�� � qO�x�: (29)

Then,

 hO�x�i � h�je�iQaO�x�eiQaj�i

� h�je�i�aQ
5
O�x� a�e��i�aQ

5
j�i

� e�iq�ahO�x� a�i; (30)

 hO�x� a�i � e��iq�ahO�x�i: (31)

In particular, for the fermion bilinear � 1��5

2  , q � �2,
and

 

�
� 

1� �5

2
 �x�

�
� e�2�i�x

�
� 

1� �5

2
 �0�

�
: (32)

Thus, we see that the plane-wave behavior of the chiral
condensate follows immediately from the structure of the
theory. On the other hand, the density operator � �0 has
q � 0 and, therefore, does not display any nonuniformity
in the massless limit. Thus, Eq. (31) is in agreement with
the explicit calculations of [1,2,4].

Once the quark massm is nonvanishing the conservation
of the current l� is explicitly broken (26). Therefore,
averages of local operators no longer need to satisfy the
formula (31). For instance, the fermion density h � �0 �x�i
becomes nonuniform as can be seen from Eq. (2).

Before we conclude this section, we note that beside the
Schwinger model, both the two-dimensional chiral Gross-
Neveu model and QCD2 are believed to display the struc-
ture (31) in the large N limit [5]. In these theories both
axial and translational symmetries are spontaneously bro-
ken, but the linear combination (28) remains preserved by
the ground state. Thus, the resulting picture is the same as
in the Schwinger model, but the formal reason for the
appearance of a chiral crystal is very different. In the
Schwinger model, as we have shown, translational and
axial symmetries are broken explicitly (by background
charge density and by chiral anomaly). In the Gross-
Neveau model and QCD2 these symmetries are broken
spontaneously, with the theorems on the absence of spon-
taneous symmetry breaking in two dimensions circum-
vented due to N � 1.

B. Path-integral formalism

It is instructive to understand in parallel how transla-
tional symmetry breaking is realized in the path-integral
formalism.

We go to Euclidean space with

 LE �
1
4F��F�� �

� ��D� �m �  : (33)

In our notations �1�2 � i�5, �12 � 1.
We take the space-time to be a torus with 0  x1  L1,

0  x2  L2. Physically, L2 � 
 � T�1 is the inverse
temperature. Gauge fields on a torus fall apart into sectors
classified by the topological charge

 n �
e

2�

Z
d2xF; (34)
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where F � F12. In a general topological sector, the gauge
and fermion fields are not strictly periodic, but satisfy
 

 �x1; L2� � V1�x1� �x1; 0�;

A��x1; L2� � A��x1; 0� �
i
e
@�V1�x1�V

y
1 �x1�;

(35)

 

 �L1; x2� � V2�x2� �0; x2�;

A��L1; x2� � A��0; x2� �
i
e
@�V2�x2�V

y
2 �x2�

(36)

with V1, V2 satisfying the consistency conditions

 V1�0�V2�L2� � V2�0�V1�L1�: (37)

The transition functions V1, V2 in turn determine the
topological charge n.

For each n, we have some gauge freedom in choosing
V1, V2. For instance, one choice is to have fermions anti-
periodic in the temporal (x2) direction, so that

 V1�x1� � �1; V2�x2� � e2�inx2=L2 : (38)

Let us recall that an external heavy static particle is
inserted into the theory in the form of a temporal Wilson
loop. For instance, the partition function in the background
of m static charges located at points fxig and with charges
fepig, pi 2 Z is

 Z �
Z

DAD � D 
Ym
i�1

W�xi; pi�e
�Sein� (39)

with

 W�x; p� � ��V1�x1�
�1eie

R
A2�x;��d��p: (40)

We have inserted the prefactor ��1�p, so that in a gauge
where V1�x1� � �1, W�x; p� reduces to the standard form

 W�x; p� � exp
�
ipe

Z
A2�x; ��d�

�
: (41)

Expression (40) is completely gauge invariant and geomet-
rically is the transport with respect to A along a temporal
cycle, taken in representation p of the U�1� group.

It is clear that once p ceases to be an integer the
expression (40) for W�x; p� becomes ambiguous (the
only representations of the U�1� group are integral). This
is not surprising—it is precisely for this reason that the
existence of monopoles enforces quantization of electric
charge.2 In the present case the role of monopoles is played
by 2D instantons. Similarly, it is problematic to generalize

the prefactor in W involving the transition functions V to a
continuous background charge distribution in a manifestly
gauge invariant manner.

We may still attempt to take the limit of a continuous
charge distribution in a particular gauge. The choice
V1�x1� � �1 seems to be most suited for this purpose.
As noted above, as long as we are working with integral
charges in this gauge, the transition functions drop out of
expression (40). Now we can take the ‘‘continuum’’ limit

 Z �
Z

DAD � D eie
R
d2xjext

2 A2e�Sein�; (42)

where jext
2 �x1� is the static background charge density and

(anti)periodic temporal boundary conditions on (fermions)
gauge fields are assumed from here on. Expression (42) is
not invariant under gauge transformations, which change
these boundary conditions.

Now let us address the question of translational symme-
try breaking. First, to understand the root of the problem
consider a fractional charge p situated at x1 � L�1 and
move it across the artificial cut at x1 � 0� L1 to x1 �
0�. Observe
 

W�L1; p� � eiep
R
A2�L1;��d� � eiep

R
A2�0;��d�ep

R
@2V2���V

y
2 ���

� e2�ipnW�0; p�: (43)

Thus, the cut on the torus is visible to a fractional charge
and invisible to an integer charge. Of course, there is
nothing new in this result. However, it is precisely this
fact that leads to translational symmetry breaking.

Indeed, take an arbitrary local operator O�x� and pick
a > 0 such that 0< x, x� a < L1. Let us compute the
expectation value of O�x� in the background of the charge
distribution jext

2 . Then
 

hO�x� a�i �
1

Z

Z
DAD � D O�x� a�

� eie
R
d2xjext

2 A2e�Sein�: (44)

We make the following change of variables,

  0�x1; x2� �  �x1 � a; x2�;

A0��x1; x2� � A��x1 � a; x2�; 0< x1 <L1 � a;

(45)

  0�x1; x2� � V2�x2� �x1 � a� L1; x2�;

L1 � a < x1 <L1;
(46)

 

A0��x1; x2� � A��x1 � a� L1; x2� �
i
e
@�V2�x2�V

y
2 �x2�;

L1 � a < x1 < L1: (47)

It is easy to see that  0, A0 obey the same boundary
conditions as original variables  , A. Thus,

2However, the question of confinement of fractional charges in
the massless and massive Schwinger model has been discussed
for ages [8–10]. This question has to be understood in the sense

e
iep
H
�
A�dx� � eiep

R
D
d2xF where D is the region of our mani-

fold, such that @D � �. The Wilson loop with the fractional
charge is well defined only once we also choose D and is not
independent of this choice.
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hO�x� a�i �
1

Z

Z
DA0D � 0D 0O0�x�e�2�in

R
a

0
dx1j

ext
2 �x1�

� eie
R
d2xj0ext

2 A02e�Sein�; (48)

where

 j0ext
2 �x1� �

�
jext

2 �x1 � a� 0< x1 < L1 � a
jext

2 �x1 � a� L1� L1 � a < x1 < L1
(49)

is just the properly shifted background charge density.
Thus, we get an extra factor

 e�2�in
R
a

0
dx1jext

2 �x1� (50)

related to the amount of charge passing through the cut
during our translation. As long as this charge is an integer,
the factor (50) is unity and the cut is invisible.

Now suppose our background charge is uniformly
smeared across the spatial circle, jext

2 �x1� � ��, where
� � N

L1
is the dynamical charge. The background charge

density itself is invariant under shifts along the circle,
j0ext

2 � jext
2 and the factor (50) becomes e2�in�a. Hence,

 hO�x� a�i� � hO�x�i��2��a (51)

in agreement with (22). Moreover, if we disentangle the
contributions to hO�x�i coming from distinct topological
sectors,

 hO�x�in � e2�in�xhO�0�in: (52)

Thus, different topological sectors contribute to hO�x�i
with different ‘‘harmonics.’’ One effect of (52) is that
only the topologically trivial n � 0 sector contributes to
the partition function and the topological susceptibility
vanishes even if the quark mass m is nonzero.

Finally, if the quark mass is vanishing then due to
fermion zero modes, operators with axial charge q get a
contribution only from sectors with n � � q

2 . Thus, for
m � 0,

 hO�x�i � e��iq�xhO�0�i (53)

in agreement with (31).
Before we conclude this section, we would like to note

that in the massless limit explicit calculations can be done
for the theory defined by (42) on a finite torus. These are
summarized in the appendix. In particular,

 

�
� 

1� �5

2
 �x�

�
�

1

2
ei�e2�i�xh �  iL1;L2

; (54)

where h �  iL1;L2
is the chiral condensate at zero density and

� parameter on the torus of dimensions L1, L2. The result
(54) generalizes the path-integral computation of [4],
which was performed on an infinite Euclidean space to
the case of a finite torus, where all the infrared singularities
are under complete control. Technically, the oscillating
factor e2�i�x comes from averaging the fermion zero

mode over torons (constant parts of field A��x� � t�) in
the presence of background charge.

III. DYNAMICAL BACKGROUND

A. General remarks

In the previous section we saw that a uniform back-
ground charge density explicitly breaks translational in-
variance. But after all, the uniform background density is
typically taken to model some heavy, but dynamical, par-
ticles. Once all fields are dynamical, it is clear that trans-
lational symmetry is not explicitly broken. However, one
would like to ask whether any features of the chiral crystal
discussed in the previous section remain.

To answer the above question, we would like to analyze
QED2 with two flavors. We take one fermion flavor to have
charge e and vanishing mass and the other flavor to have
charge qe, q 2 N and mass M	 e. We want to analyze
the problem at a finite ‘‘isospin’’ density, with the heavy
fermions neutralizing the light ones. We work at finite
temperature T. We will treat the problem in a ‘‘Born-
Oppenheimer’’ like approximation. Namely, we first freeze
the positions of heavy particles, treating them as static
external charges, and integrate over the light fermions
and gauge fields. For instance, the partition function of
the system in the background of N external charges situ-
ated at points fxig is

 Z�x1; . . . xN� �
�Y

i

W�xi;�q�
�
l
; (55)

where the subscript l denotes integration over the light
degrees of freedom. We then promote the external charges
to dynamical degrees of freedom, treating them as classical
particles. For example, the full partition function takes the
form

 Z �
X1
n�0

zn

n!

Z
dx1 . . . dxn

�Y
i

W�xi;�q�
�
l
: (56)

Here z � 1
	 e


���M� is the activity, � is the chemical
potential, and 	 � � 2�MT�

1=2 is the thermal wavelength.
Similarly, the expectation value of some operator O in-
volving light quark fields is

 hOi �
1

Z

X1
n�0

zn

n!

Z
dx1 . . . dxn

�
O
Y
i

W�xi;�q�
�
l
: (57)

We will often use the notation

 hOifxi;qig � Z�1�x1; . . . xn�
�
O
Y
i

W�xi; qi�
�
l
: (58)

We shall shortly see that after integration over the light
degrees of freedom, the heavy fermions get dressed into
mesonlike particles, consisting (in terms of quantum num-
bers) of q light and one heavy quark. So the effective
theory (56) should be understood as describing classical
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dynamics of such mesons. We expect such an approxima-
tion to be valid as long as M	 e, M	 T so that the
heavy quark-antiquark pairs do not get excited either vir-
tually or thermally. Moreover, we need T to be high enough
that the meson gas/liquid is in a classical rather than
quantum regime. In the dilute gas limit, we expect that
the system can be treated classically for T 	 �2

2M .
As a first step to analyze the resulting system, we need to

perform the integration over the light fermions and gauge
fields. We shall work on a Euclidean torus of spatial and
temporal lengths L1, L2 � T�1. The expectation value of a
product of straight temporal Wilson loops in the massless
Schwinger model has been computed in a number of works
[9,11]. The result is (see the appendix for a sketch of the
calculation),

 

�Y
i

W�xi; qi�
�
l
� exp

�
�L2

1

2

X
i;j

qiqje
2V�xi � xj�

�
;

(59)

 V�x� �
1

L1

X
p1

1

p2
1 �!

2 e
ip1x �

L1!1 1

2!
e�!jxj; (60)

where ! � e=
����
�
p

and p1 � 2�m=L1, m 2 Z. Thus, our
heavy particles (of like charge) interact via a two-body
repulsive Yukawa potential with all three and higher par-
ticle interactions vanishing. It is also instructive to com-
pute the charge density of light quarks,

 h � �2 �x�ifxi;qig � �
1

�

X
i

qiV�x� xi�: (61)

It is clear from (61) that each heavy quark of charge �q is
surrounded by a cloud of light quarks with a radius of
roughly !�1. The cloud has total charge q that screens the
Coulomb potential of the heavy quark producing a meson,
similar to the heavy-light mesons of QCD (such as the
B-meson).

We will be most interested in the expectation value of the
chiral condensate h � 1��5

2  i. For static sources this is given
by [11] (we sketch the calculation in the appendix)

 

�
� 

1� �5

2
 �x�

�
fxi;qig

�
1

2
ei�h �  iL1;L2

Y
i

�U�x� xi��
�qi ;

(62)

where

 U�x� � exp�2�iV0�x�� �
L1!1

exp���isgn�x�e�!jxj�: (63)

Thus, the introduction of static charges only affects the
phase of the chiral condensate. Moreover, U�x� ! 1 for
jxj 	 !�1, so each static charge affects the chiral conden-
sate only in a region of radius roughly !�1 —the size of
the meson. Notice that U�x� makes one loop on the unit
circle in the complex plane as x winds around the spatial
circle [see Fig. 1(a)]. Thus, the phase of the condensate

(62) winds by 2�N as x moves around the spatial circle,
where N � �

P
iqi is the total charge of the light fermions.

So, the total winding number of h � 1��5

2  �x�ifxi;qig is inde-
pendent of the positions of the heavy quarks and, in fact, is
the same as for the model with the uniform background
charge density (54). However, the winding occurs in the
vicinity of the heavy charges, over the radius of each
meson, as opposed to the uniform background case, where
the winding is uniformly smeared across the whole sys-
tem.3 We expect this difference to be particularly important
in the dilute limit �� ! when the distance between
mesons is much larger than their size. In this regime,
each meson keeps its individual features and h �  ifxi;�qg !
h �  iT cos��� in the wide regions between the mesons [see
Fig. 1(b)]. Here, h �  iT is the infinite volume limit of the
chiral condensate at zero density and � parameter and finite
temperature T. Thus, the uniform background approxima-
tion is expected to fail badly in the dilute regime.

It is instructive to see what happens to the chiral con-
densate if we arrange our heavy charges into a regular
lattice, xj � ja, qj � �q. Using (62) and taking L1 ! 1,

 

�
� 

1� �5

2
 �x�

�
fxi;qig

�
1

2
ei�h �  iTe

i��x�; (64)

where ��x� is a periodic function with period x � a and

 ��x� � �q
sinh�!�x� a=2��

sinh�!a=2�
; 0< x< a: (65)

For !a	 1 we have a crystal of widely spaced mesons
much like on Fig. 1(b). In the high density limit, !a� 1,
the screening clouds of heavy charges overlap and the
individual mesons are washed out. Instead, we may ap-
proximate

 ��x� � 2�q
�
x
a
�

1

2

�
; 0< x< a; (66)

so that

 

�
� 

1� �5

2
 �x�

�
fxi;qig

�
1

2
ei���1�qe2�i�xh �  iT; (67)

where � � q=a � N=L. Thus, in this limit we recover the
uniform background approximation (54). However, note
that the existence of coherent, long-range, oscillations of
the chiral condensate (67) is possible only if the dynamics
governing the heavy charges are such that they organize a
crystal-like state. For a one-dimensional statistical system
interacting with a finite range potential (60) a true crystal
cannot form. However, the system may exhibit crystal
order on some finite distance scale d	 !�1. In this

3Technically, such a local nature of the result comes from a
nontrivial cancellation between oscillating factors e2�i�x origi-
nating from integration over different modes in the path integral
(see the appendix).
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case, we expect that the plane-wave behavior of the chiral
condensate will also persist on the same distance scale d.
Otherwise, if the mesons form a disordered, weakly inter-
acting gas the oscillations (67) will be washed out on
distance scales x	 !�1, as we shall show shortly.

In fact, Eq. (62) suggests that the external charges act as
impurities, whose effect is to disorder the chiral conden-
sate. If the impurities are in a weakly interacting regime,

the disorder is ‘‘random.’’ This is precisely the situation
that we will analyze in the next section.

B. Statistical model

Let us now make the heavy charges dynamical and
analyze the statistical model (56). Our main objective is
to compute the chiral condensate (57) and (62),

 

�
� 

1� �5

2
 �x�

�
�

1

2
ei�h �  iT

1

Z

X1
n�0

zn

n!

Z
dx1 . . . dxn

Y
i

U�x� xi�q exp
�
�


2

X
ij

q2e2V�xi � xj�
�

�
1

2
ei�h �  iT

X1
n�0

1

n!

Z
dx1 . . . dxn

Y
i

�U�x� xi�q � 1�gn�x1; . . . xn�; (68)

where gn�x1; . . . xn� is the n-point correlation function,

 gn�x1; . . . xn� � zn
1

Z

X1
m�0

zm

m!

Z
dxn�1 . . .dxn�m exp

�
�


2

Xn�m
ij�1

q2e2V�xi � xj�
�
: (69)

Notice that the chiral condensate is sensitive only to short-
distance properties of the correlation functions
gn�x1 . . . xn� as the range of U�x�q � 1 is roughly !�1.

We would like to perform the Meyer expansion in ac-
tivity z. The leading term in the equation of state, as
always, is

 
P � z�; (70)

where P is the pressure and z� � z exp�� 1
2
q

2e2V�0�� (z�

includes the self-interaction energy of each meson). Then

 �h � z
@
@z
�
P� � z�; (71)

where �h is the density of heavy particles

 q�h � �: (72)

As the range of the potential V is !�1 and strength e2V �
!, the corrections to the equation of state for T �! are
suppressed in the Meyer cluster expansion by powers of
z�=!. So for �� !, T �! our system behaves like a
weakly interacting gas of mesons. Moreover, in this re-

gime, at leading order the n point function on distances
x�!�1 scales as z�n so that terms in (68) involving
gn�x1; . . . xn� are suppressed by �z�=!�n. The leading cor-
rection to the chiral condensate comes from the n � 1
term. Recalling g1�x� � �h,

 

�
� 

1� �5

2
 
�
�

1

2
ei�h �  iT

�
1� �h

Z
dx�U�x�q � 1�

�
:

(73)

Performing the integral

 h �  i �
�
1�

�h
!
u�q�

�
h �  iT cos���; (74)

where

 u�q� � 2
Z �q

0
dt
�1� cos�t��

t

� 2�log��q� � �� Ci��q��: (75)

Thus, we have calculated the first correction in density to
the chiral condensate in the regime of a weakly interacting

 

a)

arg(U)
2π

π

xω
–10 –5 5 10

b)

_
<ψψ>

x

1

–1

FIG. 1. (a) The phase of the chiral condensate argU�x� � argh � 1��5

2  �x�i in the background of a static unit charge placed at x � 0
for � � 0. (b) The chiral condensate in units of h �  iT in the background of two widely separated static unit charges for � � 0.
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dilute meson gas. The result (74) is reminiscent of the
behavior of the chiral condensate in Nc � 2 QCD at small
baryon density [12], in Nc � 3 QCD at small isospin
density [13], and in the ‘‘dilute’’ nuclear matter [14]. In
all of these theories, one thinks of the system as being
composed of a dilute gas of particles M (diquarks for Nc �
2 QCD, pions forNc � 3 QCD, nuclons for nuclear matter)
and obtains,

 h �  i� � h �  i0 � �hMj �  jMi; (76)

where jMi is a one particle state in vacuum (with normal-
ization hM�p�jM�p0�i � �2��dd�p� p0�). So, we iden-
tify

 hqj �  jqiT;� �
Z
dx�U�x�q � 1�h �  iT cos���

� �
1

!
u�q�h �  iT cos���; (77)

where jqi denotes our heavy-light meson state.

So far we have concentrated on the region T �! where
the criterion for the applicability of Meyer’s expansion was
�� !. Now, let us analyze the low temperature regime
T � !. In this case, the interaction effectively becomes
hard-core of range !�1 log�!=T�, so for the Meyer expan-
sion to be valid, we need z� � != log�!=T�. If this con-
dition is satisfied, the chiral condensate at leading order in
� is again given by (74). Moreover, we actually expect the
expressions (74) and (77) to remain valid in a wider range
�� ! down to the extreme quantum regime at T � 0,
based on general phase-space arguments.

Finally, let us study the high-temperature regime T 	
!. In this case, it can be shown that the corrections to the
ideal gas equation of state (70) are suppressed by powers of
z=T. In particular, if!� �� T we are still in the weakly
interacting (but not dilute) regime. In this case it is conve-
nient to rewrite (68) as

 �
� 

1� �5

2
 �x�

�
�

1

2
ei�h �  iT exp

�X1
n�1

1

n!

Z
dx1 . . . dxn

Y
i

�U�x� xi�q � 1�gn�x1; . . . xn�conn

�
; (78)

where gn�x1; . . . xn�conn denotes the fully connected n-point
correlation function. It is easy to show that the terms in the
exponent involving the n-point correlation function are
suppressed by �z=T�n�1 compared to the leading term and

 h �  i � exp
�
�
�h
!
u�q�

�
h �  iT cos���: (79)

The expression (79) agrees with (74) in the dilute limit
�� !. In the dense gas limit, !� �� T, the chiral
condensate exponentially decreases with density. Note that
for T 	 ! the chiral condensate at zero density is already
exponentially suppressed with temperature compared to
T � 0 (see Eq. (A28)).

C. Correlation functions

To answer the question of whether any remnants of the
oscillating behavior (54) exist in our model, the computa-
tion of the chiral condensate presented in the previous
section is not sufficient. Indeed, translational invariance
implies that the chiral condensate is uniform. Instead,
we must compute the static correlation function,
hS��x�S��y�i, S��x� � � 1��5

2  �x�. We would like to see
on what distance scales this correlation function exhibits
plane-wave structure (54). Integrating out light degrees of
freedom,
 

hS��x�S��y�ifxi;qig �S�x�y�
Y
i

�U�x�xi���qi�U�y�xi��qi ;

(80)

where

 S�x� y� � hS��x�S��y�iL1;L2
� 1

4jh
�  iL1;L2

j2e4�G!�x�y�;

(81)

 G!�x� �
1

L1L2

X
p

1

p2 �!2 e
ipx;

p �
�
2�m1

L1
;
2�m2

L2

�
; m1; m2 2 Z:

(82)

Thus,

 hS��x�S��y�i � S�x� y�F�x� y�; (83)

 

F�x� y� � exp
�X1
n�1

1

n!

Z
dx1 . . . dxn

Y
i

�U�x� xi�q

�U�y� xi�
�q � 1�gn�x1; . . . xn�conn

�
: (84)

So the correlation function factorizes into two pieces. The
first, S�x� y�, is just the correlation function in vacuum.
The second, F�x� y�, contains the finite density
information.

As noted in the previous section, in the regime where the
Meyer expansion is applicable, we may truncate the series
in the exponent of (84) at the leading (n � 1) term,

 F�x� y� � e�hf�x�y�; (85)

where

 f�x� y� �
Z
dx1�U�x� x1�

qU�y� x1�
�q � 1�: (86)
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The function f�x� is plotted in Fig. 2. It is easy to see that
for jx� yj 	 !�1,

 

f�x� y� !
Z
dx1�U�x� x1�

q � 1�

�
Z
dx1�U�y� x1�

�q � 1� � �
2

!
u�q�: (87)

Thus, hS��x�S��y�i will not exhibit oscillations (54) for
jx� yj 	 !�1.

Note that S�x� y� ! 1
4 jh

�  iT j
2 for jx� yj ! 1 so,

 hS��x�S��y�i �
jx�yj!1 1

4
jh �  iTj2 exp

�
�2

�h
!
u�q�

�

� hS�ihS�i (88)

and the correlation function clusters.
We may also investigate the short-distance behavior.

Expanding f�x� in a Taylor series in !x,

 f�x� �
1

!

�
2�iq!x�

1

2
�2�q!x�2 � . . .

�
: (89)

Hence, for jxj � !�1,

 hS��x�S��0�i � exp
�

2�i�x�
�2q

2

�
!
�!x�2

�
S�x�: (90)

The above equation clearly exhibits the plane-wave behav-
ior with period x � ��1. However, recall that Eq. (90) is
valid only for jxj � !�1. Thus, in the dilute limit �� !,
no full oscillations appear and, in fact, Eqs. (83) and (85)
are more appropriately written as

 hS��x�S��0�i � �1� �hf�x��S�x�: (91)

In the dense gas regime, �	 !, the oscillations are, in-
deed, present on short-distance scales, however, as Eq. (90)
shows, they become damped for x * �!��

1=2!�1 and dis-
appear altogether for x	 !�1. Moreover, these oscilla-
tions modulate the zero-density correlator S�x�, which
itself has a quite nontrivial behavior for distances x &

!�1.

IV. CONCLUSION

In this paper we have analyzed some puzzles related to
the Schwinger model at finite density. We have shown that
the well-known plane-wave behavior of the chiral conden-
sate is a consequence of explicit breaking of translational
invariance by a background charge density. Similarly to the
nonconservation of axial charge, the nonconservation of
total momentum is globally saturated in sectors of non-
trivial topological charge. In fact, the breaking of transla-
tional symmetry at finite density is a much simpler
phenomenon than the breaking of chiral symmetry by the
anomaly as the former appears already on the classical
level, while the latter is a purely quantum phenomenon.

In the second part of this paper, we have explored the
question: ‘‘What happens if the uniform background den-
sity is replaced by a dynamical, but heavy, field?’’ To
answer this question, we have analyzed a statistical model
in which the heavy neutralizing charge comes from an
ensemble of classical particles. We have shown that the
effect of heavy charges is to disorder the chiral condensate.
In the regime where the gas of heavy charges is almost
ideal, the chiral condensate is spatially uniform and de-
creasing with density. For the charge density �� ! the
‘‘disorder’’ is weak and we compute the leading density
correction to the chiral condensate (74). In the dense gas
regime �	 ! the disorder leads to an exponential sup-
pression of the chiral condensate. In both of these regimes,
the condensate does not exhibit any oscillations on distance
scales x	 !�1, as is clear from computing the correlator
hS��x�S��0�i � h � 1��5

2  �x� � 1��5

2  �0�i. The only rem-
nant of oscillatory behavior comes at high density �	
! in the short-distance behavior of hS��x�S��0�i for x�
!�1.

In fact, we have argued that the only way for the oscil-
lations to survive on distance scales larger than !�1 is for
the system to be in the high density regime �	 ! and the
heavy charges to crystallize. In the dilute regime �� !
we do not expect to recover the oscillatory behavior even if
the heavy charges were to crystallize.

So clearly the uniform background approximation ge-
nerically does not accurately model the situation where the
neutralizing charge is dynamical. Indeed, we expect such
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FIG. 2. Function f�x� that enters the correlator hS��x�S��0�i (see Eqs. (83) and (85)). Here we chose q � 1.
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an approximation to work well if the light and heavy
neutralizing charges are largely decoupled from each other
(e.g. valence electrons in a metal). However, in the
Schwinger model the light fermions are very strongly
coupled to the neutralizing charges producing heavy-light
mesons. The approximation fails particularly badly in the
dilute phase, where the distance between the mesons is
much larger than their size. To apply the uniform back-
ground charge approximation here would be akin to treat-
ing the nuclei in a dilute atomic gas as uniform.

We conclude by noting that we certainly have not ana-
lyzed the entire phase diagram of the two-flavor heavy-
light Schwinger model. We have treated the gas of heavy-
light mesons classically and have not touched upon the
quantum regime at all. Neither have we analyzed the
regime where the classical system is far from an ideal
gas limit and the interactions between mesons are impor-
tant. These regimes are subject to further investigation and,
in fact, have a higher chance of exhibiting the plane-wave
behavior of chiral condensate on distance scales larger than
!�1 than the ‘‘random disorder’’ case considered here.
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APPENDIX: EXPLICIT CALCULATION OF THE
CHIRAL CONDENSATE AT FINITE DENSITY

The purpose of this appendix is to perform the calcu-
lation of the partition function and chiral condensate at
finite background charge density on a Euclidean torus. In
case when the background charge is in the form of discrete
charges (Wilson loops) this computation has been per-
formed before [9,11]. For a uniform background charge
density, the calculation has been done on an infinite
Euclidean plane [4]. Here, we keep the size of our torus
finite throughout the calculation, gaining complete control
of all the infrared subtleties. For a detailed study of the
Schwinger model on the torus (at zero density) see [15].

We work in a gauge where the (fermion) gauge fields are
(anti) periodic in the temporal direction, with the transition
functions (38),

 V1�x1� � �1; V2�x2� � e2�inx2=L2 : (A1)

We decompose the gauge fields as

 A� � t� � @��� ���@�b� A
n
�; (A2)

where � and b are both periodic fields on the torus or-
thogonal to unity (

R
d2x� �

R
d2xb � 0). The variable t�

is the so-called toron field and plays a crucial part in all the
calculations. t� is effectively an angular variable, with
t� � t� �

2�m
eL�

, m 2 Z. We shall consider only the case

where the total background charge is integral,R
dx1j

ext
2 �x1� � �N, N 2 Z so that the angular nature of

t� is unspoiled. An� is the ‘‘instanton’’ field in the nth
topological sector. We choose

 An1 � 0; An2 �
2�nx1

eL1L2
; (A3)

which obeys the periodicity conditions (35) and (36).
First, let us compute the partition function

 Z �
Z

DAD � D eie
R
d2xjext

2 A2e�Sein� (A4)

with the normalization Z � 1 for jext
2 � 0. For vanishing

mass, only contributions from the trivial topological sector
survive (recall that there are precisely jnj fermion zero
modes in a sector with topological charge n with �5 �
sgn�n�) and

 Z �
Z
n�0

DA det���D��e
��1=2�

R
d2xF2

eie
R
d2xjext

2 A2 : (A5)

The (regularized) Dirac determinant is given by (see [15]
and references therein),

 det 0�L1���D��� � detN exp���b� � ��t; n��; (A6)

where det0 denotes the determinant with the zero mode
contributions deleted and

 ��b� � �
1

2
!2

Z
d2x@�b@�b; (A7)

 

��t; n� � n;0��2�j�j�2
1 � log�j�2����; ��j

2�����2��

�
1

2
jnj log

�
2jnj
j�j

�
: (A8)

Here, � � �1 � i�2 �
e�t1�it2�L1

2� , � � i L2

L1
and N is the

matrix of zero mode inner products,

 N ij �
Z
d2x�yi �x��j�x�; (A9)

 �i�x� � eie��x�ee�5b�x��0
i �x�; (A10)

where �0
i �x� are the orthonormal zero modes of the opera-

tor D0 � ���@� � ie�t� � An���. Thus,

 Z �

R
dt1dt2e

�ieNt2L2e��t;0�R
dt1dt2e��t;0�

R
Dbeie

R
d2x@1jext

2 �x1�b�x�e�S�b�R
Dbe�S�b�

;

(A11)

where

 S�b� �
1

2

Z
d2xb�x���@2���@2 �!2�b�x�: (A12)

Performing the integral over the toron fields we obtain
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R
dt1dt2e�ieNt2L2e��t;0�R

dt1dt2e
��t;0�

� exp
�
�L2

�N2

2L1

�
(A13)

we recognize �F �
�N2

2L1
as the Fermi energy of free mass-

less Dirac fermions in 2D at fermion number N.
The integration over b field gives

 R
Dbe

R
��x�b�x�e�S�b�R

Dbe�S�b�

� exp
�
1

2

Z
d2xd2y��x�G�x� y���y�

�
(A14)

with the propagator

 G�x� �
1

!2 �
�G0�x� � �G!�x��; (A15)

 

�G	�x� �
1

L1L2

X
p�0

1

p2 � 	2 e
ipx;

p �
�

2�m1

L1
;
2�m2

L2

�
; m1; m2 2 Z:

(A16)

So we find
 R
Dbeie

R
d2x@1jext

2 �x1�b�x�e�S�b�R
Dbe�S�b�

� exp
�
�L2

e2

2

Z
dxdyjext

2 �x�
�
V�x� y� �

1

L1!2

�
jext

2 �y�
�

(A17)

with V�x� given by (60). Combining the global and local
pieces (A13) and (A17),

 Z � exp
�
�L2

e2

2

Z
dxdyjext

2 �x�V�x� y�j
ext
2 �y�

�
: (A18)

For a uniform background charge density, j2
ext � �

N
L1

,
the contribution to (A18) comes only from the global piece

and is given by (A13). On the other hand for discrete
integral charges, j2

ext�x� �
P
iqi�x� xi� and

 Z �
�Y

i

W�xi; qi�
�
� exp

�
�L2

1

2

X
ij

qiqje
2V�xi � xj�

�
:

(A19)

Now, let us compute the chiral condensate h � 1��5

2  �x�i.
For m � 0, it receives a contribution only from the topo-
logical sector with n � 1,
 �

� 
1� �5

2
 �x�

�
� Z�1

Z
n�1

DAL1�y�x�
1� �5

2

� ��x�det0�L1��D��

� ei�e��1=2�
R
d2x0F2

eie
R
d2x0jext

2 �x
0
1�A2�x0�;

(A20)

where � is the normalized zero mode of the operator
��D�. We have

 ��x� �N ��1=2���x� �N ��1=2�eie��x�ee�5b�x��0�x�:

(A21)

As noted, �0 is the normalized zero mode of the Dirac
operator in the background of toron and instanton fields,

 ���@� � ie�t� � A
n
����

0�x� � 0 (A22)

obeying the boundary conditions (35) and (36). In the n �
1 sector we have a single zero mode,
 

�0�x1; x2� �
1

L1

�
2

j�j

�
1=4
e��j�j�

2
1e��=j�j��2i~x1 ~x2�~x2

2��2�~x2�

� �4���~x1 � i~x2� � ���j����; (A23)

where ~xi � xi=L1 and �� is the spinor with positive chi-
rality �5�� � ��.

Thus,
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2
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�
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R
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R
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R
Dbe2eb�x�eie
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0�e�S�b�R
Dbeie

R
d2x0@1j2�x01�b�x

0�e�S�b�
;

(A24)

where S0 �
2�2

e2L1L2
is the ‘‘bare’’ instanton action. Performing the average over the toron fields,

 

R
dt1dt2L1�

y
0�0�x�e

�ieNt2L2e��t;1�R
dt1dt2e�ieNt2L2e��t;0�

�
1

L1
�2�����1�Ne2�iNx1=L1 : (A25)

Taking the average over the b field with the help of (A14),
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jext

2 �x
0
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�
:

(A26)

Now, combining Eqs. (A25) and (A26),
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2
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�
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Z
dx01

�
1

2
sgn�x1 � x01� � V

0�x1 � x01�
�
jext

2 �x
0
1�

�
; (A27)

where the chiral condensate in the absence of external charge and at � � 0 is given by

 h �  iL1;L2
�

2

L1
e�S0�2���e2e2G�0� � lim

x!0

1

�jxj
e�2�G!�x� !

� !
2� e

� T ! 0; L1 ! 1

2Te���T=!� T ! 1; L1 ! 1
: (A28)

If the background charge density is uniform,

 

�
� 

1� �5

2
 �x�

�
�

1

2
ei�e2�iNx1=L1h �  iL1;L2

: (A29)

In this case the oscillating factor comes solely from the integration over the toron fields (A25). On the other hand, if the
external charges are discrete and integral,

 

�
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1� �5

2
 �x�

�
�

1

Z

�
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1� �5

2
 �x�

Y
i

W�xi; qi�
�
�

1

2
ei� exp

�
�2�i

X
i

qiV
0�x� xi�

�
h �  iL1;L2

(A30)

and the long-range oscillating factor is canceled between the global (A25) and local (A26) parts.
A similar computation can be performed to obtain the result (80) for the correlation function of chiral densities.
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