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A new numerical method to construct binary black hole/neutron star initial data is presented. The
method uses three spherical coordinate patches; two of these are centered at the binary compact objects
and cover a neighborhood of each object; the third patch extends to the asymptotic region. As in the
Komatsu-Eriguchi-Hachisu method, nonlinear elliptic field equations are decomposed into a flat space
Laplacian and a remaining nonlinear expression that serves in each iteration as an effective source. The
equations are solved iteratively, integrating a Green’s function against the effective source at each
iteration. Detailed convergence tests for the essential part of the code are performed for a few types of
selected Green’s functions to treat different boundary conditions. Numerical computation of the gravi-
tational potential of a fluid source, and a toy model for a binary black hole field, are carefully calibrated
with the analytic solutions to examine accuracy and convergence of the new code. As an example of the
application of the code, an initial data set for binary black holes in the Isenberg-Wilson-Mathews
formulation is presented, in which the apparent horizons are located using a method described in
Appendix A.
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I. INTRODUCTION

Inspiral and merger simulations to produce accurate
gravitational waveforms are essential for constructing
waveform templates for analysis of data from laser inter-
ferometric detectors. The ground based interferometers,
such as advanced LIGO or LCGT, may detect gravitational
waves from the inspiral of M� 10M� binary black holes
within z� 4, while space based interferometric detectors
such as LISA or DECIGO may detect the inspiral of
106M� supermassive binary black holes, and may discover
intermediate mass binary black holes with M� 103M�.

Initial data set for binary black holes with a variety of
black hole parameters, such as binary mass ratio, and black
hole spins, or the binary black hole-neutron star data will
become more useful considering the remarkable progress
made recently for the inspiraling binary black hole simu-
lations up to a few orbits near the innermost stable circular
orbits [1–8]. Several groups have been achieved to con-
struct binary black hole initial data successfully [9–18] (for
earlier works, see [19]).

In this paper, we introduce a new numerical method
suitable for computing accurate initial data sets for binary
black holes, black hole/neutron star binaries, and binary
neutron star systems. Initial data sets of these kinds are
calculated from the Einstein equation written in the form of
nonlinear elliptic equations for metric components. Each
equation can be written as a Poisson equation with a non-
linear source. Our new Poisson solver is patterned after the
Komatsu-Eriguchi-Hachisu (KEH) method [20], widely
used to compute rotating neutron stars and more recently
to compute binary neutron stars [21]. The KEH method
uses Green’s formula to write the field equations in equiva-

lent integral forms and iteratively solve them using spheri-
cal coordinates and angular harmonics. The set of
equations is discretized by a standard finite difference
scheme.

To extend the method to handle our wider class of binary
configurations, we introduce three spherical coordinate
patches. Two are centered at each hole and extend outward
to a finite radius, larger than the gravitational radius but
small enough that the two coordinate patches do not over-
lap. A third coordinate patch, covering the rest of a space-
like hypersurface, extends to the asymptotic region and
overlaps each of the other two patches. There are two
important features of our new code: (1) The number of
multipoles in the coordinate patch centered at the orbital
center can be reduced to ‘ & 10 since the sizes of patches
for compact objects is extended to about a half of the
binary separation. (2) The data between those patches are
communicated only at the boundary of those patches to
minimize the amount of data to interpolate from one to the
other. These novel features result in an efficient code that
retains high resolution even near the compact objects
where the field is strong. The method has two additional
significant advantages: Coding is relatively simple, and the
iteration converges robustly.

This paper is organized as follows. In Sec. II, after
briefly reviewing the initial value formulation, we intro-
duce our choice of coordinate systems and the formulation
of our Poisson solver. Formulas for multipole expansion of
Green’s function used in the Poisson solver are described
in Appendix B. In Sec. III, we describe our numerical
methods, including finite differencing and our iteration
procedure. In the relating Appendices D and E, the con-

PHYSICAL REVIEW D 75, 044026 (2007)

1550-7998=2007=75(4)=044026(19) 044026-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.044026


vergence of iteration is discussed further. The results of
detailed convergence tests are presented in IV, and an
example of binary black hole initial data is displayed in
V. The concrete form of the nonlinear elliptic equations for
the initial value problem is given in Appendix C, and a
method to locate the apparent horizons in the initial data is
described in Appendix A.

II. METHOD FOR BINARY BLACK HOLE/
NEUTRON STAR INITIAL DATA

Our new numerical method is applicable for various
formulations including spatially conformal flat initial
data [22], the Isenberg-Wilson-Mathews (IWM) formula-
tion [23–25], and waveless approximation [26]. We intro-
duce the IWM formulation used for a test calculation of our
new code. In this formulation, four constraints and the
spatial trace of the Einstein equation are solved, after
choosing the trace of the extrinsic curvature and the con-
formal three metric. We then explain the choice of coor-
dinates and the form of Green’s functions used in our
version of the KEH method.

A. Formulation

We consider a globally hyperbolic spacetime M, foli-
ated by a family of spacelike hypersurfaces �t. The binary
black hole initial data is constructed on a slice � � �0.
The unit future-pointing normal to �t will be denoted by
n� � ��r�t and the metric is written in 3� 1 form,

 ds2 � g��dx
�dx�

� ��2dt2 � �ij�dxi � �idt��dxj � �jdt�; (1)

in a chart ft; xig, where �ab�t� is the 3-metric on �t, � the
lapse, and �a the shift. The 3-metric �ab is induced by the
projection tensor to the hypersurfaces �t:

 ��� � g�� � n�n�: (2)

The extrinsic curvature of the foliations is defined by

 K�� � �
1
2Ln���; (3)

where K�� satisfies K��n� � 0. With the spatial indices,
the spatial tensor K�� is written

 Kab � �
1

2�
�@t�ab �L��ab�: (4)

Denoting the tracefree part of Kab by Aab and its trace by
K :� Kaa, we have

 Aab � Kab �
1
3�abK; (5)

and

 Aab � �
1
2�Ln�ab �

1
3�ab�

cdLn�cd�: (6)

Ln operating to the spatial metric is understood as Ln �

1
� �@t �L��, where the L� is the Lie derivative defined on
�.

Projecting one index of the Einstein equation normal to
the hypersurface �, G��n� � 0, yields the Hamiltonian
and momentum constraint equations:

 2�G���8�T���n�n��R�KabKab�K2�16��H�0;

(7)

 �G���8�T�����an���Db�Kab��abK��8�ja�0;

(8)

where Da is the covariant derivative on � associated with
the three metric �ab. To satisfy the Hamiltonian constraint
on a slice �, we introduce a conformal decomposition of
the spatial metric, �ab �  4 ~�ab, and solve the
Hamiltonian constraint for the conformal factor  . This
prescription leaves the conformal three metric ~�ab
unspecified.

Separating out the trace K and substituting Eqs. (5) and
(6) in the momentum constraint results in an elliptic equa-
tion for the shift�a. The trace,K, remains unspecified. The
spatial trace of the Einstein equation,
 

�G�� � 8�T������ � 2LnK �
1

2
�R� K2 � 3KabKab�

�
2

�
DaD

a�� 8�S � 0; (9)

can be written as an elliptic equation for the lapse �, once
one restricts @tK (e.g., by setting to zero @tK or the
derivative of K along a helical Killing vector).

In Appendix C, we show the explicit form of the elliptic
equations with nonlinear source for the constraints and the
spatial trace of the Einstein equation.

B. Inversion of the Laplacian: Poisson solver

In each component of the field equations a second-order
elliptic operator acts on one metric potential. By separating
out a flat Laplacian, we write each field-equation compo-
nent in the form

 r2� � S; (10)

where � represents a metric potential on a slice �. The
effective source S involves second derivatives of the met-
ric, but a convergent iteration is possible because they
occur in expressions that are o�r�3� near spatial infinity.
The flat Laplacian r2 is separated in spherical coordinates
and inverted by a Poisson solver, and the nonlinear equa-
tion (10) is solved iteratively. Our choice of the Poisson
solver is to use the Green’s formula, an integral form of
Eq. (10). Using the Green’s function of the Laplacian,

 r2G�x; x0� � �4���x� x0�; (11)

where x and x0 are positions, x, x0 2 V � �, the Green’s
formula is written
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 ��x� � �
1

4�

Z
V
G�x; x0�S�x0�d3x0 �

1

4�

	
Z
@V

G�x; x0�r0a��x0� ���x0�r0aG�x; x0��dS0a:

(12)

This formula is valid for any connected space V as long as
each term is integrable. The function G�x; x0� is a sum of a
Green’s function without boundary and a homogeneous
solution F�x; x0� to the Laplace equation,

 G�x; x0� �
1

jx� x0j
� F�x; x0�; (13)

which satisfy

 r2 1

jx� x0j
� �4���x� x0�; (14)

 r2F�x; x0� � 0: (15)

Equation (12) is a formal solution to the Poisson equation
(10) for any G�x; x0� that satisfies Eq. (11), even if the
source S depends on the field � nonlinearly. Thereby, the
elliptic equation with a nonlinear source can be solved
iteratively using Eq. (12). We call this iteration the KEH
iteration hereafter.

With the surface term included, Eq. (12) is an identity,
valid for any choice of Green’s function. Requiring con-
vergence of the KEH iteration, however, imposes the fol-
lowing key restrictions on that choice: For solving a
Dirichlet problem, no multipole component of
r0aG�x; x0� can vanish on the entire boundary; similarly,
for solving a Neumann problem, no multipole component
ofG�x; x0� can vanish on the entire boundary. As long as the
Green’s function satisfies this restriction, it is not necessary
to construct F�x; x0� appropriate for each boundary condi-
tion; for example, the Green’s function without boundary
term 1=jx� x0j can be used for the Neumann problem.

A reason to use the Poisson solver Eq. (12) is tied to the
facts that the spherical coordinates �r; 	; 
� are suitable for
constructing numerical domains for binary black holes and
neutron stars, and that one can use a multipole expansion of
the Green’s function in these coordinates. The Poisson
solver turns out to be simple for coding, CPU inexpensive
and accurate as shown in Sec. IV. In the rest of this section,
we introduce numerical domains for the binary black holes,
and discuss the choice of the Green’s function.

C. Construction of the computational domain

To describe the binary black hole/neutron star data, we
introduce three spherical domains. Two small domains are
centered at the two compact objects surrounding them,
while the third domain partly covers the first two and
extends to the asymptotic region. The large domain is not
necessarily positioned at the center of mass of the two
compact objects. These domains are shown schematically

in Fig. 1. In this section, we consider the binary black hole
case as an example, and refer to the domains around the
compact objects as the black hole coordinate system
(BHCS) and the third one as the central coordinate system
(CCS).

CCS extends to the asymptotic region; practically the
radius r of the sphere So is set large enough that the
multipoles of order r�2 and higher are negligible. It ex-
cludes the interiors of the two spheres I1 and I2, which are
centered at each black hole, and whose radii are taken
larger than the gravitational radius of each hole but not
as large as to intersect each other. Therefore, in the domain
of CCS, Eq. (12) involves (1) the surface integrals over a
large sphere So where the asymptotic condition of each
field variable is imposed, (2) the interfaces I1 and I2, and

 

∞∞

S o

I 1
S o1

I 2

S o2

S i 1

S i 2

FIG. 1 (color online). The computational domain. One central
grid and two black hole grids with excised regions.
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(3) the volume integral of the source term S between these
three spheres.

The first black hole computational domain BHCS-1
extends from a sphere Si1 to So1

, both centered at the black
hole, and the second one BHCS-2 from Si2 to So2

. The
region inside Si1 and Si2 is excised from the computational
domain. The code allows the option of dispensing with the
inner boundary, for a black hole; and for a neutron star the
inner boundary is never used (in this case in the BHCS the
minimum value of r is zero). Note that the spheres I1, Si1 ,
and So1

are concentric, and the same for I2, Si2 , and So2
.

The boundaries I1, I2, So1
, and So2

are introduced to
reduce the number of terms in the Legendre expansion of
the Green’s function (B1) in CCS. Taking the radii of I1

and I2 large enough, the contribution of higher multipoles
in CCS is included in the surface integrals over I1 and I2.
Because of this, a small number of multipoles, typically
‘ & 10, is enough to resolve the volume integral of CCS.
Thus by increasing the radial resolution in BHCS where
the metric potentials may vary rapidly, we can compute an
accurate solution without having a high resolution in CCS.

Between concentric spheres I1 and So1
of BHCS-1, and

I2 and So2
of BHCS-2, we reserve overlapping regions,

which appear shaded in Fig. 1. These interfaces Ii and Soi
(i � 1 or 2) are not physical boundaries; the boundary
conditions of the fields are not prescribed there. Instead,
the value of the field on Ii is calculated from the field on
BHCS, and the value of the field on Soi from the field on
CCS, thus resulting to a smooth potential field throughout
BHCS and CCS that satisfies the physical boundary con-
ditions at the BH boundary and the asymptotic region. The
significance of the overlap region is to decrease the number
of iterations to convergence. A toy model of this iteration
procedure is explained in Appendix D.

D. Choices for the Green’s function

In Sec. II B, we discussed a restriction on the choice of
Green’s function due to the KEH iteration using Eq. (12).
Any Green’s function that meets this restriction can be
used in the Poisson solver (12). The Green’s functions
are expanded in multipoles over the spherical coordinates
�r; 	; 
� of each domain. Explicit formulas for the expan-
sions are shown in Appendix B. In actual numerical com-
putations, the summation of multipoles in ‘ is truncated at
a certain finite number L, for which we typically choose
L� 10 in order to resolve the deformation of the field �.

For CCS, we choose the Green’s function without
boundary,

 GNB�x; x0� �
1

jx� x0j
; (16)

which has the simplest form and picks up the contributions
from the interfaces I1 and I2. In the volume integral of
Eq. (12) over the domain outside of spheres I1 and I2, and
inside of So, the function GNB�x; x0� is expanded in multi-

poles over the spherical coordinates of CCS. For the sur-
face integrals on I1 and I2, GNB�x; x0� is expanded in
multipoles over the spherical coordinates of BHCS-1 and
BHCS-2, respectively. Therefore, the position x corre-
sponding to each grid point of CCS is labeled by the
spherical coordinates of BHCS, not CCS, in these surface
integrals.

For BHCS, when the excision of the computational
domain is not used at the black hole, GNB will be chosen.
However, when the computational region is excised inside
a sphere Si1 and Si2 , GNB cannot be used for the Dirichlet
problem. As shown in Appendix E, the ‘ � 0 component
of r0aGNB�x; x0� becomes zero at the inner boundary
sphere, and hence it cannot pick up Dirichlet data there
during the iteration of Eq. (12). When the black hole
boundary condition for a certain field is given by
Dirichlet data, we choose the Green’s function for the
Dirichlet problem between two concentric spheres GDD

given in Appendix B 2. When Neumann data is imposed
at the black hole boundary, the Green’s function without
boundary GNB may be used. We also coded the Green’s
function between two concentric spheres GND for which
the Neumann condition is imposed at the inner boundary of
BHCS Si1 and Si2 , and the Dirichlet data at the outer
boundary of BHCS So1

and So2
.

III. METHOD FOR NUMERICAL COMPUTINGS

A. Grid spacing

Hereafter, coordinate labels �r; 	; 
� will be used for all
three spherical coordinate systems, CCS, BHCS-1, and
BHCS-2 unless otherwise stated. We introduce three
spheres, Sa, Sb, and Sc at r � ra, r � rb, and r � rc,
respectively, such that ra < rc < rb, in each coordinate
system. The sphere Sa is used as an inner boundary for
BHCS when the excision boundary is used, which corre-
sponds to Si1 and Si2 in Fig. 1. For CCS or BHCS without
excision, the radius ra � 0 is understood. The sphere Sb is
the outer boundary of each coordinate system that corre-
sponds to So, So1

, and So2
in the same figure. The sphere Sc

is located between Sa and Sb where we change the grid
spacing in the radial coordinate.

The code is constructed to handle nonequidistant grid
spacing in each coordinate grid. In CCS, the grid starts with
equidistant spacing from the origin r � 0 to a sphere Sc,
and from there it becomes nonequidistant with an ever
increasing spacing up to the outer boundary Sb. The black
hole grids are equidistant from their outer boundaries Sb
down to Sc, and from that point until the inner boundary Sa
they become nonequidistant with an ever decreasing spac-
ing. For the black hole grids, finer grids are adequate to
have an accurate representation of the rapidly varying
fields near the hole, while further away, where the poten-
tials are changing slowly, larger spacing can be used with-
out compromising accuracy.
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We summarize common notations for all three coordi-
nate systems as follows:

ra: Radial coordinate where each grid starts.
rb: Radial coordinate where each grid finishes.
rc: Radial coordinate between ra and rb where each grid

changes from equidistant to nonequidistant or vice versa.
Nr: Total number of intervals �ri between ra and rb.
nr: Number of intervals �ri between ra and rc.
nv: Number of overlapping intervals of BHCS to CCS.
N	: Total number of intervals �	i for 	 2 
0; ��.
N
: Total number of intervals �
i for 
 2 
0; 2��.
d: The separation between centers of BHCS and CCS.

In particular, we use the following setup for the grid
spacings.

Central Grid

 �ri � �h �
rc � ra
nr

for 1 � i � nr

�ri�1 � k�ri for nr � i � Nr � 1;

where k > 1. Then we have

 rb � rc � �h
k� kNr�nr�1

1� k
: (17)

Given ra, rb, rc, Nr, and nr, this is the equation that will
give us the spacing factor k for the central grid. Note that,
for the central grid, ra � 0.

Black Hole Grids (I and II)

 �ri � �h �
rb � rc
Nr � nr

for nr � 1 � i � Nr

�ri � k�ri�1 for 1 � i � nr;

where k < 1. Then we have

 rc � ra � �h
k� knr�1

1� k
: (18)

For the angular 	 and
 spacings for all three coordinate
systems, we usually take equidistant grid spacing.

B. Finite differencing

The standard finite difference scheme is applied to
evaluate the derivatives of the sources and their numerical
integrals in Eq. (12). The derivatives of source terms are
calculated using the fourth-order Lagrange formula, and
the integrals using either trapezoidal rule or fourth-order
Simpson rule in 	 and 
 coordinates and second-order
midpoint rule for the r coordinate. For the surface integrals
at the interfaces So1

and So2
in Fig. 1, the field and its

derivatives are evaluated from the nearby 64 points of CCS
as shown in Fig. 2 (a point A on Soi), to which the fourth-
order interpolation is applied.

C. Iteration procedure

The KEH method at the nth iteration follows the proce-
dure,

(1) Compute all the source terms in Eq. (12).
(2) Call the Poisson solver (described below) for each

of the variables and compute their new values ��n�.
(3) Compare these newly computed values ��n� with

those of previous iteration ��n�1�.
(i) If the difference is less than your accepted

error) convergence
(ii) If not, update ��n�, according to

 ��n� :� c��n� � �1� c���n�1�; (19)

and go back to step (1).
We conclude convergence of the iteration when the

difference between two successive iterations becomes
small as defined by

 

2j��n� ���n�1�j

j��n�j � j��n�1�j
< �c; (20)

where �c � 10�8 is taken in typical calculations. The
iteration usually converges successfully, taking the conver-
gence factor c to be around 0.5 when a fluid source is
present. For the binary black hole case, it is even possible
to achieve convergence with the factor c � 1.

The Poisson solver for a potential at the nth iteration
performs the following sequence of instructions:

(1) Compute the potential and its radial derivative at the
outer boundary of the black hole grid by interpolat-
ing from nearby points of the central grid.

(2) Compute the surface integrals at the outer bounda-
ries of the black hole grids by using the potential and

 

A

B

∞

i − 1

i

i + 1

i + 2

j −
1

j

j + 1

j + 2

S o1I 1
S i 1

FIG. 2 (color online). Schematic figure for computational do-
main with overlapping grids.
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its derivative from step (1).
(3) Compute the surface integrals at the inner bounda-

ries of the black hole grids by using the boundary
conditions for the potential or its derivative.

(4) Compute the volume integrals inside the black hole
grids. Add the contributions from steps (2) and (3),
to obtain the value of the potential inside the black
hole grids.

(5) Interpolate using points of the black hole grids to
compute the potential and its derivative on the in-
terfaces I1 and I2 of the central grid.

(6) Compute the surface integrals on I1 and I2 by using
results from step (5).

(7) Compute the surface integral at the outer boundary
of the central grid by using the boundary conditions
for the potential or its derivative.

(8) Compute the volume integral inside the central grid.
Add the contributions from steps (6) and (7), to
obtain the value of the potential inside the central
grid.

IV. CODE TEST

In this section, we show the results for the convergence
test of our new code. In the first test we compute the
Newtonian potential of two spherical masses. Then we
compute simple models for time symmetric black hole
data.

As mentioned in the previous section, the local trunca-
tion errors of the finite differencing used in our code are of
order O��r2�, O��	4�, and O��
4� in each coordinate.
Also we have a truncation error from multipoles higher
than L� 10. Since the local truncation error at each grid
point is a linear combination of these, and because of the
excision used in CCS, we find a nonuniform convergence
of relative errors as we increase the resolution, as well as a
nonuniform distribution of the errors in space, as shown
below. However, overall convergence is faster than second
order for all cases with a fixed L.

A. Convergence test for the Newtonian potential

1. Setup for the test problem

The Poisson equation (10) with a spherical source of the
form

 S�r� �
�
�R2�r2�2

R4 if 0 � r � R;
0 if r > R;

(21)

has the solution

 � �

8><
>:
� R2

6

�
1�

�
r
R

�
2
� 3

5

�
r
R

�
4
� 1

7

�
r
R

�
6
�

if 0 � r � R

� 8R3

105r if r  R;

(22)

where r is the radial coordinate and R a constant.

The source (21) is centered at each BHCS-1 and BHCS-
2, whose positions in CCS are �r; 	; 
� � �1:5; �=2; 0� and
�1:5; �=2; ��, and the radii of BHCS-1 (So1

) and 2 (So2
),

extend up to rb � 1:25. The radii of the excised spheres in
CCS I1 and I2 are taken as r � 1:0. The radial coordinate r
of CCS is equidistant until rc � 3 and from that point until
rb � 100 is nonequidistant, while the BHCSs are equidis-
tant in the radial coordinate. The exact potential of two
sources is a superposition of solutions (22) centered at each
of the two BHCS. For the boundary condition at r � 100 in
CCS, we put the potential to have its exact value. The KEH
iteration explained in previous sections is applied to cal-
culate the potential � until convergence is made.

2. Accuracy of numerical solutions

In Fig. 3, we show, for two cases, the percentage of the
relative error between the numerical and exact solution,

 

����������

�

��������
%� :� 100

���������exact ��numerical

�exact

��������: (23)

In the first case (top panel), the radius of the source R is
R � 0:5, which is smaller than the boundary radius rb �
1:25 of BHCS-1 and BHCS-2. For the second case (bottom
panel), the source radius R � 1:4 is taken so that the
sources extend to CCS. The error is plotted along the radial
coordinate at �	;
� � ��=2; 0� (see Fig. 1). Along this line
(labeled x in the figures) BHCS-1 extends from x � 0:25 to
2.75, the source (for R � 1:4) from x � 0:1 to 2.9, and
overlap of CCS and BHCS-1 from x � 0:25 to 0.5 and
from 2.5 to 2.75 in CCS. The errors in the interval x 2

0; 4� are shown in the plots.

In Fig. 3, the resolution doubles from the top to bottom
(dashed, dotted, and solid) lines in each panel whose
parameters are shown in Table I. The errors of the lowest
resolution, top lines in each panel of Fig. 3, are fairly small.
For the case with R � 0:5 in the top panel, the error drops
1=4 near the center of the source as we double the resolu-
tion, which shows the second-order convergence. For the
case of larger source in the bottom panel, the volume
integration in CCS introduces a truncation error that be-
haves differently from the former case. Regardless of that
the error drops again roughly as 1=4.

It is remarkable that the potential of such binary sources
can be accurately computed with the small number of
multipoles as L � 10 in CCS. In previous work [21], for
binary neutron stars, in which only one domain corre-
sponding to CCS was used to compute the field, a summa-
tion of more than 30 multipoles was required to obtain an
accuracy of order 0.01% (regarding the relative errors) that
we obtain here.

3. Convergence property of iterations

In test problems presented in this section, the number of
iterations required to achieve convergence is about 10–20.
Generally convergence can be accelerated using (1) a good
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initial guess for starting the iteration, and (2) a carefully
chosen convergence factor c in Eq. (19).1 If the source is
very steep and the convergence factor large (near 1.0) the
iteration could blow up instead of converge. The number of
iterations also depends critically on the size of the overlap
region between the surfaces Soi and Ii (i � 1, 2) (see
Appendix D). For the results shown in Fig. 3, in which
the overlap is 20% of the radii of Soi , the solution is
evaluated after 14 iterations with a convergence factor c �
0:8, starting from a constant (zero) potential. For this
problem, we can achieve convergence with a convergence
factor c � 1:0 in 11 iterations with the same overlap
region. On the other hand, when the overlap is set about
2.4% of the radii of Soi , the iteration does not converge with
c � 0:8, and it does for c � 0:1 after 168 iterations.
Although the larger overlap region is favorable for having
the number of iterations smaller, the radii of Ii has to be
taken large enough to keep the number of multipoles used
in CCS small. Our choice for the radii of Soi and Ii meets
these two requirements.

We also observed that our method produces the same
solution irrespective of the value of the convergence factor,
in the above range 0:1 � c � 1, as long as the iteration
converges.

B. Convergence test for solutions with excision
boundaries

1. Analytic solutions

To test our elliptic solver for the case with black hole
excision boundaries, we consider the following simple
solutions which model one or two black holes. For the
metric

 ds2 � ��2dt2 �  4fijdxidxj; (24)

where fij is the flat metric, the Hamiltonian constraint and
the spatial trace of the Einstein equation G����� � 0 give

 r2 � 0 and r2�� � � 0: (25)

These equations have solutions

  � 1�
M
2r

and � � 1�
M
2r
; (26)

which correspond to the Schwarzschild solution with mass
M, in isotropic coordinates,  jr!1 � 1, and �jr!1 � 1.

We compute the solution (26) numerically by imposing
boundary conditions at the sphere ra � M=2. In order to
test the code using Dirichlet boundary conditions, we set
the boundary value at r � ra to the exact value computed

TABLE I. Coordinate parameters, and the number of grid
points for each coordinate system with different resolutions.
Each resolution is double the one above. The parameters for
BHCS-2 are identical to those of BHCS-1. L is the highest
multipole included in the Legendre expansion.

Type Coordinate ra rb rc d Nr nr nv N	 N
 L

S1 CCS 0 100 3 � � � 80 40 � � � 20 80 10
BHCS-1 0 1.25 0 1.5 30 0 6 10 40 5

S2 CCS 0 100 3 � � � 160 80 � � � 40 160 10
BHCS-1 0 1.25 0 1.5 60 0 12 20 80 5

S3 CCS 0 100 3 � � � 320 160 � � � 80 320 10
BHCS-1 0 1.25 0 1.5 120 0 24 40 160 5
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FIG. 3 (color online). Percentage of relative error for the
source of type (21) for three different resolutions. Each line
from top to bottom corresponds to the resolutions S1, S2, and S3
in Table I. Vertical lines are the location of the boundary of
numerical domains. Top panel: The source is inside BHCS, R �
0:5< rb � 1:25. Bottom panel: The source extends outside of
the BHCS, R � 1:4> rb � 1:25.

1When one iterates the fluid variables together with the gravi-
tational fields, such as a computation for binary neutron star
equilibrium, the number of iterations may increase as many as a
few hundreds.
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from (26). For testing the Neumann boundary condition,
we take the value of the derivative of (26).

For example, the Neumann condition for � becomes

 

@�� �
@r

�
M

2r2 at r �
M
2
: (27)

Note that the method of images [27] is identical to requir-
ing that  satisfy the Robin boundary condition,

 

@ 
@r
�
 
2r
� 0 at r �

M
2
: (28)

The boundary condition for the lapse,

 � � 0; (29)

yields the solution (26), antisymmetric about r � ra.
One can also construct a two black hole solution that

satisfies imaging conditions (28) and (29) at two spheres
[27]. Instead of using solutions of this kind, we use the
Brill-Lindquist solution [28] to Eq. (25) which is sufficient
for the purpose of our code test. Writing coordinates of
BHCS-1 with subscript 1 and BHCS-2 with subscript 2, we
write a two black hole solution to Eq. (25):

  � 1�
M1

2r1
�
M2

2r2
and � � 1�

M1

2r1
�
M2

2r2
: (30)

We set the radii of excision boundaries at r1 � M1=2 and
r2 � M2=2, and impose either the Dirichlet boundary con-
dition, which is given by the values of Eq. (30) at the
boundaries, or the Neumann boundary condition, which
assigns the values of the derivatives of  and � as

 

@ 
@r1
� �

M1

2r2
1

�
M2

2r2
2

@r2

@r1
at r1 �

M1

2
; (31)

 

@�� �
@r1

�
M1

2r2
1

�
M2

2r2
2

@r2

@r1
at r1 �

M1

2
; (32)

and 1$ 2 for the boundary at r2 � M2=2. The coordinates
r1 and r2 are written in terms of each other as

 r1 �
���������������������������������������������������������
r2

2 � 2r2a sin	2 cos
2 � a2
q

; (33)

 r2 �
���������������������������������������������������������
r2

1 � 2r1a sin	1 cos
1 � a2
q

: (34)

For each boundary condition, the accuracy of our Poisson
solver is examined comparing these solutions to the ana-
lytic ones.2

The Laplace equations (25) are solved from the surface
integrals at the boundaries in our Poisson solver. The same
equations (25) can be rewritten as

 r2 � 0 and r2� � �
2

 
fij@i @j�: (35)

This form is also used to test the volume integral over the
source in the Poisson solver.

In the next two sections M1=2,M2=2 refer to the radii of
Si1 and Si2 of BHCS-1 and BHCS-2 correspondingly.

2. Convergence test for one black hole solution

First we treat the problem with no volume sources as in
Eqs. (25). In Fig. 4, the conformal factor  is plotted along
the x-axis. BHCS-1 and 2 are centered on the x-axis at x �
1:5 and �1:5, respectively. In BHCS-1, we have two
surface integrals, one at the inner (excision) boundary,
Si1 , with a radius ra � 0:02 (in conformal geometry) and
one at the outer boundary, So1

, at a distance rb � 1:25. In
the BHCS-2, there is no inner boundary sphere Si2 ; we
solve for the whole region inside So2

without any excised
region. In this grid we need only to compute one surface
integral at So2

. Finally, CCS extends to a distance r � 100
and it excludes regions inside of two spheres I1 and I2

which are centered at x � 1:5 and x � �1:5, respectively,
and have radius 1.0. The overlapping region is one shell
centered at x � 1:5 with 1:0 � r � 1:25 and the corre-
sponding one on the negative x-axis.

In Fig. 5, we show the fractional errors of the conformal
factor shown in Fig. 4 for three different resolutions in
Table II. The error of � is of the same order. Since the
terms calculated using second-order finite differencing,
such as volume integrals, do not contribute in this solution,
fourth-order convergence can be seen in Fig. 5 as expected.

Next we solve the same problem but in the form of (35).
Near the inner boundary of BHCS-1, the source for the
volume integral of the lapse, becomes very steep (approxi-
mately it goes as r�4) and needs more grid points than the
previous case in order to achieve the same order of error.
For a grid set up as the one shown in Table III, the frac-
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FIG. 4 (color online). Exact and numerical solution for  on
the x-axis using the boundary condition (28).

2In the above two black hole solutions, the lapse � takes a
negative value in the neighborhood of each boundary sphere.
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tional errors of the lapse are shown in Fig. 6 where the no-
boundary Green’s function GNB has been used. The error
for the conformal factor is as in Fig. 5 since again we do
not have any volume sources to integrate. For the same
problem if we use the GDD Green’s function we get the
fractional errors of Fig. 7. With this latter choice of the
Green’s function the error near the throat is much smaller.
Also we need fewer iterations to achieve convergence.

3. Convergence test for binary black hole solution

The two black hole solution (30) is computed numeri-
cally solving either set of (25) or (35). In Fig. 8, we plot the
fractional error, Eq. (23), for the lapse � computed from
the first set of Eq. (25) using the no-boundary Green’s
function GNB and the Neumann boundary condition.

The integral form of the first set (25) involves solely the
surface integrals of Eq. (12). Since the surface terms are

calculated using fourth-order finite differences, conver-
gence of this order can be seen in Fig. 8 when the grid
resolution is increased from T1 to T3 in Table IV. Starting
from � �  � 1, the solution converges after 15 iterations
with the convergence factor c � 1:0. Typical CPU time
and memory to compute the 1=4 of the whole binary black
hole region is tabulated in Table V.

In Fig. 9, the fractional error (23) of the solution to
Eq. (35) is shown for a different choice of the Green’s
functions for BHCS. The numerical integration in radial
direction, which appears in the volume integrals of (12),
are calculated with the second-order accurate midpoint
rule. In all test problems, we found that the largest error
appears in computing � with the Neumann boundary con-
dition shown in Fig. 9 (bottom panel). However, even for
this case, the error is controlled to give a fractional error
less than 0.01% everywhere, when the highest resolution
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FIG. 5 (color online). Fractional errors of the conformal factor
 are plotted along the x-axis. Lines from top to bottom
correspond to the resolutions N1, N2, and N3 in Table II.
Vertical lines are the boundaries of numerical domains.

TABLE II. Grid parameters used in one BH test problem. The
same conventions as in Table I are used.

One black hole data without source
Type Coordinate ra rb rc d Nr nr nv N	 N
 L

N1 CCS 0 100 3 � � � 80 40 � � � 20 80 10
BHCS-1 0.02 1.25 0.02 1.5 30 0 6 10 40 5
BHCS-2 0 1.25 0 1.5 30 0 6 10 40 5

N2 CCS 0 100 3 � � � 160 80 � � � 40 160 10
BHCS-1 0.02 1.25 0.02 1.5 60 0 12 20 80 10
BHCS-2 0 1.25 0 1.5 60 0 12 20 80 10

N3 CCS 0 100 3 � � � 320 160 � � � 80 320 10
BHCS-1 0.02 1.25 0.02 1.5 120 0 24 40 160 10
BHCS-2 0 1.25 0 1.5 120 0 24 40 160 10

TABLE III. Grid parameters used in one BH test problem with
source. The same conventions as in Table I are used.

One black hole data with source
Type Coordinate ra rb rc d Nr nr nv N	 N
 L

M1 CCS 0 100 3 � � � 80 40 � � � 20 80 10
BHCS-1 0.02 1.25 1.0 1.5 120 112 8 10 40 5
BHCS-2 0 1.25 0 1.5 30 0 6 10 40 5

M2 CCS 0 100 3 � � � 160 80 � � � 40 160 10
BHCS-1 0.02 1.25 1.0 1.5 240 224 16 20 80 10
BHCS-2 0 1.25 0 1.5 60 0 12 20 80 10

M3 CCS 0 100 3 � � � 320 160 � � � 80 320 10
BHCS-1 0.02 1.25 1.0 1.5 480 448 32 40 160 10
BHCS-2 0 1.25 0 1.5 120 0 24 40 160 10
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T3 is used. We have tested different combinations of the
Green’s functions with boundary conditions, and found
similar or better convergence results. (The fractional error
of the conformal factor  , on the other hand, scales in
fourth order since the equation for  does not involve the
volume integrals.)
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FIG. 7 (color online). Same as in Fig. 6, but now GDD is used.

TABLE IV. Grid parameters used in two BH test problem. The
same conventions as in Table I are used.

Two black hole data
Type Coordinate ra rb rc d Nr nr nv N	 N
 L

T1 CCS 0 100 2.8 - � � � 52 28 � � � 16 32 6
BHCS-1 0.1 1.2 1.0 1.4 32 30 2 16 32 10

T2 CCS 0 100 2.8 � � � 104 56 � � � 32 64 10
BHCS-1 0.1 1.2 1.0 1.4 64 60 4 32 64 10

T3 CCS 0 100 2.8 � � � 208 112 � � � 64 128 10
BHCS-1 0.1 1.2 1.0 1.4 128 120 8 64 128 10

TABLE V. Typical CPU time and memory used for the BH
calculations. The use of equatorial and � rotation symmetries
reduces the number of grid points indicated in Table IV by a
factor of 4. Note that the computational costs approximately
scale linearly with respect to the total number of grid points
which is 23 � 8 times at each level T1–T3. Opteron 2 GHz with
Portland Fortran compiler is used.

Type CPU time/iteration [s] Memory [MB]

T1 0.14 25
T2 1.0 73
T3 8.6 236
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resolutions T1, T2, and T3 in Table IV. A set of Eq. (25) is solved
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Neumann boundary conditions. Vertical lines correspond to the
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Finally, the convergence test for the number of multi-
poles summed in the Green’s function, L, with a fixed
resolution (T3 in Table IV), is shown in Fig. 10.
Changing L from 4 to 12, convergence is achieved around
L � 10. This is a dramatically small number compared to
the binary neutron star case [21], for which L � 30� 40
multipoles are required because only one domain (corre-
sponding to CCS here) was used for computing the gravi-
tational fields.

V. AN EXAMPLE FOR BINARY BLACK HOLE
INITIAL DATA

To conclude the test for our new numerical code, we
show an example of binary black hole initial data; a binary
black hole solution of IWM formulation. This is to dem-
onstrate that our new code can produce the binary black
hole initial data with nonzero angular momentum, and
locate the apparent horizon using the method described
in Appendix A at the same time. Writing the spatially
conformally flat metric,

 ds2 � ��2dt2 �  4fij�dx
i � �idt��dxj � �jdt�; (36)

in a chart ft; xig, the 5 metric potentials, the conformal
factor  , the shift �a, and the lapse � are solved from the
Hamiltonian constraint, momentum constraint, and the
spatial trace of the Einstein’s equation, respectively. As
shown in Appendix C, all these equations are written in
elliptic form.

At the black hole excision boundary, certain Dirichlet
data is imposed to ensure that the apparent horizon appears
outside of the boundary sphere. For simplicity, we do not
intend to impose certain physically motivated boundary
conditions (see below). Dirichlet boundary conditions are
given to all variables f ;�;�ag as

  �  B � constant; (37)

 � � �B � constant; (38)

 �a � ��
a
C ��B
a

B; (39)

at the excision sphere r � ra of BHCS. For the boundary
value of the conformal factor  B, a constant is chosen large
enough to form apparent horizons near the excision
spheres. For the lapse �B, we also assign a constant value.
The boundary condition for the shift vector assigns a
momentum and a spin to each hole. Here, 
a

C and 
a
B are

the basis of the 
 coordinate of CCS and BHCS,
respectively.

In Figs. 11 and 12, we show a solution with the boundary
parameters shown in Table VI. All potentials are smoothly
joined across the overlap of CCS and BHCS. In Fig. 12,
thick dotted circles right outside of the excised sphere (thin
black circles) are the apparent horizons located using the
method in Appendix A.
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VI. DISCUSSION

The KEH iteration using the Green’s formula Eq. (12) is
applicable to solve various types of partial differential
equations with nonlinear sources. For example, this
method has been applied to solve the helically symmetric
scalar field and binary neutron stars [29]. In this work, the
equation for the scalar field is written in the form of the
Helmholtz equation, and the half-advanced�
half-retarded Green’s function is used in Eq. (12) to com-
pute a standing wave solution iteratively. We plan to com-
pute the helically symmetric binary black hole/neutron star
solution using the coordinate systems and iteration scheme
presented in this paper.

Black hole singularities on an initial hypersurface are
avoided either by excising a numerical domain in the
neighborhood of the singularities, or by using punctures.
In Sec. V, we applied rather crude boundary conditions at
the black hole excision sphere. For physically motivated
excision conditions, one imposes apparent horizon or iso-
lated horizon boundary condition to the conformal factor at
the excised sphere so that these spheres become automati-
cally horizons [30,31]. Alternatively, one can use the
puncture method to produce accurate initial data as the
ones used in binary black holes evolutions [4–8], and black
hole/neutron star binary simulations [32].
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Note added in proof.—Independently to our work, a new
apparent horizon solver was developed recently using the
same formulation by Lap-Ming Lin and Jerome Novak
[37].

APPENDIX A: APPARENT HORIZON SOLVER

A method for locating the apparent horizon is described
in this Appendix. Our method is a modification of [33] and
it will be one of the simplest apparent horizon finders
without any symmetry restriction. For other works on
apparent horizon finders, see e.g. [34,35] and references
therein.

An apparent horizon A is defined as the boundary of all
trapped regions on a spacelike hypersurface �, where the
expansion # of the outgoing null congruence ‘� orthogo-
nal to A vanishes. Introducing a null foliation H u whose
normal is ‘�, where u labels a family of null hypersurfaces,
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FIG. 12 (color online). Contours of the lapse � (top) and the
vector field of the shift �a (bottom) for the same model as
Fig. 11. Thick dotted circle in each figure is the apparent
horizon.

TABLE VI. Parameters for the boundary conditions. Except
for the value of ra, the parameter set of T3 in Table IV is used for
the computation.

Type ra  B �B � �B

B1 0.1 3.0 1.0 0.3 0.0
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the apparent horizon A is the intersection A �H 0 \ �.
To each two-dimensional surface H u \ �, the spatial unit
normal vector sa is associated, and the outgoing null vector
field ‘� can be written with a function f, ‘� � f�n� � s��,
where n� is a timelike normal to �. Then, writing a
projection tensor onto a surface orthogonal to sa as eab �
�ab � sasb, the expansion # is written

 # � e��r�‘� � f�Dasa � e��K���: (A1)

Hence, the equation

 Dasa � eabKab � 0 (A2)

is satisfied at the apparent horizon A.
We introduce a family of level surfaces parametrized by

a spherical coordinate surrounding a black hole in the form

 F :� r� Rh�	;
�; (A3)

where F � 0 coincides with the apparent horizon.3 The
spatial normal sa is proportional to the gradient of F,

 sa �
DaF
kDFk

; (A4)

where the norm kDFk is defined by

 kDFk �
���������������������������
�abDaFDbF

q
: (A5)

We rewrite Eq. (A2) as an elliptic equation for the level
surfaces in the conformally related geometry. Introducing
quantities weighted with the conformal factor, eab :�
 4~eab, Kab :�  4 ~Kab, sa :�  2~sa, the norm (A5) is trans-
formed:

 kDFk �  �2
���������������������������
~�ab ~DaF ~DbF

q
�  �2k ~DFk (A6)

and

 ~s a �
~DaF

k ~DFk
: (A7)

Multiplying Eq. (A2) by the factor  2k ~DFk, we obtain an
elliptic equation for the apparent horizon, namely,

 

~�F� Ŝ � 0; (A8)

 Ŝ :� ~Da ln
 4

k ~DFk
~DaF�  2k ~DFk ~Kab~eab; (A9)

which is satisfied on the surface r � Rh�	;
�. Separating

the Laplacian associated with the flat metric, �
�

, from ~�
associated with the conformal metric, ~�ab, we have

 

~�F � �
�

F� habD
�

aD
�

bF� ~�abCcabD
�

cF; (A10)

where the second and third terms have been moved to the

right-hand side. Defining

 �
�

F �
2

r
�

1

r2 �
�

HRh � �
1

R2
h

��
�

H � 2�Rh; (A11)

 �
�

H :�
1

sin	
@
@	

�
sin	

@
@	

�
�

1

sin2	

@2

@
2 ; (A12)

the equation for the apparent horizon (A2) is rewritten

 ��
�

H � 2�Rh � S; (A13)

 S :� R2
h�

~S� Ŝ�; (A14)

 

~S :� �habD
�

aD
�

bF� ~�abCcabD
�

cF: (A15)

Terms in ~S vanish for spatially conformal flat geometry.
We find a solution to Eq. (A13):

 Rh�x� � �
1

4�

Z
H
d2xG�x; x0�S�x0�; (A16)

where the coordinates x here represents �	;
�, and the
function G�x; x0� is given in terms of Legendre expansion,
 

G�x; x0� �
X1
‘�0

2‘� 1

‘�‘� 1� � 2

	
X‘
m�0

�m
�‘�m�!
�‘�m�!

Pm‘ �cos	�Pm‘ �cos	0�

	 cosm�
�
0�: (A17)

The same discretization as in BHCS, and an iteration
similar to the KEH method are applied to Eq. (A16) (see
Sec. III). The fourth-order Lagrange formula is used for
finite differencing the source and for numerical integration.
The iteration converges typically in 30 iterations, whose
CPU time is negligible in the computation of initial data.

APPENDIX B: MULTIPOLE EXPANSION OF THE
GREEN’S FUNCTIONS OF THE LAPLACIAN

In our Poisson solver (12) one must choose appropriate
Green’s functions to meet the boundary conditions im-
posed on each of the field variables. In this Appendix, we
present explicit forms of those used in the preceding sec-
tions. They are the Green’s function without boundaries,
GNB�x; x0�, and two Green’s functions with boundaries on
two concentric spheres Sa and Sb at radius r � ra and r �
rb, where ra < rb; one of them imposes Dirichlet condi-
tions on both Sa and Sb, GDD�x; x0�, and the other imposes
Neumann condition on Sa and Dirichlet condition on Sb,
GND�x; x0�. All Green’s functions, representingG�x; x0�, are
expanded in multipoles, in terms of the associated
Legendre functions Pm‘ �cos	� in spherical coordinates
�r; 	;
�,

3The level surface F may not coincide with the intersection
H u \ �, except at A.
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 G�x; x0� �
X1
‘�0

g‘�r; r0�

	
X‘
m�0

�m
�‘�m�!
�‘�m�!

Pm‘ �cos	�Pm‘ �cos	0�

	 cosm�
�
0�; (B1)

where the coefficient �m is defined by

 �m �
�

1; for m � 0;
2; for m  1;

(B2)

and hence the difference appears in the radial part of the
Green’s function g‘�r; r0�, [36].

1. Green’s function without boundary GNB�x; x0�

For the Green’s function of the Laplacian without
boundary GNB�x; x0�, the radial part gNB

‘ �r; r
0� is defined by

 gNB
‘ �r; r

0� :�
r‘<
r‘�1
>

; (B3)

where r> :� supfr; r0g and r< :� inffr; r0g.
When the Green’s functionGNB is applied to BHCS with

two concentric boundary spheres Sa and Sb located at r �
ra and rb, respectively, the following values are used to
evaluate surface integrals of Eq. (12):

 gNB
‘ �r; ra� �

r‘a
r‘�1

; (B4)

 gNB
‘ �r; rb� �

r‘

r‘�1
b

; (B5)

and, since r0aGNB�x; x0�dS0a � �@r0GNBr02dr0d�0,

 @r0gNB
‘ �r; ra� � ‘

r‘�1
a

r‘�1
; (B6)

 @r0g
NB
‘ �r; rb� � ��‘� 1�

r‘

r‘�2
b

: (B7)

Note that the form of (B6) indicates that the Green’s
function GNB does not pick up the ‘ � 0 mode of the
Dirichlet data at the sphere Sa (r � ra).

2. Green’s function for the region between two
concentric spheres with Dirichlet conditions, GDD�x; x0�

The Green’s function GDD�x; x0� is a solution of Eq. (11)
in a region between two concentric spheres Sa and Sb with
radius r � ra and r � rb (ra < rb) where Dirichlet con-
ditions are imposed. Its radial part gDD

‘ �r; r
0� associated

with the ‘th mode is written

 

gDD
‘ �r; r

0� �

�
1�

�
ra
rb

�
2‘�1

�
�1 r‘a
r‘�1
b

��
r<
ra

�
‘
�

�
ra
r<

�
‘�1

�

	

��
rb
r>

�
‘�1
�

�
r>
rb

�
‘
�
: (B8)

By construction gDD
‘ �r; r

0� vanishes on the two spheres
Sa and Sb,

 gDD
‘ �r; ra� � 0; (B9)

 gDD
‘ �r; rb� � 0: (B10)

The derivatives that are used to compute the surface inte-
gral in Eq. (12) are
 

@r0gDD
‘ �r; ra� �

�
1�

�
ra
rb

�
2‘�1

�
�1
�2‘� 1�

r‘�1
a

r‘�1
b

	

��
rb
r

�
‘�1
�

�
r
rb

�
‘
�
; (B11)

 

@r0g
DD
‘ �r; rb� � �

�
1�

�
ra
rb

�
2‘�1

�
�1
�2‘� 1�

r‘a
r‘�2
b

	

��
r
ra

�
‘
�

�
ra
r

�
‘�1

�
; (B12)

at Sa and Sb, respectively.

3. Green’s function for the region between two
concentric spheres with Neumann and Dirichlet

conditions, GND�x; x0�

Similarly,GND�x; x0�, is the Green’s function between Sa
and Sb, where Neumann data are imposed on Sa and
Dirichlet data are imposed on Sb. Its radial part gND

‘ �r; r
0�

associated with the ‘th mode can be written

 gND
‘ �r; r

0� �

�
1�

‘
‘� 1

�
ra
rb

�
2‘�1

�
�1 r‘a
r‘�1
b

��
r<
ra

�
‘

�
‘

‘� 1

�
ra
r<

�
‘�1

���
rb
r>

�
‘�1
�

�
r>
rb

�
‘
�
:

(B13)

The values of gND
‘ at the surfaces Sa and Sb become

 

gND
‘ �r; ra� �

�
1�

‘
‘� 1

�
ra
rb

�
2‘�1

�
�1 2‘� 1

‘� 1

r‘a
r‘�1
b

	

��
rb
r

�
‘�1
�

�
r
rb

�
‘
�
; (B14)

 gND
‘ �r; rb� � 0; (B15)

and its radial derivatives,

 @r0g
ND
‘ �r; ra� � 0 (B16)
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@r0gND
‘ �r; rb� � �

�
1�

‘
‘� 1

�
ra
rb

�
2‘�1

�
�1
�2‘� 1�

r‘a
r‘�2
b

	

��
r
ra

�
‘
�

‘
‘� 1

�
ra
r

�
‘�1

�
: (B17)

The values of @r0gND
‘ �r; ra� and gND

‘ �r; rb� vanish by
construction.

APPENDIX C: 3� 1 DECOMPOSITION FOR THE
EINSTEIN EQUATIONS

In the usual (3� 1) decomposition of the Einstein equa-
tions, the spacetime metric is written as

 ds2 � g��dx�dx�

� ��2dt2 � �ij�dx
i � �idt��dxj � �jdt�; (C1)

where g��, �ij, are the 4D and 3D metrics, while � and �i,
are the lapse scalar and the shift vector, respectively. The
Riemannian 3-metric �ij on a hypersurface � is identified
by the 4-tensor

 ��� � g�� � n�n�; (C2)

where n� � ��r�t is the unit future pointing normal to
the hypersurface �. The indices of ��� can be raised either
by ��� or by the full metric g�� and that ��� projects
vectors onto the subspace orthogonal to n�. Note that g��
and ��� differ only on the time-time component while g��

and ��� have identical only the space-space components
(g��g�� � ���, �ij�jk � �ij, �

����� � ���). The co-
variant components of the shift are �j � �ij�

i and the
components on the normal vector are

 n� � ��; 0; 0; 0� and n� �
�

1

�
;
��i

�

�
: (C3)

The extrinsic curvature is

 K�� � �D�n� � ��
�0
� �

�0

� r�0n�0 � �
1
2Ln���; (C4)

where r, D are the covariant derivatives associated with
g�� and ���, respectively. The Einstein equations can now
be split into the constraint equations

 R � KijKij � K2 � 16�� (C5)

 Dj�K
ij � �ijK� � 8�ji (C6)

and the evolution equations

 

@�ij
@t
� �2�Kij � 2Di�j � 2Dj�i (C7)

 

@Kij
@t
� �Rij �DiDj�� ��KKij � 2KimKj

m�

� KmiDj�
m � KmjDi�

m � �mDmKij

� 8��
�
Tij �

1

2
�ij��� Tm

m�

�
; (C8)

where � � T��n
�n� and j� � �T��n

���� are the en-
ergy and momentum density, respectively, as seen by an
observer with four velocity n� while Rij, R, are the three-
dimensional Ricci tensor and Ricci scalar on the hypersur-
face �. From the two evolution equations we can find the
time derivative of the trace of the extrinsic curvature:

 @tK � �R�4�� �K2 � �iDiK � 8��ijPij; (C9)

where Pij � Tij �
1
2�ij��� Tm

m� are the source terms
and 4 � DiDi.

With a conformal transformation of the form

 �ij �  � ~�ij; (C10)

the Ricci tensor becomes
 

Rij �
���� 2�

4 2
~Di ~Dj �

���� 2�

4 2 ~�ij ~Dm ~Dm 

�
�

2 
� ~Di

~Dj � ~�ij ~Dm ~Dm � � ~Rij (C11)

and the Ricci scalar

 R �  �� ~R�
���� 4�

2 ��2
~Di ~Di �

2�

 ��1
~Dm ~Dm :

(C12)

Now the Hamiltonian (C5) and the momentum constraint
(C6) can be written as
 

~4 �
 
2�

~R�
�� 4

4 
~Di ~Di �

 ��1

2�
KijKij

�
 ��1

2�
K2 � �

8�� ��1

�
(C13)

 

~DjKij�
5�
2 
Kij ~Dj �

�

2 ��1K~�ij ~Dj �
1

 �
~�ij ~DjK�8�ji:

(C14)

~Dk is the covariant derivative with respect to ~�ij and ~4 �
~Di ~Di. Note also that Di!j � ~Di!j � Cmij!m and Cmij �
�

2 ��
m
i
~Dj � �mj ~Di � ~�ij ~�mk ~Dk �.

1. Field equations for the initial data

Since we are searching for quasiequilibrium states, we
assume the existence of a Killing vector

 � � t� � �� �
�
@
@t

�
�
��

�
@
@


�
�
� �1; �i�; (C15)
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where �i � ��@=@
�i, and � is a constant representing
the orbital angular velocity. In the presence of �, the
spatial metric �ij and the extrinsic curvature Kij satisfy

 L �ij � 0 and LKij � 0: (C16)

From the first equation of (C16), we get

 @t�ij �Di�j �Dj�i � 0; (C17)

thus the time derivative of the spatial metric is associated
with the spatial derivative of the rotational vector �i. With
the help of the evolution equation of �ij, (C7), we can
obtain an expression for the extrinsic curvature by elimi-
nating the time derivative of the three metric and therefore
cast the initial value equations in a form that has no time
derivatives. We find

 Kij �
1

2�
�Di!j �Dj!i� and K �

1

�
Di!i; (C18)

where !i � �i � �i is the comoving shift. Since

 KijKij �
1

4�2 �L!�ij�L!�
ij �

1

3
K2; (C19)

where

 �L!�ij � Di!j �Dj!i �
2
3�ijDm!

m (C20)

and �L!�ij�L!�ij � �~L ~!�ij�~L ~!�ij, the Hamiltonian (C13)
and momentum constraints (C14) are written
 

~4 �
 
2�

~R�
�� 4

4 
~Di ~Di �

 ��1

8��2 �
~L ~!�ij�~L ~!�ij

�
 ��1

3�
K2 �

8�� ��1

�
(C21)

 

~4 ~!i � �
1

3
~Di ~Dj ~!j � ~Ri

j ~!j � ~Dj ln
�
�

 3�=2

�
�~L ~!�ij

�
4�
3

~DiK � 16�� �ji: (22)

Also by using the fact that

 4 � �  ��
�

~4��
�

2 
~Di ~Di�

�
; (C23)

we can rewrite Eq. (C9) in the conformal geometry as
 

~4� � �
�

2 
~Di ~Di��  �

�
1

4�
�~L ~!�ij�~L ~!�ij

�
�K2

3
� ~!i ~DiK � 4����� T�

�
: (C24)

For the binary black hole case, the sources �, Tij, and ji

vanish, and take � � 4. Under these assumptions, our
system of equations is

 

~4 �
 
8

~R�
 5

32�2 �
~L ~!�ij�~L ~!�ij �

 5

12
K2 (C25)

 

~4� �  4

�
1

4�
�~L ~!�ij�~L ~!�ij �

�K2

3
� ~!i ~DiK

�

�
2

 
~Di ~Di� (C26)

 

~4 ~!i � �
1

3
~Di

~Dj ~!j � ~Rij ~!j � ~Dj ln
�
�

 6

�
�~L ~!�ij

�
4�
3

~DiK (C27)

 � � ~Rij ~!j � ~Dj ln
�
�

 6

�
�~L ~!�ij � ~Di

�
2

 
~!j ~Dj 

�

�
K
3

~Di�� � ~DiK (C28)

 � � ~Rij ~!j � ~Dj ln
�
�

 6

�
�~L ~!�ij � ~Di

�
8

 
~!j ~Dj 

�

�
4K
3

~Di�� ~Di
~Dj ~!j: (C29)

In the momentum constraint, the last two expressions,
Eqs. (C28) and (C29), come from the fact that DiK in-
volves the second derivative of the comoving shift ~!i as
follows:

 

~D i
~Dj ~!j � � ~DiK � K ~Di�� ~Di

�
6

 
~!j ~Dj 

�
: (C30)

APPENDIX D: TOY MODEL FOR IMPROVEMENT
OF CONVERGENCE BY OVERLAP REGION

To analyze the improvement of the rate of convergence
achieved by the overlap region, we consider a simple
model to calculate the potential of a point mass M using
two overlapping concentric spherical grids as shown in
Fig. 13 (bottom panel). The first grid extends from the
coordinate center (r � 0) to the surface S1, and the second
grid from S2 to infinity (or practically to a large distance).
In Fig. 13(top panel), there is no overlapping region, S1 �
S2 �: S. The potential in region II, �II, can be calculated
from the surface integral of the interface S2, as

 �II �
M�m
r

; (D1)

where m is the error inherited from the initial guess for �
given at the boundary S2. The potential of region I, �I, is a
sum of a volume and a surface integral at S1,

 �I �
M
r
� e: (D2)

Again e is the error inherited from the initial guess for � at
S1. From continuity of potentials at S1, �I�R1� � �II�R1�,
therefore
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 e �
m
R1
; (D3)

 �I �
M
r
�
m
R1
: (D4)

The next step of iteration is to use this value to fix �II. In
region II, the potential at R2 must satisfy �II�R2� �

�I�R2�, whence

 �II �
M�mR2

R1

r
: (D5)

Iterating this procedure n times, we will have

 M�n� � M�m
�
R2

R1

�
n
; (D6)

namely, the error after the nth iteration is m�R2=R1�
n.

Analogously for the ‘th multipole component, writing
the actual value as A, and the error in region II as a,

 �II �
A� a

r‘�1
: (D7)

The solution to region I will be

 �I �
A

r‘�1
� Br‘; (D8)

where the second term is again an error. The boundary
condition at R1, �I�R1� � �II�R1� yields

 B �
a

R2‘�1
1

; (D9)

and from continuity at R2, �II�R2� � �I�R2�,

 �II �
A� a�R2

R1
�2‘�1

r
: (D10)

Hence, the higher multipole converges faster after the nth
iteration,

 A�n� � A� a
�
R2

R1

�
n�2‘�1�

: (D11)

The boundaries S1 and S2 are used to communicate the
information of the physical boundary conditions imposed
at the asymptotic region, and the inner excision boundary,
as well as the source from each region to the other. At the
nth step of iteration, the values of ��x0� and @��x0�=@r0 in
the surface integrals in Eq. (12) are calculated from the
potential of (n� 1) step of the iteration.

It is possible to achieve communication between the two
regions without the overlap region, by mixing the values of
the potentials �I and �II of the two regions. This is done
when we calculate the value of @��x0�=@r0 at the boundary
as shown in the top panel of Fig. 13, choosing say the
values at grids x3, x2, y1, y2, y3. In this way, convergence to
a correct solution is again obtained, but the number of
iterations increases approximately 10 times, even for sim-
ple toy problems presented in Sec. IV.

In the actual binary calculation shown in Fig. 2, when
the values of � and @��x0�=@r0 on So1

, are interpolated
from CCS, some of these points do not belong to the
computational domain of CCS. The smaller the overlap-
ping region, the more of these points exist. (For example, at
the point A in Fig. 2, when we interpolate the nearby CCS
points we find that the point in the lower left corner does

 

x 1
x 2

x 3

y1

y2

y3

S

II

I

R

x 1

x 2

x 3

x 4

x 5

x 6

y1

y2

y3

y4

y5

region
Overlapping

S 1

S 2

II

I

R 1R 2

FIG. 13 (color online). Top: Solving the Poisson equation on
two nonoverlapping grids. Bottom: Solving the Poisson equation
by using two overlapping grids.
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not belong to CCS.) In such a case, we interpolate the
nearby BHCS points to find the value of the potential.

APPENDIX E: CONVERGENCE OF THE
ITERATION

In Sec. II B we have said that a requisite of the Green’s
function for the KEH iteration to achieve convergence is
that all multipole components of r0aG�x; x0� should not
vanish at the boundary for solving the Dirichlet problem,
and similarly G�x; x0� should not vanish for Neumann
boundary conditions. In this Appendix, we use the fixed
point theorem to illustrate the convergence (or not) of the
KEH method for simple spherically symmetric case with
the flat Green’s function.

Let us start with the following problem:

 r2’ � 0; r  ra with
@’
@r
�
’
2r
� 0 at r � ra;

(E1)

and limr!1’�r� � 1, whose solution is ’ � 1� ra=r. If
we consider the map defined by

 ��’� �
1

4�

Z
Sa

�
G�x; x0�

@’
@n0
� ’�x0�

@G
@n0

�
dS0 (E2)

on a suitable Sobolev space, where Sa is the surface r � ra,
we can show the following: claim.— If G�x; x0� � 1

jx�x0j

and the functions’�r� satisfy @’
@r �

’
2r � 0 on Sa then � has

a fixed point.

Indeed if ’1 and ’2 satisfy the above boundary condi-
tion so is ’1 � ’2 therefore:

 d ���’1�;��’2�� � sup
r
fj��’1� ���’2�jg �

1
2d�’1; ’2�;

(E3)

where for the term with @�’1�’2�
@n0 we used the boundary

condition and for the term with ’1 � ’2 we used the fact
that it depends only on r thus can be pulled out of the
integral which when calculated gives zero. Therefore �
has a fixed point which can be found if we take an initial
value ’0 and then compute the sequence f’ngwith’n�1 �
��’n� (KEH method). By doing so and adding the con-
tribution from infinity which is 1.0, we get ’n�1�r� � 1�
ra’n�ra�

2r which tends to 1� ra
r as n! 1.

Now if we change the boundary condition to ’ � 0 at
r � ra, the solution turns out to be ’ � 1� ra=r. In this
case the above argument breaks down and as we have seen
the KEH iteration fails. The above argument gives us

 d ���’1�;��’2�� � ra

��������@�’1 � ’2�

@r

��������r�ra

; (E4)

and nothing guarantees that � will have a fixed point any
more. Actually ’n�1�r� � 1� r2

a
r �

d’n
dr �r�ra thus starting

from any constant value, the sequence is stuck at 1.0, and
this explains why our code gives everywhere the value 1.0
with the Dirichlet boundary condition.
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