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Black strings and solitons in five dimensional space-time with positive cosmological constant
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We consider the classical equations of the Einstein-Yang-Mills model in five space-time dimensions
and in the presence of a cosmological constant. We assume that the fields do not depend on the extra
dimension and that they are spherically symmetric with respect to the three standard space dimensions.
The equations are then transformed into a set of ordinary differential equations that we solve numerically.
We construct new types of regular (resp. black holes) solutions which, close to the origin (resp. the event
horizon) resemble the 4-dimensional gravitating monopole (resp. non-Abelian black hole) but exhibit an

unexpected asymptotic behavior.
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I. INTRODUCTION

In recent years, there has been an increasing attention to
space-times involving more than four dimensions and par-
ticularly to brane-world models [1] to describe space, time,
and matter. These assume the standard model fields to be
confined on a 3-brane embedded in a higher dimensional
manifold. A large number of higher dimensional black
holes has been studied in recent years. The first solutions
that have been constructed are the hyperspherical general-
izations of well-known black holes solutions such as the
Schwarzschild and Reissner-Nordstrom solutions in more
than four dimensions [2] as well as the higher dimensional
Kerr solutions [3]. In d dimensions, these solutions have
horizon topology S¢72.

However, in contrast to 4 dimensions black holes with
different horizon topologies should be possible in higher
dimensions. An example is a 4-dimensional Schwarzschild
black hole extended trivially into one extra dimension, a
so-called Schwarzschild black string. These solutions have
been discussed extensively especially with view to their
stability [4]. A second example, which is important due to
its implications for uniqueness conjectures for black holes
in higher dimensions, is the black ring solution in 5
dimensions with horizon topology §% X S! [5].

The largest number of higher dimensional black hole
solutions that have been constructed so far are solutions of
the vacuum Einstein equations, respectively, Einstein-
Maxwell equations.

On the other hand, it is believed that topological defects
have occurred and played a role during some phase tansi-
tions in the evolution of the Universe, see e.g. Ref. [6]. In
particular, magnetic monopoles [7] must have been pro-
duced during the GUT symmetry breaking phase transi-
tion. The actual nonobservation of magnetic monopoles
leads to constraints which have to be implemented into the
models of inflation. On the other hand observational evi-
dence obtained in the last years [8] favors the possibility
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that space-time has an accelerated expansion which could
be related to a positive cosmological constant.

It is, therefore, natural to examine the properties of the
various topological defects in presence of a cosmological
constant, or said in other words, in asymptotically de Sitter
space-time. Recently [9] the magnetic monopole and the
sphalerons occuring in an SU(2) gauge theory spontane-
ously broken by a scalar potential were constructed in an
asymptotically de Sitter space-time and it was found that
the asymptotic decay of the matter field is not compatible
with a finite mass.

The first example of higher dimensional black hole
solutions containing non-Abelian gauge fields have been
discussed in Ref. [10]. These are non-Abelian black holes
solutions of a generalized 5-dimensional Einstein-Yang-
Mills system with horizon topology S3. Using ideas of
Refs. [11,12], SU(2)-black strings with S, X S; topology
were constructed in Ref. [13]. Several regular and black
hole solutions of an Einstein-Yang-Mills model have been
constructed recently with different symmetries [14-16].
These solutions are non-Abelian black hole solutions in
3 + 1-dimensions extended to one extra dimension.

In Refs. [17,18] the Einstein-Yang-Mills model in five
dimensions with gauge group SU(2) was considered with a
positive cosmological constant. The metric and gauge
fields were assumed to be independent of the extra dimen-
sion and chosen to be spherically symmetric in the standard
three spacelike dimenisons. By adopting a Schwarzschild-
dilaton type parametrisation for the metric, it was found
that the equations can be integrated only up to a maximal
value of the radial coordinate, say r = r.. A coordinate
singularity occurs at r = r.. In this paper, we adopt the
parametrisation of the metric used in Ref. [19] and we
show that the solution of Ref. [18] can be extended up to
spatial infinity in these coordinates.

We give the model and the two parametrization of the
metric in Sec. II. The relevant reduced action for the
gravitating and matter parts are presented in Sec. III to-
gether with the boundary conditions. The numerical results
corresponding to solutions regular at the origin and solu-
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tions possessing an event horizon are discussed in Sec. I'V.
The summary is given in Sec. V.

II. THE MODEL AND THE ANSATZ

The Einstein-Yang-Mills Lagrangian in d = (4 + 1) di-

mensions is given by

- 2A5) - FFX,INFHMN> g(s)dsx

s= [(- &
B /(167765
(D

with the SU(2) Yang -Mills field strengths Fij;y = 9,A% —
INAY + €4p.ALAS , the gauge index a = 1, 2, 3 and the
space-time index M =0,...,5. G5, As and e denote,
respectively, the 5-dimensional Newton’s and cosmologi-
cal constants and the coupling constant of the gauge field
theory. Gs is related to the Planck mass M, by G5 = Mp_l3
and e” has the dimension of [length].

In this paper, we assume that the metric and the matter
fields are independent on the extra coordinate y and we will
use a spherically symmetric ansatz for the fields.

Our aim is to construct non-Abelian regular and black
strings solutions which are spherically symmetric in the
four-dimensional space-time and are extended into one
extra dimension. The topology of these non-Abelian black
strings will thus be §? X R or $? X S! if the extra coor-
dinate y is chosen to be periodic.

We will use two different coordinates systems for the
metric. On the one hand, the metric can be parametrized
according to [11] as follows:

gindxMdxN = e~ {[—A’Ndr* + N~'dr* + r?d6>
+ r2sin?0d*> @] + e*dy?*: type (1), (2)

where N, A, ¢ are function of the coordinate r only. For the
gauge fields, we use the spherically symmetric ansatz [7] :

AS=A0=0, A0 =(—K()e,

(3)
A, = —(1 — K(r))sinfe,, o = vH(r)e,?,

where v is a mass scale.

The classical equations corresponding to the model
above were studied in [17] and more recently in Ref. [18]
with the appropriate boundary conditions corresponding to
regular solution at the origin » = 0 and black string solu-
tions presenting a regular event horizon on a cylinder, i.e.
with N(r,) = 0. The equations were solved numerically
and it was found that the solutions having the regular
behavior at r =0 or r = r;, exist only up to a maximal
value r = r, (with the value r. depending on both « and
A). For r — r, the fields behave according to

NNc(rc_r)’ g(r)~§i+§c\/(rc_r)’ (4)

A(}’) = Ac(rc - r)ia’

N(r)

where N, &;, &., A., a are constants (with a > 0) depend-
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ing on & and A. The behavior of the function ¢ clearly
indicates an absence of analyticity at r = r,.

In view of these difficulties, we have tried to study the
equation by using a different parametrisation of the metric.
For instance, we use the length element used e.g. in
Ref. [19]. It reads

— —b(x)dP
ds® b()dt+f()

+ a(x)dy*: type (2), &)

where the radial variable is named x [to avoid confusion
with r used in (2)]. The arbitary redefinition of the coor-
dinate x is left unfixed at this stage but on it will be fixed
later according to g(x) = x?. The ansatz for the matter
fields is identical to Eq. (3) apart from the fact that the
functions K, H now depend on x. Using g(x) = x? as gauge
fixing, the correspondence between the two sets of func-
tions in Egs. (2) and (5) reads

+ g(x)(d#? + sin?(0)dp?)

x = re ¢0/2, flx) = N(l

a(x) = ¥\, b(x)

_rdéy?
2ar)
= A(r)2N(r)e 0.

(6)

III. EQUATIONS OF MOTION

Using an appropriate rescaling of the radial variable
evx — x the classical equations associated to the action
(1) lead to a set of ordinary differential equations depend-
ing on the fundamental coupling > = 47Gsv? and on the
reduced cosmological constant A = 2a?As. In the case of
the parametrization (2), the equations are written in details
in Ref. [18] together with the appropriate boundary con-
ditions. In the case of the parametrisation (5), the equations
are obtained in the standard way. The nonvanishing com-
ponents of the Einstein tensor are given by

1 a" " 1 o2 14 o 1/14d /
Gl = _a_+g___g_2_|__a_g_f+__ _|_g_f/
2a g 4g 2ag 2\2 g
1
o )
8
1ab' 1 / b’ l 1 2
=it rany e ®
4ab 2\a b)g 4g g

L/ I o! ! 5! !/ / !
+l<ﬂ+ﬁ+b_g))f+l<a+b+g>f
a b g

9

Gl = sin?0G), (10)
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i bll " 1 b/2 2 1 b/ /
Gy = +8) (G +5) -5 o)
2 b g 4\p* g? 2 bg

11b g 1
+-(z=+=)f—=- 11
Z(Zb g)f o (1)

where the prime denote derivative with respect to the
rescaled radial variable x; the energy momentum tensor
has the following form:

T’=—(A+B+C+D) (12)
2ag®
1

T/ =-——=(@A—-B+C—-D), (13)
2ag

T) =

¢ _ 270
2ag2 T¢ = sin“07T,, (14)

1

where A = a(K? — 1),
D= fg’H"”.

In order to treat the Einstein equations numerically, we
eliminate the quantity a” from the (#f) and (66)-equations
and use the remaining equations to obtain a system for a’,
f', b", in a quite similar way as in Ref. [19]. The gauge is
fixed by g = x? and the supplementary Einstein equation is
finally used as a numerical crosscheck. Finally the 5-
dimensional Yang-Mills equations lead to the conditions

B =2afgK", C =2gH?K? and

' (=3l xY = Lre - U me
\/_g<ﬂ/ ggK) 2K(K 1)+g KH?,  (16)
1 ~f YV _ 2

The Gauss law is trivially fulfilled since the ansatz is static
and Ag = 0.

It is interesting to notice that the five relevant radial
equations can be obtained directly by the variational prin-
ciple on the following effective one-dimensional action
density

red 2V
J—8 = gsinby/ab/f,

with the gravitating part proportional to the Ricci scalar

(R —2A) + Shao
(18)
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gt (@ 2) )

sinf@

BT
4 g 4 J; ?) (19)
and
S =L WP+ 50—k Ly
4 iK2H2>. (20)
ga

A. Boundary conditions

It should be noticed that the function a and b can be
rescaled arbitrarily. The regularity conditions for a regular
solution at the origin read [19]
a(0) =1,

b(0) =1,

f0)=1, b'(0) =0,

21

while black strings possessing an horizon at x = x;, should
have

fx,) =0, b(x,) =0, b'(xy) =1

(22)

a(x,) =1,

in both cases a natural choice of the normalization of a, b
has been supplemented. For the matter fields, the boundary
conditions for a regular solution at the origin and the usual
asymptotic conditions read

K(0) =1, H(0) =0,

K(o0) =0, H(o) =1.

(23)

In the case of black holes, the regularity at the horizon
imposes some peculiar relations between the values H(x},),
K(x;,) and their derivatives. These expressions are cumber-
some and will not be presented here.

B. Asymptotic expansion

The study of the classical equations in the vacuum case,
ie. for K(x) =1, H(x) = 0 is interesting by itself. A
complete analysis of black strings in the case of a negative
cosmological constant is reported in Ref. [19]. In that
paper, regular solutions at the origin are constructed nu-
merically as well as black holes solutions which present a
regular horizon at x = x;. For the two types of solutions,
the components of the metric grow asymptotically accord-
ing to
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x2 x2

a) =7, bW =15,
(24)
x? . 6
The next terms of these expansions can be found in
Ref. [19].

In the case of a positive cosmological constant, a pos-
sible asymptotic form of the solutions can be obtained by
analytic continuation (i.e. €2 — —{2) of the asymptotic
expansion obtained in Ref. [19]; although nothing guaran-
tee that the corresponding solutions will be regular at the
origin or admit a regular horizon.

Because it turns out impossible to construct numerically
regular solutions approaching a(x) = b(x) = f(x) ~
—x?/€%> asymptotically, we investigated other types of
asymptotic behaviours and obtained the following form
using the Finstein equations:

a=x* b=x,

f=fox?f with A=B=-2-3 F=3+23
(25)

and where f is a constant. The power-dependence of the
metric functions on the radial coordinate and the fact that
A + B + F = —1 is reminiscent of the Kasner solution in
four-dimensional space-time. However (25) is not an exact
solution but the leading term of a power expansion:

3A
— — J2A __ 4+6A
a=b=x 2f0(1+A)(2+A)x 26)
2A
_ —2—4A _ 2 + + C) 44+6A
f=Jox 1+AY 1124 o),

where A = —2 — /3 = —3.732. The Ricci scalar calcu-
lated with this solutions vanishes asymptotically.

C. Known solutions

The system of equations under investigation possesses
several known solutions in specific limits of the coupling
constants @ and A. The knowledge of these solutions can
be used as a check of our numerical solutions.

(i) In the limit o> = 0, A = 0 the Einstein equations
are trivial (so that a = b = f = 1, g = x?) and the
matter field equations restrict to the equation of the
t’'Hooft-Polyakov monopole [7] on the self dual
limit.

(ii) In the case @ # 0, A = 0, the equations are solved
in Refs. [11-13] with the parametrization (2) of the
metric. The solutions can be transformed in the
coordinate system (5) by using Eq. (6). It is worth
noticing that for A << 1 the effect of the cosmologi-
cal constant appears for large values of x; the profiles
of the solutions in Ref. [11-13] in the region of the
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origin (or of the event horizon) are expected to
persist.

(iii) The matter field equations are solved by W =1,
H = 0. Then the Einsten equations are those studied
in Ref. [19] with €2 — —¢2. In the case A = 0, the
uniform black solution [2—4] is given by b = f =
1 —1/x,a =1and g = x?. No analytic solutions of
these equations is known to our knowledge for A #
0. Some numerical solutions will be reported in the
next section.

IV. NUMERICAL RESULTS

A. Regular solutions

We solved the equations corresponding to the
Lagrangian (1) by numerical methods for several values
of & and A > 0. In the system of coordinate (5), our results
strongly suggest that the solutions approaching the regular
boundary condition at the origin can be extrapolated for
x — oo and that, in this limit, they approach the asymptotic
form (26). This is illustrated on Fig. 1 for a =1, A =
0.0005. Close to the origin, these solutions are similar to
the gravitating dilatonic monopole [11,12] but contrary to
our expectation they do not extrapolate to a de Sitter space-
time for A > 0. It seems that the presence of the cosmo-
logical constant and the corresponding Liouville potential
leads to an asymptotic space-time obeying the power law
(26) asymptotically.

Because this property seems to be related essentially to
gravity, we solved the equations in the case K = 1, H = 0,
i.e. when the Yang-Mills field is trivial. The matter
Egs. (16) and (17) are then trivial and the equations corre-
spond to 5-dimensional gravity in the presence of a positive
cosmological constant. The profiles of the functions a, b, f
are represented in the subplot of Fig. 3. Comparing Figs. 1

log(1 +x)

FIG. 1. The profile for a non-Abelian soliton corresponding to
a =1, A = 0.0005.
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and 3, we can appreciate the significant deformation of the
functions a, b, f due to the matter fields in the region x ~ 0.
The double logarithmic scale used on Fig. 3 demon-
strates the power decay of the metric functions. Our nu-
merical results strongly indicate that a(x) = b(x) in this
case. This relation does not hold true for black strings (see
the next section) but it suggests that the solution could be
expressed in an explicit form (although we failed to find it
so far). To finish this section, let us mention that, in the case
of a negative cosmological constant, a solution regular at
the origin also exists; it was constructed in Ref. [19]. In
contrast to the present case, the solution of Ref. [19]
asymptotically approaches the solution (24).

B. Black hole solutions

The numerical construction of black hole solutions of
Eq. (1) is more difficult with the metric (5) than with the
metric (2) parametrization because two functions (for in-
stance f and b) vanish at the event horizon x,,, leading to
several singular terms in the equations (with the type-1
parametrization, we have N(r;,) = 0 only). Nevertheless,
the results of Ref. [18], obtained with the metric (2),
suggest that blach holes solutions should exist at least
locally. In particular these solutions, once converted with
Eq. (6), provide extremely useful starting profiles to solve
the equation with Eq. (5). It is worth noticing that, once
converted into the system of coordinate (5) system by
means of Eq. (6) the functions a, b, f and their derivatives
turn out to be smooth in the neighborhood of the maximal
value x, = r.e €"J/2_Solving the equations for the type-2
coordinates confirms indeed the non-Abelian black string
of Ref. [18] exist and further shows that these solutions can
be extended for x € [x,, o] with A > 0.

The profile for such a solution is presented on Fig. 2 for
a =1, x, =0.3and A = 0.0005. Similarly to the case of
regular solutions our numerical results strongly suggest

1.4

|
|
f

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0 1 2
log (1+x)

FIG. 2. The profile for a non-Abelian black string correspond-
ing to &« = 1, A = 0.0005 and x;, = 0.3.
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0.1 —

0.01
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FIG. 3. The profiles for the pure gravity black string and of the
regular solution in the window.

that these black hole solution extrapolate between the
condition of a regular black string with horizon at x = x;,
and the power-type behavior (26) for x — 0.

We also solved the equations in the pure gravity case
(i.e. «a =0 and W =1, H = 0) and obtained the black
string solutions with positive cosmological constant. These
are represented on Fig. 3 (main figure), on this figure, the
function b(x) has been rescaled by a factor 2 in order to be
able to distinguish the profiles of a and b. These solutions
are the counterparts for A > 0 of the black string solutions
presented in Ref. [19] for A < 0. Let us point out that for
A <0 the black string solutions extrapolate between a
regular horizon and ADS space-time. In the neighborhood
of the event horizon x,, the two solutions look quit similar
but they deviate considerably from each other for x > 1.

Let us finally mention that, integrating the equations
from x = oo with (24) as initial condition and with A >
0 leads to configurations which become singular for x — 0.
A systematic study of black string with A >0 and d > 4
will be presented elsewhere [20].

V. SUMMARY

The construction of solitons and black string solutions
for the Einstein-Yang-Mills equations in a five-
dimensional space-time and in the presence of a cosmo-
logical constant turns out to be numerically difficult. The
problem was addressed in Ref. [18] but it appeared that the
system of coordinates used was not satisfactory, leading to
a coordinate singularity at some maximal value of the
radial coordinate. Here we reconsidered the equation
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with an ansatz of the line element inspired from the litera-
ture about black strings (see e.g. Ref. [19]). It turns out that,
with the new coordinates, the solutions can be continued up
to x = o0 and our numerical results suggest that the metric
is of the Kasner-type asymptotically. This feature seems to
hold true for pure gravity black strings as well as for the
non-Abelian case. In the limit x, — O these two types of

(1]

(2]
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black strings approach a nontrivial solution which is regu-
lar at the origin.
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