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We construct static solutions to a SU�2� Yang-Mills (YM) dilaton model in 4� 1 dimensions subject to
bi-azimuthal symmetry. The YM sector of the model consists of the usual YM term and the next higher
order term of the YM hierarchy, which is required by the scaling condition for the existence of finite
energy solutions. The basic features of two different types of configurations are studied, corresponding to
(multi)solitons with topological charge n2, and soliton-antisoliton pairs with zero topological charge.
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I. INTRODUCTION

Multi-instantons and composite instanton-antiinstanton
bound states subject to bi-azimuthal symmetry were re-
ported in a recent paper [1]. These were constructed nu-
merically, for the usual (p � 1) SU�2� Yang-Mills (YM)
system in 4 Euclidean dimensions, the spherically sym-
metric special case being the usual BPST [2] instanton.

In a work [3] unrelated to [1], regular and black hole
static and spherically symmetric solutions to a Einstein-
YM (EYM) system in 4� 1 dimensional spacetime were
constructed numerically. The YM system in that model had
gauge group SO�4�, with the connection taking its values in
(one of the two) chiral spinor representations of SO�4�,
namely, in SU�2�. Given that the solutions in [3] were
static, i.e. that the YM field is defined on a 4 dimensional
Euclidean space, the SU�2� YM field in [3] is the same one
as that in [1]. This is the relation between the two works
[1,3], and our intention here is to exploit this relation.

The present work serves two distinct purposes. The first
and main purpose is to pave the way for the construction of
more general, nonspherically symmetric solutions to EYM
systems in a five dimensional spacetime. To our knowl-
edge, no such results in EYM theory have appeared in the
literature to date. Although considerable progress has been
made in constructing asymptotically flat higher dimen-
sional EYM solutions1 all known configurations were sub-
ject to spherical symmetry. Our choice of a YM-dilaton
(YMd) model is made because it has been shown that, at
least in d � 3� 1 dimensions, the classical solutions of
this system mimic the corresponding EYM solutions [9],
so the dilaton-YM exercise serves as a warmup for the

considerably more complex gravitational problem. Our
choice of a YMd model is made as an expedient in attempt-
ing the analysis of the corresponding EYM model, the last
being of physical interest low energy effective actions of
string theory, descended from 11 dimensional supergravity
[10]. It is also a coincidence here, that these supergravity
descended low energy effective actions include the dilaton
in addition to gravities and non-Abelian matter. But here,
the dilaton appears only as a substitute for gravity.

A particular feature of the model to be introduced in the
next section is that it features a term that is higher order in
the YM curvature. As will be explained in Sec. II such
terms are necessary to ensure that the solution yields a
finite mass. Such terms were employed in previous works
[3–8] with precisely the same purpose. The physical jus-
tification for introducing higher order YM terms, which
goes hand in hand with the inclusion of higher order
gravitational terms, is that these occur in the low energy
effective action of string theory [10]. Thus in principle the
choice of higher dimensional EYM models involves the
selection of higher order terms in the gravitational and non-
Abelian curvatures, namely, the Riemann and the YM
curvatures, which are reparametrization and gauge invari-
ant. Because we are concerned with finding classical solu-
tions, we impose a pragmatic but important further
restriction, namely, that we consider only those Lagrange
densities that are constructed from antisymmetrized 2p
curvature forms, and exclude all other powers of both
Riemann and YM curvature 2-forms. (In the gravitational
case this results in the familiar Gauss-Bonnet type
Lagrangians, while in the case of non-Abelian matter to
the YM hierarchy pointed out in footnote 3 below.) As a
result, only velocity-squared fields appear in the
Lagrangian, which is what is needed both for physical
reasons and for solving the classical field equations. In
practice we add only the minimal number of such higher
order terms that are necessitated by the requirements of
finite mass. This criterion makes the inclusion of higher
order gravitational terms unnecessary since we know from
the (numerical) results of [4] that the qualitative properties
of the classical solutions are insensitive to them. In addi-

1EYM particlelike and black hole solutions approaching at
infinity the Minkowski background have been constructed nu-
merically for d � 6, 7 and 8 [4]. The properties of globally
regular solutions in arbitrary dimensions have been studied both
numerically and analytically in [5]. Higher dimensional asymp-
totically (anti-)de Sitter solutions have been found numerically
in [6,7], as well as such systems whose gravitational sector
consists of higher order Gauss-Bonnet like gravitational terms
[8].
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tion to this argument based on numerical results there is an
independent argument advanced at the end of Sec. II of [6],
based on the symmetries of the (higher order) gravitational
terms, which in the absence of a dilaton dispenses with the
effectiveness of employing such terms. (Note here that the
present YMd model is being used as a prototype for a EYM
model, without an additional dilaton field.) This leaves one
with higher order YM curvature terms only, whose status in
the context of the string theory effective action is complex
and as yet not fully resolved. While YM terms up to F4

arise from (the non-Abelian version of) the Born–Infeld
action [11], it appears that this approach does not yield all
the F6 terms [12]. Terms of order F6 and higher can also be
obtained by employing the constraints of (maximal) super-
symmetry [13]. The results of the various approaches are
not identical. In this background, we restrict our consid-
erations to terms in the YM hierarchy (see footnote 3) only,
in particular, to the first two terms.

Concerning our particular choice of 4� 1 spacetime
dimensions here, our reasons are: When imposing axial
symmetry on a YM field in d � D� 1 dimensions the
simplest way is, following [14], to impose spherical sym-
metry in the D� 1 dimensional subspace of the d space-
like dimensions. In this case the Chern-Pontryagin
topological charge is fixed by the boundary conditions
imposed on the first polar angle, and no analogue of the
vortex number appearing in the axially symmetric Ansatz
for d � 3 [15] is featured [14]. Technically, the absence of
a vortex number makes the numerical integration much
harder. Imposing axial symmetry in turns in the x-y and z-u
planes of D � 4 Euclidean space as in [1] on the other
hand, features two (equal) vortex numbers, making the
numerical work technically more accessible. It is our in-
tention to use the particular bi-azimuthally symmetric
Ansatz of [1] in D � 4 that has led us to restrict ourselves
to d � 4� 1 dimensional spacetime. (Numerical work on
implementing axial symmetry like in [14] is at present in
active progress.) Of course, the exploitation of this type of
symmetry is not restricted to 4� 1 spacetime, but can be
extended to any odd 2q� 1 spacetime where q distinct
azimuthal symmetries are imposed, but this in practice
results in residual PDE’s of order three and higher for q �
3.

The second and subsidiary aim of this work is to break
the scale invariance of the usual YM system in D � 4
studied in [1], and the introduction of the dilaton field
does just that. The question of instanton-antiinstanton
bound states in a scale breaking model is an interesing
enough matter in itself, presenting a second important
motivation for this work.

In Sec. II we present the model, impose the symmetry
and state the boundary conditions, in successive subsec-
tions. The numerical results are presented in Sec. III, pre-
senting both solutions with spherical and bi-azimuthal
symmetry. We give our conclusions and remarks in the
final section.

II. THE MODEL

The model in 5 spacetime dimensions with coordinates
xM � �x0; x�� that we study here is described by the
Lagrangian

 L m �
1

4�2

�
j@M�j

2 �

�
�1

2 � 2!
e2a� TrF 2

MN

�
�2

2 � 4!
e6a� TrF 2

MNRS

��
(1)

where � is the dilaton field, FMN � @MAN � @NAM �
�AM;AN	 is the 2-form YM curvature and FMNRS �

fFM�N;F RS	g is the 4-form YM curvature consisting of
the totally antisymmetrized product of two YM 2-form YM
curvatures. (The bracket ����	 implies cyclic symmetry.)
�1 and �2 are dimensionful coupling strengths which will
eventually be scaled out against the constant a in the
exponent, which has the inverse dimension of the dilaton
field �. Similar to the d � 3� 1 case, the form we choose
for the coupling of the dilaton field to the non-Abelian
matter was found by requiring that a shift �! ���0 of
the dilaton field to be compensated by a suitable rescaling
of the coordinates.

Let us give a brief justification for the choice of the
model (1). At the most basic level it is a YM–dilaton
(YMd) model designed to simulate qualitatively a EYM
model in d � 5. Repacing the dilaton in (1) by a gravita-
tional term is a physically relevant model, representing part
of a low energy effective action in d � 5. Adding gravita-
tional terms to (1) as it stands is a EYMd model, which is
just as physically relevant.

The YM system, which scales as L�4, in d � 4� 1
supports static solitons, namely, the BPST instantons in
d � 4� 0 dimensions. When the usual Einstein–Hilbert
gravity, which scales as L�2, is added to the YM term, the
soliton collapses because of the (Derrick) scaling mis-
match. To compensate for this scaling mismatch, a term
scaling as L��, with � � 5 must be added. If one is to
restrict to positive definite terms,2 � will be even, and the
most economical choice is � � 6. A typical such term
would be Tr�F ^DX�2, where X is a scalar field, e.g. a
Higgs or sigma-model field. This necessitates the introduc-
tion of a completely new (scalar) field which unlike the
dilaton is not directly recognized as a constituent of a low
energy effective action. For this reason we eschew this
choice, and restrict our attention instead to systems featur-
ing only YM (and eventually YMd) fields. The most eco-
nomical choice then is to compensate with the YM term
Tr�F ^ F�2, scaling with � � 4. We note, finally, that add-
ing a (positive or negative) cosmological constant does not

2The choice of a Chern-Simons term "����� TrA��F��F�� �
F��A�A� �

2
5A�A�A�A�� scaling as L�5 is a possibility, albeit

a considerably harder problem technically, and is at present
under active consideration.
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remedy the scaling mismatch since these terms do not scale
at all. Indeed, in all higher dimensional EYM cases
studied, with � � 0 [3,4], �< 0 [6] and �> 0 [7], the
mass turns out to be infinite when higher order YM terms
are not employed.

The YM sector of the action density in 4� 1 dimensions
employed here, is that one used in [3], namely, the super-
posed p � 1 and p � 2 members of the YM hierarchy.3

The dilaton breaks the scale invariance of the usual p � 1
YM system, and a simple Derrick-type scaling argument
shows that no finite mass/energy solution can exist if �2 �
0, i.e. the p � 2 term in (1) is necessary.

The YM and dilaton field equations read

 �1D��e
2a�F ��� �

1

2
�2fF ��;D��e6a�F �����g � 0;

(2)

 r2� �
a

2�2 �2e
2a�L̂1 � 6e6a�L̂2�: (3)

In (3) we have used the notation

 L̂ 1 �
�1

2 � 2!
TrF 2

MN; L̂2 �
�2

2 � 4!
TrF 2

MNRS: (4)

A. Imposition of symmetry and residual action

In the YM connection AM � �A0;A��, we choose
the temporal component A0 � 0 to vanish and the space-
like components A� is subjected to two successive axial
symmetries, described in [1]. We denote the Euclidean four
dimensional coordinates as x� � �x; y; z; u� 
 �x	; xi�,
with 	 � 1, 2 and i � 3, 4 and use the following parame-
trization

 x	 � r sin
x̂	 
 �x̂	; xi � r cos
x̂i 
 �x̂i; (5)

where r2 � jx�j2 � jx	j2 � jxij2, with the unit vectors
appearing in (5) parametrized as x̂	 � �cos’1; sin’1�,
x̂i � �cos’2; sin’2�, with 0 � 
 � �

2 spanning the quarter
plane, and the two azimuthal angles 0 � ’1 � 2� and 0 �
’2 � 2�. The d � 4� 1 Minkowski spacetime metric
reads for this ansatz

 ds2 � �dt2 � dr2 � r2�d
2 � sin2
d’2
1 � cos2
d’2

2�:

(6)

The first stage of symmetry imposition is of cylindrical
symmetry in the x	 � �x1; x2� plane, and the Ansatz is
stated as is

 

A	 �

�
�5 � n1

�

�
�	�x̂� �

�
�m

�

�
�"x̂�	�"n�1�����m

� Am5
� x̂	n

�1�
� ��m � A34

� x̂	�34; (7)

 A i � Am5
i n

�1�
� ��m � A

34
i �34; (8)

in which the index m � 3, 4 is summed over, and the unit
vector n�1�	 � �cosn1’1; sinn1’1� is labeled by the vortex
integer n1, "	� being the Levi-Civita symbol. The spin
matrices ��� � ��	�;�	i;�ij� in (7) and (8) are one or
other of the two chiral representations of SO�4�, i.e. they
are SU�2� matrices.

If in (7) and (8) we regard the functions ��m;�5� 
 �a

as a SO�3� isovector field, and �Am5
� ; A

34
� � 
 Aab� and

�Am5
i ; A

34
� � 
 Aabi as SO�3� YM connection fields, with

antisymmetric SO�3� algebra indices �ab	 �
��34	; �45	; �53	�, then it turns out that F�� �

�F 	�;F 	i;F ij� is expressed exclusively in terms of the
curvature �Fabij ; F

ab
i� � of the SO�3� connection �Aab� ; Aabi �,

and the corresponding covariant derivative �Di�a;D��a�

of �a, all defined on the hyperbolic space with coordinates
�xi; x��.

The second stage of symmetry imposition is expressed
most succinctly by rewriting the residual fields �Aabi ; A

ab
� �

and �a on this hyperbolic space in matrix representation

 Ai � �
1

2
Aabi �ab; A� � �

1

2
Aab� �ab; (9)

 � � �a�a4: (10)

Azimutal symmetry in the (x3-x4) plane is imposed on the
connection fields (9) by decomposing Ai formally accord-
ing to (7) and A� according to (8). Noticing now that the
index a in (9) and (10) runs only over three values, and
reassigning the values of the index i � 1, 2, the analogues
of (7) and (8) contract to give

 Ai �
�
�4 � n2

�

�
�ijx̂j �

�
�3

�

�
�"x̂�i�"n

�2��j�j3

� A34
� x̂in

�2�
j �j3;

(11)

 A� � A34
� n
�2�
j �jm; (12)

exhibiting the Abelian connection A34
� analogous to the

Abelian connection A34
� appearing in (7) and the isodoublet

function ��3; �4�.
The corresponding axially symmetric decomposition of

� in (10) is

 � � 1n�2�j �j4 � 2�34: (13)

In (11)–(13) we have used the unit vector n�2�i �
�cosn2’2; sinn2’2�, with vorticity integer n2. The final

3The YM hierarchy labeled by the integer p was introduced in
[16] in the context of self-dual solutions in 4p Euclidean
dimensions, but superpositions of various p members were
employed ubiquitously since.
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stage of symmetry imposition is to treat the two azimuthal
symmetries imposed in the x-y and the z-u planes on the
same footing, leading to the equality of the two vortex
numbers, n1 � n2 
 n.

Denoting the residual functions �A34
� ; A34

� � � �a�a�; �,
��3; �4� � �A, �1; 2� � A, and regarding �a�; a�� as
an Abelian connection on the quarter plane defined by
��;��, the residual action densities can be expressed ex-
clusively in terms of the SO�2� curvature

 f�� � @�a� � @�a� (14)

and the covariant derivatives

 D ��
A � @��

A � a��"��
A;

D��A � @��A � a��"��A;

D�
A � @�

A � a��"�
A;

D�A � @�A � a��"�A:

(15)

The residual two dimensional YM action densities de-
scending from the p � 1 and the p � 2 terms L̂1 and L̂2

defined by (4) are, respectively,
 

L1 �
�1

4

�
��f2

�� �
�
�
�jD��

Aj2 � jD��
Aj2�

�
�
�
�jD�Aj2 � jD�Aj2� �

1

��
�"AB�AB�2

�
;

L2 �
�2

12��
�"AB�

ABf�� �D���
AD�	

A�2: (16)

These residual action densities are scalars with respect to
the local SO�2� indices A, B, hence they are manifestly
gauge invariant. They describes a U�1� Higgs like model
with two effective Higgs fields �A and A, coupled mini-
mally to the U�1� gauge connection �a�; a��. To remove
this U�1� gauge freedom we impose the usual gauge con-
dition

 @�a� � @�a� � 0: (17)

Since our numerical constructions will be carried out using
the coordinates �r; 
� we display (16) also as
 

L1 �
�1

4

�
r sin
 cos
f2

r
 �
r sin

cos


�jDr�
Aj2 �

1

r2 jD
�
Aj2�

�
r cos

sin


�
jDrAj2 �

1

r2 jD
Aj2
�

�
1

r sin
 cos

�"AB�AB�2

�
(18)

 L2 �
�2

12r3 sin
 cos

�"AB�ABfr
 �D�r�AD
	A�2:

(19)

The total mass-energy M of the system is

 M �
Z
d4x

���
g
p

Lm

�
Z 1

0
dr
Z �=2

0
d

�

1

2
r3 sin
 cos


�
�2
;r �

1

r2 �
2
;


�

� �e2a�L1 � e
6a�L2�

�
; (20)

and equals the total action of solutions, viewed as solitons
in a d � 4 Euclidean space.

B. Boundary conditions

To obtain regular solutions with finite energy density we
impose at the origin (r � 0) the boundary conditions

 ar � 0; a
 � 0; �A �
0
�n2

� �
; A �

0
�n1

� �
;

(21)

which are requested by the analyticity of the YM ansatz,
and @r�jr�0 � 0 for the dilaton field. In order to find finite
mass solutions, we impose at infinity
 

ar � 0; a
 ��2m; �A � ��1�m�1n2

sin2m


cos2m


 !
;

A ��n1

sin2m


cos2m


 !
; �� 0; (22)

m being a positive integer. Similar considerations lead to
the following boundary conditions on the � and � axes:

 ar �
1

n1
@r

1; a
 �
1

n1
@


1; �1 � 0;

1 � 0; @
�2 � 0; 2 � �n1; @
� � 0;

(23)

for 
 � 0, and
 

ar �
1

n2
@r�

1; a
 �
1

n2
@
�

1; �1 � 0;

1 � 0; �2 � �n2; @
2 � 0; @
� � 0;

(24)

for 
 � �=2, respectively.

C. Topological charge

In our normalization, the topological charge is defined as

 q �
1

32�2 "����
Z

TrfF ��F ��gd4x; (25)

which after integration of the azimuthal angles �’1; ’2�
reduces to

 q �
1

2
"��

Z �1

2
"AB�ABf�� �D��AD�A

�
d2x (26)

 �
1

4

Z
"��@���AD�A � AD��A�d2x: (27)
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The integration in (26) is carried out over the 2 dimensional
space x� � �x�; x��. As expected this is a total divergence
expressed by (27).

Using Stokes’ theorem, the two dimensional integral of
(27) reduces to the one dimensional line integral

 q �
1

4

Z
�AD
$

�Ads�; (28)

This integral has been evaluated in [1] by reading off the
appropriate values of �A and A from (23) and (24). The
result is

 q �
1

2
�1� ��1�m	n1n2: (29)

III. NUMERICAL RESULTS

Apart from the coupling constants �1 and �2 the model
contains also the dilaton constant a. Dimensionless quan-
tities are obtained by rescaling

 �! �=a; r! r��2=�1�
1=4; (30)

This reveals the existence of one fundamental parameter
which gives the strength of the dilaton-non-Abelian inter-
action

 	2 � a2�3=2
1 =�1=2

2 ; (31)

which is a feature present also in the EYM case [3]. We use
this rescaling to set �1 � 1, �2 � 1=3 in the numerical
computation, without any loss of generality.

One can see that the limit 	! 0 can be approached in
two ways and two different branches of solutions may
exist. The first limit corresponds to a pure p � 1 YM
theory with vanishing dilaton and p � 2 YM terms, the
solutions here replicating the (multi-)instantons and com-
posite instanton-antiinstanton bound states discussed in
[1]. The other possibility corresponds to a finite value of
the dilaton coupling a as �1 ! 0. Thus, the second limiting
configuration is a solution of the truncated p � 2 YM
system interacting with the dilaton, with no p � 1 YM
term.

We have studied YMd solutions with m � 1, 2. From
our knowledge of the tolopogical charges (29), the m � 1
solutions will describe (multi)solitons and the m � 2 so-
lutions, soliton-antisoliton configurations. Also, to sim-
plify the general picture we set n1 � n2 � n in the
boundary conditions (21)–(24).

The spherically symmetric solutions are found by using
a standard differential equations solver. The numerical
calculations in the bi-azimuthally symmetric case were
performed with the software package CADSOL, based
on the Newton-Raphson method [17]. In this case, the field
equations are first discretized on a nonequidistant grid and
the resulting system is solved iteratively until convergence
is achieved. In this scheme, a new radial variable x �

r=�1� r� is introduced which maps the semi-infinite re-
gion �0;1� to the closed region �0; 1	.

As will be described below, solutions exist for certain
ranges of the parameter 	. It turns out thatm � 1 solutions
with all n andm � 2 solutions with n � 1 exist for a range
of 	 starting from a 	! 0 limit, but do not persist all the
way up to the second 	! 0 limit. (However, the way the
solutions approach the limit 	! 0 depends on m.) By
contrast we find that m � 2 solutions with all n > 1, exist
for all 	 between the two limits.

A. m � 1 configurations

1. n � 1 spherically symmetric solutions

In the spherically symmetric limit, which case we shall
analyze numerically first, the angular dependence of these
functions is fixed and the only remaining independent
function depends on the variable r. The independent func-
tion in this case is a
 � w�r� � 1, with the remaining
functions �ar; �A; A� given by

 ar � 0; �1 � �1 �
1

2
�w�r� � 1� sin2
;

�2 � ��w�r� � 1�cos2
� 1;

2 � ��w�r� � 1�sin2
� 1:

(32)

The functions ��r� and w�r� satisfy the equations
 

�r3�0�0 � 	2

�
2e2��1

�
rw02 �

�w2 � 1�2

r

�

� 9e6��2
�w2 � 1�2

r3 w02
�
;

�
e2�rw0

�
�1 � 3e4��2

�w2 � 1�2

r4

��
0

�
2e2�w�w2 � 1�

r

�
�1 � 3�2e

4� w
02

r2

�
:

(33)

The asymptotic solutions to these functions can be system-
atically constructed in both regions, near the origin and for
r� 1. The small r expansion is

 w�r� � 1� br2 �O�r4�;

� � �0 � 4	2

�
�1

2
� 9�2b2

�
b2r2 �O�r4�;

(34)

with b, �0 two real parameters, while as r! 1 we find

 w�r� � 1�
4�1

r2 �
4�3

1

27r6
�O�1=r8�;

� �
�1

r2 �
32	2�3e2�0�1

27r6
�O�1=r8�:

(35)

We numerically integrate the Eqs. (33) with the above set
of boundary conditions for �1 � 1, �2 � 1=3 and varying
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	. The picture we found is very similar to that found for the
EYM system [3], the dilaton coupling constant playing the
role of the Newton constant. First, for a given 	, solutions
with the right asymptotics exist for a single value of the
‘‘shooting’’ parameter b which enters the expansion (34).
For 	 small enough, a branch of solutions smoothly
emerges from the BPST configuration [2]. When 	 in-
creases, the mass M and the absolute value of the dilaton
function at the origin increase, as indicated in Fig. 1. These
solutions exist up to a maximal value 	max ’ 0:36928 of
the parameter 	.

As in the corresponding gravitating case [3], we found
another branch of solutions in the interval 	 2
�	cr�1�; 	max	 with 	2

cr�1� ’ 0:2653. On this second branch
of solutions, both��0� andM continue to increase but stay
finite. However, a third branch of solutions exists for 	 2
�0:2653; 0:2652	, on which the two quantities increase
further. A fourth branch of solutions has also been found,
with a corresponding 	cr�3� ’ 0:2642. The mass M, the
value of the dilaton field at the origin ��0� and the initial
(shooting) parameter b increase along these branches.
Further branches of solutions, exhibiting more oscillations
around	 ’ 0:264 are very likely to exist but their study is a
difficult numerical problem. This critical behavior is de-
scribed as a conical fixed point in the analytic analysis in
[5]. Therefore we conclude that, as in the spherically
symmetric gravitating case [3], the limit �1 � 0 is not
approached for solutions with m � 1, n � 1.

As a general feature, all solutions discussed here present
only one node in the gauge function w�r�. As in the higher
dimensional EYM models discussed in [4,5], no multinode
solutions were found.

2. n> 1

Solutions with bi-azimuthal symmetry with nontrivial
dependence on both r and 
 are found for �n1; n2� � 1
subject to the boundary conditions (21)–(24). We have
studied solutions for m � 1 with 2 � n � 5. The general
features of the m � 1 solutions are the same for all n > 1.
Also, as seen in (29), the m � 1 configurations carry a
topological charge q � n2. The corresponding solutions of
the F 2

MN model are self-dual and have been considered
already in [18,19] (for a different parametrization of the
gauge field, however).

These solutions are constructed by starting with the
known spherically symmetric configuration and increasing
the winding number n in small steps. The iterations con-
verge, and repeating the procedure one obtains in this way
solutions for arbitrary n. The physical values of n are
integers. The typical numerical error for the functions is
estimated to be of the order of 10�3 or lower.

Any spherically symmetric configuration appears to re-
sult in generalizations with higher winding numbers n.
Moreover, the branch structure noticed for the m � 1, n �
1 case seems to be retained by the higher winding number
m � 1 solutions. Again, the first branch of solutions exists
up to a maximal value of	, where another branch emerges,
extending backwards in 	. We managed to construct
higher winding number n counterparts of the first two
branches of spherically symmetric solutions. The mass M
and the absolute value of the dilaton function at the origin
increase along these branches, as shown in Fig. 2. Note that
the value of the dilaton function at the origin exhibited in
the figures is actually ��r � 0; 
 � 0�, restricting to 
 �
0. This restriction is reasonable since for all solutions with
bi-azimuthal symmetry discussed in this paper, the dilaton
function at r � 0 presents almost no dependence on the
angle 
.
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FIG. 1. The mass M, the shooting parameter b and the value of
the dilaton at the origin ��0� are shown as a function of 	 for
n � 1; m � 1 spherically symmetric YMd solutions. (Here and
in Fig. 2, we use a normalization such that the mass of 	 � 0
self-dual p � 1 YM solutions is M � q � n2.)
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We expect that the oscillatory pattern of ��0� arising
from the conical fixed point observed above for the spheri-
cally symmetric n � 1 solutions, will also be discovered

for the n > 1 solutions here, but their construction is a
difficult numerical problem beyond the scope of the
present work.
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FIG. 3. The YM gauge functions, the dilaton field and the topological charge density � are shown as a function of the radial
coordinate r for a typical m � 1, n � 3 YMd solutions with 	 � 0:21.
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In Fig. 3 we present the gauge functions, the dilaton, and
the topological charge density

 % �
1

4
"���"AB�

ABf�� �D���
AD�	

A�

read off (26), as functions of the radial coordinate r for five
different angles for a typical first branch m � 1, n � 3
solution with 	 � 0:21. The functions a
 and � have a
small 
 dependence (although the angular dependence
increases with n), while �1 and 1 have rather similar
shapes. The action density L possesses one maximum on
the 
 � �=4 axis. All multicharge solutions found have
concentrated energy and charge density profiles where
individual (unit) charge constituents do not appear as dis-
tinct components. The moduli of the effective Higgs fields
j�j � ��A�A�1=2 and jj � �AA�1=2 possess one node
each on the � and the � axes, respectively, which coincide
with the maximum of the action density. The position of
this node moves inward along the first and second
branches.

B. m � 2 configurations

The m � 2 configurations can be thought of as compos-
ite systems consisting of two components which are pseu-
doparticles of topological charges n. Thus, these
configurations reside in the topologically trivial sector
and carry no Chern-Pontryagin topological charge. This
type of solutions have no spherically symmetric limit.
Also, their behavior as a function of 	 is different from
those with m � 1 presented above, in that solutions for all
values of 	 exist between the two distinct limits of 	! 0
implied by (31), for all n except for n � 1.

1. n � 1

It is perhaps interesting to note from the outset that m �
2, n � 1 solutions to be described now, have apparently no
counterpart in the 4� 0 dimensional p � 1 YM model
studied in [1]. (It turns out that for the �m � 2; n � 1�
solution in that case there is no analytic proof of existence
either.) The obvious difference of the 4� 1 dimensional
model (1) here and the 4� 0 dimensional p � 1 YM
model is that the solutions of the former are parametrized
by the effective coupling constant 	, while the latter has no
such parameter. As will be described below, m � 2n � 1
solutions exist for a certain range of 	, and this range
excludes the limiting case where the contribution to the
action of the dilaton term and the p � 2 YM term in (1)
disappear, i.e. a F 2

MN model.
We find that in the limit 	! 0 resulting from a! 0,

cf. (31), no solutions of this type exist. However in the limit
	! 0 corresponding to a finite value of the dilaton cou-
pling a as �1 ! 0, such solutions exist. This limiting
configuration is then a solution of the truncated system
consisting of the dilaton term and p � 2 YM term F 2

MNRS,
which dominate. Its characteristic feature is that for this

configuration both nodes of the effective Higgs fields j�j
and jj merge on the 
 � �=4 axis. A family of solutions
of the model (1) emerges from this configuration. As 	
increases, the nodes move towards the symmetry axes, �
and �, respectively, forming two identical vortex rings
whose radii slowly decrease while the separation of both
rings from the origin increase. At the critical value 	cr ’
0:265 the node structure of the configuration changes, both
vortex rings shrink to zero size and two isolated nodes
appear on each symmetry axis. This structure is known for
the usual YM system in d � 4� 0 [1], indeed, increasing
of 	 along this branch can be associated with increasing of
the coupling �1 w.r.t. �2 as the dilaton coupling a remains
fixed; then the term F 2

MN becomes leading. The maximum
of the action density however is still located on 
 � �=4
axis.

Another similarity with the instanton-antiinstanton so-
lution of the d � 4� 0 p � 1 YM theory is that the gauge
functions ar, a
 as well the dilaton function � of the n �
1, m � 2 solutions also are almost 
-independent. Along
this branch the mass of the solutions grows with increasing
	 since with increasing coupling �1 the contribution of the
term F 2

MN also increases.
As the effective coupling increases further beyond 	cr

the relative distance between the nodes increases, one lump
moving towards the origin while the other one moves in the
opposite direction. Along this branch both the value of the
dilaton field at the origin j��0�j and mass of configuration
M increase as 	 increases. This branch extends up to a
maximal value 	�1�max ’ 0:311 beyond which the dilaton
coupling becomes too strong for the static configuration
to persist. The second branch, whose energy is higher,
extends backwards up to 	�2�max ’ 0:279. Along this branch
both j��0�j and the mass of the configuration continue to
increase as 	 decreases. Also the separation between the
nodes decreases and both nodes invert direction of the
motion, moving toward each other along this branch. In
Fig. 5 we present the values of the dilaton function at the
origin ��0� and the total mass (rescaled by 	2) of these
configurations as functions of 	.

2. n � 2

This configuration also resides in the topologically triv-
ial sector and can be considered as consisting of two
solitons of charges n � 2. Then the interaction between
the non-Abelian matter fields becomes stronger than in the
case of unit charge constituents and the expected pattern of
possible branches of solutions is different from the n � 1
case above.

Indeed, the n � 2, m � 2 solutions show a different
dependence on the coupling constant 	, with two branches
of solutions. The lower branch emerges from the corre-
sponding solution in pure p � 1 YM theory with vanishing
dilaton and p � 2 YM terms, replicating the correspond-
ing solution in [1]. The variation of the effective coupling
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along this branch is associated with the decrease of �1, at
fixed �2 and fixed dilaton coupling a. The second branch
emerges from a solution of the p � 2 YM-dilaton system,
the unrescaled mass M diverging in this limit, with the
rescaled massM	2 vanishing as seen from Fig. 5(a). At the
maximal value 	max ’ 0:2372 this branch bifurcates with
the lower YM branch. For larger values of 	, the dilaton
coupling becomes too strong for the static configurations to
persist. Thus for 0 � 	< 	max we notice the existence of
(at least) two distinct solutions for the same value of
coupling constant.

For the same value of 	, the mass of the second branch
solution is larger that of the corresponding lower branch
configuration(s). One should also notice the existence of a
curious backbending of the lower branch for 0:193<	<
0:218. Four distinct solutions exist in this case for the same
value of 	 (three of them located on the lower branch),

distinguished by the value of the mass and the dilaton field
at the origin. This pattern is illustrated in Fig. 5.

Again, observation of the positions and structure of the
nodes of the effective scalar fields allows us to better
understand the behavior of the solutions. For lower branch
solutions with small values of 	 there are two (double)
nodes of the fields j�j and jj on the � and � symmetry
axes, respectively. The locations of nodes correspond to the
locations of the two individual constituents and the action
density distribution possesses two distinct maxima on the

 � �=4 axis. The distance between these nodes changes
only slightly along the lower mass branch. The backbend-
ing in 	 observed in this case is reflected also for in the
relative positions of the nodes. At the maximal value of 	,
the inner node is located at ��1�0 � ��1�0 ’ 2:97 and the outer
node is located at ��2�0 � ��2�0 ’ 4:18.
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m=2, n=2 upper vortex branch: Action density at α=0.2
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FIG. 4. The modulus of the effective Higgs field  is shown for the upper branch m � 2, n � 2 solutions at 	 � 0:15 (vortex,
Fig. 4(a)] and 	 � 0:20 lower energy branch solution (double node, Fig. 4(b)] as functions of the coordinates � and �. The action
density distributions of these m � 2, n � 2 solutions at 	 � 0:20 are also shown on the lower branch [Fig. 4(c)] and on the upper
branch [Fig. 4(d)], respectively.
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Along the upper branch, as 	 slightly decreases below
	max, the inner node inverts direction of its movement
toward the outer node which still moves inwards. Thus,
both nodes on the symmetry axis rapidly approach each
other and merge forming a two vortex ring solution as 	 ’
0:2355. The action density then has a single maximum on

 � �=4 axis. As 	 decreases further both nodes move
away from the symmetry axis and their positions do not
coincide with the location of the maximum of the action
density. Further decreasing 	 results in the increase of the
radii of the two rings around the symmetry axis, and in the
limit 	! 0 the rings touch each other on the 
 � �=4
axis.

In Fig. 4 we give three dimensional plots of the modulus
of the effective Higgs field  for the n � m � 2 upper
branch vortex solution at 	 � 0:20 and the n � m � 2
lower branch double node solution at the same value of
	. The action density as given by (1) is also plotted at 	 �
0:20 both for the upper and for the lower branches.

The numerical calculations indicate the possibility that
the solutions of the fundamental YM branch, namely, the
branch on which the p � 1 YM term dominates, are not
unique. It is possible that higher linking number configu-
rations with higher masses might exist. This possibility
will be explored elsewhere.

3. n � 3

For the n � 3 configuration composed of two triple
charged pseudoparticles we observe a somewhat simpler
pattern. The lower dilaton branch emerges from the limit of
vanishing dilaton and p � 2 YM couplings and extends up
to a maximal value 	cr � 0:165. Along this branch the
configuration possesses two vortex rings.

As 	 increases the mass of the solution increases and, at
the same time, the radii of the rings slowly increase and

both rings move inwards. This lower mass branch bifur-
cates at the critical value of the effective coupling 	cr with
an upper branch which extends all the way back to 	 � 0
(see Fig. 5). Again, in this limit both vortex rings come into
contact on the 
 � �=4 axis. Thus, we observe no isolated
nodes on the symmetry axis and both upper and lower
energy branches correspond to vortex ring solutions.

Note that the branch structure here closely resembles the
pattern which was observed for the gravitating monopole-
antimonopole chains and vortex solutions in d � 3� 1
Einstein-Yang-Mills-Higgs system [20,21].

The profiles of a typical m � 2, n � 3 solution are
presented in Fig. 6 (the picture there applies as well for
n � 1, 2 configurations).

IV. SUMMARY AND DISCUSSION

Finite mass static solutions to a 4� 1 dimensional
SU�2� YMd model are constructed numerically. The YM
sector of the model consists of the usual YM term, labeled
p � 1, and the next higher order p � 2 term of the YM
hierarchy [16]. The second YM term is necessary to coun-
teract the scaling of the quadratic dilaton kinetic term,
since we require finite energy solutions. In Sec. II we
have explained the rationale behind our choice of the
model (1). Basically our criterion is that of compensating
for the scaling of the quadratic kinetic dilaton term, by
introducing an additional term that scales as L��, (� � 5),
with the further criteria that this additional term be positive
definite, and, that no new fields beyond the dilaton and the
YM be employed.

The solutions constructed are subject to the bi-azimuthal
symmetry applied in [1].

Viewed as a 4� 0 dimensional model, this is a scale
breaking version of a p � 1 YM theory whose bi-
azimuthally symmetric solutions were presented in [1].
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The latter model being scale invariant in d � 4� 0, the
present solutions have the new feature that they are referred
to an absolute scale. This is an interesting feature of the
present work.

Our main motivation here, however, is to study a system
which can give an insight into the qualitative features of
static, finite mass solutions to a gravitating YM system in
higher dimensions, which are not subject to spherical
symmetry. To date the only higher dimensional
Einstein–Yang-Mills (EYM) solutions known [3–8] are
subject to spherical symmetry in the spacelike dimensions.
Rather than tackle the appreciably more complex numeri-
cal problem of constructing nonspherically symmetric
EYM solutions, we consider here instead the correspond-
ing YM–dilaton problem, knowing that the classical solu-
tions of the latter simulate [9] the qualitative properties of
the corresponding EYM ones in d � 3� 1 dimensional
spacetime. Thus the present work is a warmup to the
ultimate aim of constructing nonspherically symmetric
EYM solutions in higher dimensions. Having said that,
we note that we have already made an appreciable start
in the construction of the corresponding d � 4� 1 EYM
solutions, and our results to date confirm the qualitative
similarity of those with the dilaton–YM solutions pre-
sented here. Our results on the gravitating system will be
reported elsewhere.

In the context of giving a qualitative description of our
results, it must be noted that in this first effort, we have
restricted the dimensionality of the spacetime to 4� 1.
Thus we can only compare our results here with the 4�
1 dimensional subset of the spherically symmetric EYM
solutions [3–6,8], which were given in spacetime dimen-
sions d � 5. We would expect however that the compara-
tive features between spherically and the nonspherically
symmetric solutions which we uncover here, will stay
qualitatively valid also in dimensions d � 5.

As it happens, spherically symmetric EYM solutions in
4� 1 dimensions [3] exhibit quite different qualitative
properties compared to those in 5� 1, 6� 1 and 7� 1
dimensions [4]. Indeed, the comparative patterns remain
true modulo 4p dimensions, as explained in [5]. These
features in question concern the branch structure of the
said solutions with respect to the effective coupling pa-
rameter 	 in the problem. It turns out that for an appro-
priate EYM model in d � 4p� 1 dimensions, a peculiar
branch structure, absent in d � 4p� 1, occurs. This was
explained in [5] to be due to the occurence of what was
called there a conical fixed point singularity, which mani-
fests itself by the oscillatory behavior in 	 of the global
quantities near the critical value of the effective coupling
parameter.4

Now in the present work we do not employ gravity but
have instead the dilaton, which is represented by the singlet
scalar field�. It is therefore unavoidable that the role of the
metric function at the origin in the gravitating case, should
be replaced here by ��r � 0�, the dilaton function at the
origin. This correspondence can be made uniquely in the
special case of our �m � 1; n � 1� bi-azimutal solutions,
which are simply the spherically symmetric subset. As
seen from Fig. 1, the oscillatory pattern of ��0� is clear.

Concerning �m � 2; n� solutions, these are not spheri-
cally symmetric and depend on 
 in addition to r. Instead
we have employed the values ��r � 0; 
 � 0� to track the
branch behavior of our solutions. This is quite a reasonable
criterion, since we find that the dependence of ��0; 
� is
very small on all branches constructed. The branch struc-
tures for �m � 2; n � 1; 2; 3� are displayed on Fig. 5. We
see that �m � 2; n � 2; 3� solutions have largely similar
patterns, except for the additional backbending showing up
in the n � 2 case. The branch structure for �m � 2; n � 1�
on the other hand is drastically different. Indeed it seems
quite reminiscent of the corresponding spherically sym-
metric �m � 1; n � 1� solutions, perhaps exhibiting a
conical fixed point behavior too, but the numerical accu-
racy is entirely inadequate to decide this, either way.

Our results concerning m � 2 solutions are here re-
stricted to the concrete construction of m � 2 solutions.
However, our preliminary numerical results indicate that
most qualitative features remain true for m � 3, 4. Also,
for m � 2, we have restricted to n � 1, 2, 3 only, which is
quite adequate. An interesting remark on m � 2 solutions
is the existence of the �m � 2; n � 1� confirmed by our
results, which we had not found for the d � 4� 0 dimen-
sional p � 1 YM model in [1], and for which the analytic
proof of existence is also absent. This is easy to understand
since our �m � 2; n � 1� solutions exist only for that range
of the parameter 	 for which all terms in the Lagrangian
(1) contribute to the action, and for the limiting range of 	
for which only the usual YM term (p � 1 term) would
dominate, there are no solutions. So there is no special case
of our solutions which could describe �m � 2; n � 1� bi-
azimuthal instantons that are absent in [1].

Apart from the above features, we have found a very rich
pattern of the zeros of the moduli of the effective Higgs
fields � and , on the branches parametrized by 	. These
display vortex ring structures described in detail in Sec. III,
similar to the vortex rings discovered previously [20] in the
3� 1 dimensional Yang-Mills–Higgs system.
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4This feature persists also when a scalar matter field is added,
for example, when a gauged Grassmannian sigma-model field is
included in the Lagrangian [22]. We expect it to persists also
when a Higgs field is added instead, in 4p� 1 dimensions.
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