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We give a solution of the wave equation for massless, or massive spin-2 particles propagating in a
gravitational background. The solution is covariant, gauge-invariant and exact to first order in the
background gravitational field. The background contribution is confined to a phase factor from which
geometrical and physical optics can be derived. The phase also describes Mashhoon’s spin-rotation
coupling and, in general, the spin-gravity interaction.
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I. INTRODUCTION

In a recent paper, Shen [1] has extended Mashhoon’s
spin-rotation coupling [2,3] to include the coupling of a
graviton’s spin to a weak gravitomagnetic field and has
stressed the role of the self-interaction of the gravitational
field itself. Ramos and Mashhoon [4] have then studied the
effect of the helicity-gravitomagnetic field coupling on
weak gravitational waves and shown that a gravitational
Skrotskii effect [5] exists. They further show that the
Skrotskii rotation angle is twice that expected for electro-
magnetic waves.

The purpose of this paper is to extend some of the results
of these authors to include any type of weak inertial and
gravitational fields and massive as well as massless spin-2
particles and to provide a general framework for the study
of spin-2 particles in external inertial and gravitational
fields. This is accomplished by solving the equation

 r�r
���� �m

2��� � 0; (1.1)

where m � 0 is the mass of the particle and r� indicates
covariant differentiation. We use units @ � c � 1.

The solution of covariant wave equations for scalar [6],
spin-1=2 and spin-1 particles [7–9] yields in general mean-
ingful insights into aspects of the interaction of quantum
systems with gravity whenever the gravitational field need
not be quantized. The interaction of quantum systems with
inertial and gravitational fields produces quantum phases.
Though these are in general path-dependent, phase differ-
ences are observable, in principle, by means of Earth
bound, or space interferometers, or by gravitational
lensing.

The choice of (1.1) requires some justification. The
propagation equations of higher spin fields contain in
general curvature dependent terms that make the formula-
tion of these fields particularly difficult when m � 0 [10].
For spin-2 fields, the simplest equation of propagation used
in lensing is derived in [11] and is given by

 r�r
���� � 2R������� � 0: (1.2)

The second term in (1.2) is localized in a region surround-
ing the lens that is small relative to the distances between
lens, source and observer and is neglected when the wave-
length � associated with ��� is smaller than the typical
radius of curvature of the gravitational background [12].
For the metric used in Secs. III and IV, we find, in particu-
lar, that the curvature term may be neglected when ������
�3

rg

r
, where � is the distance from the lens and rg its

Schwarzschild radius. This condition is satisfied in most
lensing problems. It also is adequate to treat the problems
discussed in [1,4].

Equation (1.2) can be generalized to include a mass term

 r�r
���� � 2R������� �m2��� � 0: (1.3)

Here too the curvature term is smaller than the mass term
whenever m> 1=rg. For Earth bound experiments rg �
2GM�=R� and the curvature term becomes negligible for
m> 2:5 � 10�6 GeV. In view of the applications discussed
below, the curvature term is therefore neglected and (1.3)
reduces to our initial equation (1.1).

The background gravitational field is represented by the
metric deviation ��� � g�� � ���, and the Minkowski
metric ��� has signature �2. To first order in ���, (1.1)
can be written in the form

 

���� � ���	@�@���� � R	��	
� � R	��	

�

� 2�	��@
���	 � 2�	��@

���	 �m
2��� � 0; (1.4)

where R�� � ��1=2	@�@
���� is the linearized Ricci ten-

sor of the background metric and �	�;� � 1=2���	;� �
���;	 � �	�;�	 is the corresponding Christoffel symbol of
the first kind.

The plan of the paper is as follows. We give the solution
of (1.1) and illustrate some of its properties in Sec. II. In
Sec. III we discuss spin-gravity coupling and geometrical*Electronic address: papini@uregina.ca
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optics. Section IV is concerned with wave effects in parti-
cle optics. In Sec. V we summarize and discuss the results.

II. SOLUTION OF THE SPIN-2 WAVE EQUATION

It is easy to prove, by direct substitution, that a solution
of (1.4), exact to first order in ���, is represented by
 

��� � 
�� �
1

4

Z x

P
dz�����;��z	 � ���;��z		


 ��x� � z�	@�
���x	 � �x� � z�	@�
���x	�

�
1

2

Z x

P
dz�����z	@

�
���x	

�
Z x

P
dz����;	�z	


	
� �x	 �

Z x

P
dz����;	�z	


	
��x	;

(2.1)

where 
�� satisfies the field-free equation

 �@�@
� �m2	
���x	 � 0; (2.2)

and the Lanczos-DeDonder gauge condition ���;
� �

1
2�

	
	;� � 0 has been used. In (2.1) P is a fixed reference

point and x a generic point along the particle’s worldline.
The particular case m � 0 yields the solution ��� for a

linearized gravitational field 
�� propagating in a back-
ground gravitational field ���.

The solution (2.1) applies equally well when 
�� is a
plane wave or a wave packet solution of (2.2). No addi-
tional approximations are made regarding ��� that obvi-
ously satisfies the Eq. (2.2) when ��� vanishes.

We show below that, as in [6,7], the solution is mani-
festly covariant. It also is completely gauge invariant and
the effect of gravitation is entirely contained in the phase of
the wave function. In fact, (2.1) can be written in the form
��� � exp��i�	
�� ’ �1� i�	
�� or, explicitly, as
 

����x	 � 
���x	 �
1

2

Z x

P
dz�����z	@�
���x	

�
1

2

Z x

P
dz�����;��z	 � ���;��z		


 ��x� � z�	@� � iS���
���x	

�
i
2

Z x

P
dz���	;��z	T

�	
���x	; (2.3)

where

 S��
�� 
i
2
���	�

�
��� � �

�
	����� � ��	�

�
���

� ��	�����	
	


T�	
��  i������ � �
�
���	
	

 :

(2.4)

From S�� one constructs the rotation matrices Si �
�2i�ijkSjk that satisfy the commutation relations
�Si; Sj� � i�ijkSk. The spin-gravity interaction is therefore

contained in the term
 

�0��  �
i
2

Z x

P
dz�����;� � ���;�	S��
���x	

�
1

2

Z x

P
dz����	�;� � ���;		
	

�

� ��	�;� � ���;		
	
��: (2.5)

The solution (2.1) is invariant under the gauge transforma-
tions ��� ! ��� � ��;� � ��;�, where �� are small quan-
tities of the first order. If, in fact, we choose a closed
integration path �, Stokes theorem transforms the first
three integrals of (2.3) into 1=4

R
� d	

��R�����L�� �
S��	
��, where � is the surface bound by �, J�� �
L�� � S�� is the total angular momentum of the particle
and R���� � 1=2����;�� � ���;�� � ���;�� � ���;��	 is
the linearized Riemann tensor. For the same path � the
integral involving T�	 in (2.3) vanishes. It behaves like a
gauge term and may therefore be dropped. For the same
closed paths, (2.3) gives

 ��� ’ �1� i�	
�� �

�
1�

i
4

Z
�
d	��R����J

��
�

��;

(2.6)

which obviously is covariant and gauge invariant. For
practical applications (2.1) is easier to use.

The phase � is sometimes referred to as gravitational
Berry phase [13] because space-time plays in it the role of
Berry’s parameter space [14].

III. HELICITY-GRAVITY COUPLING AND
GEOMETRICAL OPTICS

The helicity-rotation coupling for massless, or massive
spin-2 particles follows immediately from the S�� term in
(2.3). In fact, the particle energy is changed by virtue of its
spin by an amount given by the time integral of this spin
term

 �hr � �
1

2

Z x

P
dz0���0;� � ��0;�	S

��; (3.1)

that must then be applied to a solution of (2.2). For rotation
about the x3-axis, �0i � ��y;�x; 0	, we find �hr �
�
R
x
P dz

02�S3 and the energy of the particle therefore
changes by �2�, where the factor �2 refers to the parti-
cle’s helicity, as discussed by Ramos and Mashhoon [4].
Equation (3.1) extends their result to any weak gravita-
tional, or inertial field.

The effect of (2.5) on 
�� can be easily seen in the case
of a gravitational wave propagating in the x-direction
and represented by the components 
22 � �
33 �
"22 exp�ik�t� x	� and 
23 � "23 exp�ik�t� x	�. For an
observer rotating about the x-axis the metric is �00 �
��2r2, �11 � �22 � �33 � �1, �0i � ��0; z;�y	.
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Then the two independent polarizations 
23 and 
22 �

33 are transformed by S�� into �23 � �2��x0 � x0

P	


�
22 �
33	=2 and 1=2��22 ��33	 � 2��x0 � x0
P	
23.

For closed integration paths and vanishing spin, (2.3)
coincides with the solution of a scalar particle in a gravi-
tational field, as expected. This proves the frequently
quoted statement [15] that gravitational radiation propagat-
ing in a gravitational background is affected by gravitation
in the same way that electromagnetic radiation is (when the
photon spin is neglected).

The geometrical optics approximation follows immedi-
ately from (2.3) with S�� � 0; T�� � 0. We obtain from
(2.1) and (2.3)

 

�0
�� � 
���x	 �

1

2

Z x

P
dz�����z	@�
���x	

�
1

2

Z x

P
dz�����;��z	 � ���;��z		


 ��x� � z�	@��
���x	: (3.2)

We first calculate the general relativistic deflection of a
spin-2 particle in a gravitational field. It follows immedi-
ately from �0

��. Assuming, for simplicity, that the spin-2
particles are massless and propagate along the z-direction,
so that k� ’ �k; 0; 0; k	, and ds2 � 0 or dt � dz, using
plane waves for 
�� and writing

 

� � k	x	 �
1

4

Z x

P
dz�����;��z	 � ���;��z		


 ��x� � z�	k� � �x� � z�	k��

�
1

2

Z x

P
dz�����z	k�; (3.3)

we obtain the particle momentum

 

~k 	 �
@�
@x	
 �;	

� k	 �
1

2

Z x

P
dz���	�;� � ���;		k� �

1

2
��	k�:

(3.4)

It is easy to show from (3.4) that � satisfies the eikonal
equation g���;��;� � 0.

The calculation of the deflection angle is particularly
simple if we choose the background metric

 �00 � 2U�r	; �ij � 2U�r	�ij; (3.5)

where U�r	 � �GM=r and r �
���������������������������
x2 � y2 � z2

p
, which is

frequently used in gravitational lensing. For this metric, �
is given by

 

� ’ �
k
2

Z x

P
��x� x0	
;z0dx

0 � �y� y0	
;z0dy
0

� 2��x� x0	
;x0 � �y� y0	
;y0 �dz0� � k
Z x

P
dz0
:

(3.6)

The space components of the momentum are therefore

 

~k 1 � 2k
Z x

P

�
�

1

2

@U
@z
dx�

@U
@x

dz
�
; (3.7)

 

~k 2 � 2k
Z x

P

�
�

1

2

@U
@z
dy�

@U
@y

dz
�
; (3.8)

 

~k 3 � k�1�U	: (3.9)

We then have

 

~k � ~k? � k3e3; ~k? � k1e1 � k1e2; (3.10)

where ~k? is the component of the momentum orthogonal
to the direction of propagation of the particles.

Since only phase differences are physical, it is conve-
nient to choose the space-time path by placing the particle
source at a distance very large relative to the dimensions of
M, while the generic point is located at z along the z
direction and z� x, y. Equations (3.7), (3.8), and (3.9)
simplify to

 

~k 1 � 2k
Z z

�1

@U
@x

dz � k
2GM

R2 x
�
1�

z
r

�
; (3.11)

 

~k 2 � 2k
Z z

�1

@U
@y

dz � k
2GM

R2 y
�
1�

z
r

�
; (3.12)

 

~k 3 � k�1�U	; (3.13)

where R �
����������������
x2 � y2

p
. By defining the deflection angle as

 tan� �
~k?
~k3

; (3.14)

we find

 tan�� ��
2GM
R

�
1�

z
r

�
; (3.15)

and, in the limit z! 1, we obtain the usual Einstein result

 �M �
4GM
R

: (3.16)

The index of refraction can be derived from the known
equation n � ~k=~k0. Choosing the direction of propagation
of the particle along the x3 � axis, and using (3.4), we find

 n ’ 1�
1

k0
��;3 � �;0	 �

m2

2k2
0

�
1�

1

k0
�;0

�
(3.17)

and, again, for k0 � m, or for vanishing m,
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n ’ 1�
1

2k0

�
�
Z x

P
dz���3�;� � ���;3	k� � ��3k�

�
Z x

P
dz���0�;� � ���;0	k� � ��0k�

�
: (3.18)

In the case of the metric (3.5), we obtain

 n ’ 1�
Z x

P
dz0�00;3 � 1�

2GM
r

; (3.19)

which is a known result.

IV. WAVE OPTICS

The applications of (3.2) to interferometry given in
[14,16] cover a variety of metrics and physical situations,
from the study of rotation and Earth’s field to the detection
of gravitational radiation and the calculation of effects due
to a Lense-Thirring background. The same equation and
some of its generalizations can also be applied to the study

of quantum fluids and Boson condensates. Here we apply
(3.2) to the investigation of wave effects in lensing.

As an example, we consider the propagation of gravi-
tons, or extreme relativistic spin-2 particles in the back-
ground metric (3.5). Wave optics effects can best be seen
by considering a double slit experiment, or alternatively,
the lensing configuration illustrated in Fig. 1. For simplic-
ity, we use a planar arrangement in which particles, source,
gravitational deflector and observer lie in the same plane.
The particles are emitted at S and interfere at O, where the
observer is located, following the paths SLO and SPO. The
interference and diffraction effects depend on the phase
difference experienced by the particles along the different
paths and on the gravitational background generated by the
spherically symmetric lens at M. We also use a plane wave
solution of (2.2) of the form 
�� � e�ik	x

	
��� and as-

sume, for simplicity, that k1 � 0, so that propagation is
entirely in the �x2; x3	-plane. In this planar setup �11 plays
no role. The corresponding wave amplitude is therefore

 

�0
�� � �ie

�ik	x	
�
1�

1

2

�Z
dz0�00;2�x

0 � z0	k2 �
Z
dz0�00;3�x

0 � z0	k3 �
Z
dz0�00;2�x

2 � z2	k0

�
Z
dz0�00;3�x3 � z3	k0 �

Z
dz2�22;3�x2 � z2	k3 �

Z
dz3�33;2�x3 � z3	k2 �

Z
dz2�22;3�x3 � z3	k2

�
Z
dz3�33;2�x

2 � z2	k3

�
�

1

2

�Z
dz0�00k

0 �
Z
dz2�22k

2 �
Z
dz3�33k

3

��
: (4.1)

The phase must now be calculated along the different paths
SP� PO and SL� LO, taking into account the values of
ki in the various intervals. The phase difference is therefore
given by � ~
 � ~
SLO � ~
SPO.

It is convenient to transform all space integrations into
integrations over z0. Along SL we have

 

U �
�GM

qSL�z
0	1=2

;

qSL�z0	  �rL � z0	2 � b�2 � 2�rL � z0	b� cos’�;

(4.2)

and k2 � k cos’�, k3 � k sin’� and rL sin’� � DdS. We
find

 

�
� ~
SL

GM
� 2

Z rL

0
dz0qSL�z

0	�3=2�z0 � rL � b
� cos’�	


 �rL � z0	

�
k2 sin’�2

cos’�
� k3 cos’�2

sin’�
� k

�

�
Z rL

0
dz0qSL�z0	�1=2


 ��k� k2 cos’� � k3 sin’��: (4.3)

Analogously, for LO we have

 

U � �
GM

qLO�z0	1=2
;

qLO�z
0	  �R1 � z

0 � rL	
2 � r2

0 � 2�R1 � z
0 � rL	


 r0 cos��; (4.4)

 

rS

S rL

Lϕ+

γ

s

+

r0 O

M

dO

x2

x3

P

FIG. 1. Geometry of a two-image gravitational lens or, equiv-
alently, of a double slit interference experiment. The solid lines
represent the particle paths between the particle source at S and
the observer at O. M is the spherically symmetric gravitational
lens. S, M, O and the particle paths lie in the same plane. The
physical variables are rS, r0, b�, s, while the lensing variables
are indicated by DdS, DdO, DS, ��, �. �� are the deflection
angles.
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while k2 � k sin��, k3 � k cos��, R1 �
�������������������
r2

0 � b
�2

q
, and

the change in phase is

 

�
� ~
LO

GM
� 2

Z rL�R1

rL
dz0qLO�z0	�3=2


 �R1 � z0 � rL � r0 cos��	�rL � R1 � z0	




�
k2 cos��2

sin��
� k3 sin��2

cos��
� k

�

�
Z rL�R1

rL
dz0q�1=2

LO


 ��k� k2 sin�� � k3 cos���: (4.5)

For SP we find

 

U � �
GM

qSP�z
0	1=2

;

qSP�z0	  b�2 � �R� z0	2 � 2�R� z0	b� cos�;
(4.6)

k2 � k cos�, k3 � k sin�, tan� � DdS=�s� b�	, R ������������������������������������
D2
dS � �s� b

�	2
q

, and the corresponding change in phase
is

 

�
� ~
SP

GM
� 2

Z R

0
dz0qSP�z0	�3=2�R� z0�b� cos�	


 �R� z0	

�
k2 sin�2

cos�
� k3 cos�2

sin�
� k

�

�
Z R

0
dz0qSP�z0	�1=2��k� k2 cos�� k3 sin��:

(4.7)

Finally, for PO we get

 

U � �
GM

qPO�z0	1=2
;

qPO�z
0	  r2

0 � �R2 � R� z
0	2

� 2�R2 � R� z
0	r0 cos��;

(4.8)

k2 � �k sin��, k3 � k cos��, R2 �
�������������������
r2

0 � b
�2

q
, and the

relative change in phase is

 

�
� ~
PO

GM
� 2

Z R�R2

R
dz0qPO�z0	�3=2


 �z0 � R2 � R� r0 cos��	�R� R2 � z
0	




�
�k2 cos��2

sin��
� k3 sin��2

cos��
� k

�

�
Z R�R2

R
dz0q�1=2

PO


 ��k� k2 sin�� � k3 cos���: (4.9)

The total change in phase is therefore � ~
 � � ~
SL �

� ~
LO �� ~
SP � � ~
PO. All integrations in (4.3), (4.5),
(4.7), and (4.9) can be performed exactly. All results can be
expressed in terms of physical variables rs, r0, b�, b�, and
s and lensing variables Ds, Dds, Dd, ��, ��, and �. The
final result is

 

� ~
 � ~y
�
ln��

�����������������������������������
D2
dS � �s� b

�	2
q

� b� cos�� rS	

� ln�b��1� cos�		 � ln�b��1� cos’�		

� ln�rS � rL � b
� cos’�	 � ln�b� � r0 cos��

�
�������������������
b�2 � r2

0

q
	 � ln�r0�1� cos��		

� ln�r0�1� cos��		

� ln�b� � r0 cos�� �
�������������������
b�2 � r2

0

q
	

�
; (4.10)

where r2
S � b�2 � r2

L � 2b�rL cos’�, r2
L � D2

dS � �s�
b�	2, ’� � �� � �� � �� �� � �� � � and ~y �
2GMk. This result is exact and independent of the value
of ~y.

A simple quantum mechanical calculation indicates that
the probability of finding particles at O contains an oscil-
lating term (two-image interference) that is proportional to
cos2� ~
=2. In the particular case b� � b�  b, ’� � �,
rS � rL � �b; s	, �� � ��  �, �� � ��  �, we ob-
tain from (4.10), the expression

 � ~
� ~y ln
rL�1� sin��� �		

b sin��� �	
; (4.11)

which is approximate to terms ofO�b=rL	 and higher in the
argument of the logarithm. The overall probability P0 of
finding particles at O is therefore

 P0 / cos2

�
~y
2

ln
�
rL
2b

�1� tan���2 	
2

tan���2

��
; (4.12)

which exhibits an oscillating behavior typical of combined
interference and diffraction effects. Higher order terms in
b=rL would in general prevent the logarithmic term from
diverging when �! �.
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V. CONCLUSIONS

We have solved the wave equation (1.1) for massless and
massive spin-2 particles propagating in a background
gravitational field. The solution is exact to first order in
���, is covariant and gauge-invariant and is known when-
ever a solution 
�� of the free wave equation is known.

The external gravitational field, represented by the back-
ground metric, only appears in the phase of the wave
function. It is precisely this phase that provides the general
framework for the study of spin-2 particles.

The spin-gravity coupling and Mashhoon’s helicity-
rotation interaction follow from the gravity-induced phase,
(2.5). The origin of (2.5) resides in the skew-symmetric
part of the space-time connection terms in (2.1), while, in
the case of fermions, it is the spinorial connection [7] that
accounts for S��. The spin term S�� affects the polariza-
tion of a gravitational wave, as shown in Sec. III. It also
plays a role in the collision of two gravitational waves. If
these are represented by 
22 � �
33 � "22 exp�ik�t�
x	�, 
23 � "23 exp�ik�t� x	� and the gravitational back-
ground is a wave of the same polarization, but proceeding
along the negative direction of the x-axis, then the corre-
sponding metric is

 ds2 � 2�002dx
0dx2 � 2�003dx

0dx3 � 2�012dx
1dx2

� 2�13dx
1dx3 � 2��0

23 ��023	dx
2dx3; (5.1)

where
 

�002�
�ik

2
���22
22��32
23	x

2���23
23��33
23	x
3�;

�003�
�ik

2
���22
32��32
23	x2���23
32��33
33	x3�;

�012�
�ik

2
���22
22��32
23	x2���23
22��33
23	x3�;

�013�
�ik

2
���22
23��32
33	x

2���23
32��33
33	x
3�;

�023�
22��32��33	; (5.2)

and the collision takes place at the origin of the coordi-
nates. The metric (5.1) has a singularity at x2 � x3 � 0.
More complete treatments of this problem show that this is
a curvature singularity [17–20].

From the phase we have derived the geometrical optics
of the particles and verified that their deflection is that
predicted by Einstein. The gravitational background be-
haves as a material medium of index of refraction n given
by (3.17).

Wave optics too can be extracted from the phase. We
have derived an exact expression for the phase change � ~


given by (4.10) and have shown that (4.10) represents
interference and diffraction effects. In gravitational lensing
[21,22] and in the gravitational lensing of gravitational
waves [12], wave effects for a point source depend on
the parameter ~y which gives an indication of the maximum
magnification of the wave flux, or, alternatively, of the
number of Fresnel zones contributing to lensing. Dif-
ferent values of ~y require, in general, different approxima-
tions, or different solutions of the wave equation. In par-
ticular, diffraction effects are expected to be considerable
when ~y ’ 1. In our approach, (4.10) holds true regardless of
the value of ~y. Wave optics problems usually deal with
spherical wave solutions of Helmholtz equation in which
gravity appears in the form of a potential. The extension of
our findings to include spherical wave solutions is, of
course, allowed by (2.2), but results in additional terms in
(3.2) and in a more cumbersome, but still exact final result.
It is left to a future, specific application in which the planar
configuration of Fig. 1 will be rescinded. In the present
approach, however, gravity makes itself felt in a rather
more subtle way than just through a single potential, as
evidenced by (1.4).

The framework developed can also be used in the inter-
ferometry of atoms and molecules. A laboratory instru-
ment capable of using coherent beams of atoms or
molecules would go a long way in probing the interface
between gravitational theories and quantum mechanics.
For instance, the phase shift of a particle beam in the
Lense-Thirring field of the Earth is [23]

 � ~
LT �
4G

R3
�

J�m‘
2; (5.3)

where J� � 2M�R
2
��=5 is the angular momentum of

Earth (assumed spherical and homogeneous), R� its radius
and ‘ the typical dimension of the interferometer. For
neutron interferometers with ‘� 102 cm, we find � ~
LT �
10�7 rad. The value of the phase difference increases with
m and ‘2. This suggests that the development and use of
large, heavy particle interferometers would be particularly
advantageous in attempts to measure gravitational effects.
When (3.5) and (4.10) are used in the case of a square
interferometer and extreme relativistic particles, we how-
ever obtain ~
 ’ GMk, irrespective of the size of the inter-
ferometer. This is as expected. In fact, for the particular
configuration of Fig. 1 (and unlike the problems considered
in [6,16]), the gravitational flux of the source is completely
contained in the integration path SLOPS and � ~
 cannot
be made larger by increasing the dimensions of the
interferometer.
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