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We apply a recently suggested technique of the Neumann-Dirichlet reduction to a toy model of brane-
induced gravity for the calculation of its quantum one-loop effective action. This model is represented by a
massive scalar field in the �d� 1�-dimensional flat bulk supplied with the d-dimensional kinetic term
localized on a flat brane and mimicking the brane Einstein term of the Dvali-Gabadadze-Porrati (DGP)
model. We obtain the inverse mass expansion of the effective action and its ultraviolet divergences which
turn out to be nonvanishing for both even and odd spacetime dimensionality d. For the massless case,
which corresponds to a limit of the toy DGP model, we obtain the Coleman-Weinberg type effective
potential of the system. We also obtain the proper-time expansion of the heat kernel in this model
associated with the generalized Neumann boundary conditions containing second-order tangential
derivatives. We show that in addition to the usual integer and half-integer powers of the proper time
this expansion exhibits, depending on the dimension d, either logarithmic terms or powers multiple of one
quarter. This property is considered in the context of strong ellipticity of the boundary value problem,
which can be violated when the Euclidean action of the theory is not positive definite.
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I. INTRODUCTION

Modified theories of gravity in the form of braneworld
models can in principle account for the phenomenon of
dark energy as well as for nontrivial compactifications of
multidimensional string models. It becomes increasingly
more obvious that one should include in such models the
analysis of quantum effects beyond the tree-level approxi-
mation [1]. This is the only way to reach an ultimate
conclusion on the resolution of such problems as the
presence of ghosts [2] and low strong-coupling scale [3].
Quantum effects in brane models are also important for the
stabilization of extra dimensions [4], fixing the crossover
scale in the Brans-Dicke modification of the DGP model
[5] and in the recently suggested mechanism of the cos-
mological acceleration generated by the four-dimensional
conformal anomaly [6].

A general framework for treating quantum effective
actions in brane models (or, more generally, models with
timelike and spacelike boundaries) was recently suggested
in [7–9]. The main peculiarity of these models is that due
to quantum field fluctuations on the branes the field propa-
gator is subject to generalized Neumann boundary condi-
tions involving normal and tangential derivatives on the
brane/boundary surfaces. This presents both technical and
conceptual difficulties, because such boundary conditions
are much harder to handle than the simple Dirichlet ones.
The method of [9] provides a systematic reduction of the
generalized Neumann boundary conditions to Dirichlet
conditions. As a byproduct it disentangles from the quan-
tum effective action the contribution of the surface modes
mediating the brane-to-brane propagation (that is, within

one brane), which play a very important role in the zero-
mode localization mechanism of the Randall-Sundrum
type [10]. The main purpose of our paper here is to apply
this method to a simplified toy model of brane-induced
gravity in order to demonstrate how it works for the first
nontrivial example of a field system with boundary con-
ditions involving second-order tangential derivatives. As
we will see, this model leads to qualitatively new structures
in the one-loop effective action, its renormalization, and
the associated heat kernel.

Briefly the method of [9] looks as follows. The action of
a (free field) brane model generally contains the bulk and
the brane parts,
 

S��� �
1

2

Z
B
dd�1X��X�F

$

�r���X�

�
1

2

Z
b
ddx’�x���@�’�x�; (1.1)

where the �d� 1�-dimensional bulk and the d-dimensional
brane coordinates are labeled, respectively, by X � XA and
x � x�, and the boundary values of bulk fields��X� on the
brane/boundary b � @B are denoted by ’�x�,

 ��X�jb � ’�x�: (1.2)

The kernel of the bulk Lagrangian is given by the second-
order differential operator F�r�, whose derivatives r �
@X are integrated by parts in such a way that they form
bilinear combinations of first-order derivatives acting on
two different fields (this is denoted in (1.1) by the double-
headed arrow). Integration by parts in the bulk gives non-
trivial surface terms on the brane/boundary. In particular,
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this operation results in the Wronskian relation for generic
test functions �1;2�X�,

 

Z
B
dd�1X��1

~F�r��2 ��1F
 

�r��2�

� �
Z
@B
ddx��1

~W�2 ��1W
 

�2�: (1.3)

Arrows everywhere here indicate the direction of action of
derivatives either on �1 or �2.

The brane part of the action contains as a kernel some
local operator ��@�, @ � @x. Its order in derivatives de-
pends on the model in question. In the Randall-Sundrum
model [10], for example, it is for certain gauges just an
ultralocal multiplication operator generated by the tension
term on the brane. In the Dvali-Gabadadze-Porrati (DGP)
model [11] this is a second-order operator induced by the
brane Einstein term on the brane, ��@� 	 @@=m, wherem is
the DGP scale which is of the order of magnitude of the
horizon scale,being responsible for the cosmological ac-
celeration [12]. In the context of the Born-Infeld action in
D-brane string theory with vector gauge fields, ��@� is a
first-order operator [13].

In all these cases the variational procedure for the action
(1.1) with dynamical (not fixed) fields on the boundary
’�x� naturally leads to generalized Neumann boundary
conditions of the form

 � ~W�r� � ��@���jb � 0; (1.4)

which uniquely specify the propagator of quantum fields
and, therefore, a complete Feynman diagrammatic tech-
nique for the system in question. The method of [9] allows
one to systematically reduce this diagrammatic technique
to the one subject to the Dirichlet boundary conditions
�jb � 0. The main additional ingredient of this reduction
procedure is the brane operator Fbrane�x; x0� which is con-
structed from the Dirichlet Green’s function GD�X;X0� of
the operator F�r� in the bulk,

 

Fbrane�x; x0� � � ~W�rX�GD�X;X0�W
 

�rX0 �jX�e�x�;X0�e�x0�

� ��@���x; x0�: (1.5)

This expression expresses the fact that the kernel of the
Dirichlet Green’s function is being acted upon both argu-
ments by the Wronskian operators with a subsequent re-
striction to the brane, with X � e�x� denoting the brane
embedding function.

As shown in [9], this operator determines the brane-to-
brane propagation of the physical modes in the system with
the classical action (1.1) (its inverse is the brane-to-brane
propagator) and additively contributes to its full one-loop
effective action according to

 � 1-loop �
1

2
Tr�d�1�

N lnF

�
1

2
Tr�d�1�

D lnF�
1

2
Tr�d� lnFbrane; (1.6)

where Tr�d�1�
D;N denotes functional traces of the bulk theory

subject to Dirichlet and Neumann boundary conditions,
respectively, while Tr�d� is a functional trace in the bound-
ary d-dimensional theory. The full quantum effective ac-
tion of this model is obviously given by the functional
determinant of the operator F�r� subject to the generalized
Neumann boundary conditions (1.5), and the above equa-
tion reduces its calculation to that of the Dirichlet bound-
ary conditions plus the contribution of the brane-to-brane
propagation.

Here we apply (1.6) to a simple model of a scalar field
which mimics, in particular, the properties of the brane-
induced gravity models and the DGP model [11]. This is
the �d� 1�-dimensional massive scalar field ��X� �
��x; y� with mass M living in the half-space y 
 0 with
the additional d-dimensional kinetic term for ’�x� �
��x; 0� localized at the brane (boundary) at y � 0,
 

S��� �
1

2

Z
y
0

dd�1X��r��X��2 �M2�2�X��

�
1

2m

Z
ddx�@’�x��2: (1.7)

Here and in what follows we work in a flat Euclidean
(positive-signature) spacetime. Therefore, this action cor-
responds to the following choice of F�r� in terms of �d�
1�-dimensional and d-dimensional D’Alembertians
(Laplacians)
 

F�r� � M2 ���d�1� � M2 ��� @2
y;

� � ��d� � @2
�:

(1.8)

Its Wronskian operator is given by the normal derivative
with respect to outward-pointing normals to the brane,
W � �@y, and the boundary operator ��@� equals

 ��@� � �
1

m
�; (1.9)

where the dimensional parameter m mimics the role of the
DGP scale [11]. Thus, the generalized Neumann boundary
conditions in this model involve second-order derivatives
tangential to the brane,

 

�
@y �

1

m
�

�
�jb � 0; (1.10)

cf. (1.4) with W � �@y and � � ��=m.
As we show below, the brane-to-brane operator for such

a model has the form of the following pseudodifferential
operator,
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 F brane�@� �
1

m
����m

������������������
M2 ��

p
�: (1.11)

In the massless case of the DGP model [11], M � 0, this
operator is known to mediate the gravitational interaction
on the brane, interpolating between the four-dimensional
Newtonian law at intermediate distances and the five-
dimensional law at the horizon scale 	1=m [3]. We calcu-
late the effective action (1.6) for this model both in the
form of the 1=M-expansion and exactly in terms of a
special hypergeometric function representation (as a func-
tion of M and the dimensionless ratio m=M) and find its
ultraviolet divergences.

As a byproduct of the Neumann to Dirichlet reduction
(1.6), the technique of [9] also yields a method for obtain-
ing the proper-time expansion for the heat kernel associ-
ated with the boundary conditions (1.4). For simple
Neumann (Robin) boundary conditions containing at
most first-order derivatives tangential to the boundary,
this expansion has the form

 Tr �d�1�e�sF�r� �
1

�4�s��d�1�=2

X1
n�0

�snAn � sn=2Bn=2�:

(1.12)

In addition to the well-known bulk integrals An of the local
Schwinger-DeWitt coefficients of integer powers of the
proper time [14–16], it contains surface integrals Bn=2 as
coefficients of both integer and half-integer powers of s
[17–21]. They are sufficiently easy to calculate for the
Dirichlet boundary conditions [17,21], but become much
harder to obtain for the Robin and generalized Neumann
case with a growing number of tangential derivatives
[19,22,23]. As shown in [9], the Neumann-Dirichlet reduc-
tion method simplifies their calculation essentially. For
second-order derivatives they are not known at all, and a
toy DGP model of the above type seems to be the first
application of the heat kernel method subject to the bound-
ary conditions (1.10).

It turns out that in the case of (1.10) even the very
structure (1.12) is incorrect, because for even d it contains
also terms logarithmic in s and for odd d it has also powers
of s which are multiples of a quarter. We calculate these
additional terms in the heat kernel expansion, discuss their
relation to a nontrivial analytic structure of the brane part
of the effective action (1.6) and also to the problem of
strong ellipticity [24] of the boundary value problem
(1.10). In particular, the latter is shown to be determined
by the positivity of the action (1.7) or the positive-
definiteness of the brane operator (1.11).

The paper is organized as follows. In Sec. II we derive
the Dirichlet and brane parts of the effective action (1.6).
Sections III and IV present its inverse mass expansion and
ultraviolet divergences in various dimensions. In Sec. V we
obtain a new type of the proper-time expansion for the heat
kernel associated with the boundary conditions involving

second-order tangential derivatives. In Sec. VI we present
the hypergeometric function representation of the effective
action and analyze the limit of a simple Neumann bound-
ary condition corresponding to m! 1; we also consider
the massless limit M � 0 which gives the effective poten-
tial in the toy DGP model. In the Conclusions we discuss
these results in the context of a possible violation of strong
ellipticity for the boundary conditions (1.10), their poten-
tial applications in braneworld models including gravita-
tion and the use of the proper-time method in brane
models. Three appendices contain the derivation of the
inverse mass expansion of the effective action, its exact
hypergeometric function representations, and the presenta-
tion of the status of the strong ellipticity problem in a toy
DGP model.

II. DIRICHLET AND BRANE-TO-BRANE
CONTRIBUTIONS

We begin by constructing the Dirichlet part of the effec-
tive action. The basic Dirichlet Green’s function of the
model can be obtained by the proper-time integration of
the corresponding heat equation kernel,

 KD�sjX;X0� � es��d�1���X;X0�: (2.1)

It follows by the method of images from its well-known
expression in the flat �d� 1�-dimensional spacetime with-
out boundaries

 KD�sjX;X
0� �

1

�4�s��d�1=2�

�

�
exp

�
�
�x� x0�2 � �y� y0�2

4s

�

� exp
�
�
�x� x0�2 � �y� y0�2

4s

��
: (2.2)

The functional trace of this heat kernel contains two
terms—bulk and boundary integrals of the only two non-
vanishing Schwinger-DeWitt coefficients,

 Tr �d�1�
D es�d�1� �

Z
y
0

dd�1XKD�sjX;X�

�
1

�4�s��d�1=2�

�Z
y
0

dd�1X

�

����
�
p

2
s1=2

Z
ddx

�
: (2.3)

The corresponding Dirichlet-type effective action for the
model with the mass M in the bulk can be obtained by the
following proper-time integration,
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1

2
TrD ln����d�1� �M

2� � �
1

2
TrD

Z 1
0

ds
s
es��d�1��sM2

� �
1

2

�
M2

4�

�
�d�1=2�

�
�
�
d� 1

2

�

�
Z
y
0

dd�1X�
1

8

�

�
M2

4�

�
d=2

�
�
�
d
2

�Z
ddx:

(2.4)

The dimensionality d will be treated as a parameter of the

dimensional regularization. Therefore, this expression con-
tains ultraviolet divergences as the poles of Gamma func-
tions at negative integer values of their arguments. These
divergences are represented here either by the bulk or
boundary surface integrals, depending on whether the total
spacetime dimensionality (d� 1) is even or odd.

For the brane part of the action (1.6) we need the brane-
to-brane operator (1.5) which is based on the Dirichlet
Green’s function of the model. The latter is also exactly
calculable in elementary functions because the correspond-
ing proper-time integral can be expressed in terms of the
modified Bessel function of half-integer order,

 GD�X;X
0� �

Z 1
0
dsKD�sjX;X

0�e�sM
2
�
Z 1

0

ds���������
4�s
p �e��y�y

0�2=4s � e��y�y
0�2=4s�es���M

2���x; x0�

�
1

2
������������������
M2 ��
p �e�jy�y

0j
�����������
M2��
p

� e��y�y
0�
�����������
M2��
p

���x; x0�: (2.5)

Therefore the first term of (1.5) takes the form of a square-root operator [9],

 

~@ yGD�X;X0�@y
 
jX��x;0�;Y��x0;0� �

������������������
M2 ��

p
��x; x0�; (2.6)

and the full brane-to-brane operator (1.5) is given by (1.11).
The operator (1.11) is of a nonlocal pseudodifferential nature, and no conventional proper-time representation is known

for its functional determinant (see Sec. VII, though). Therefore we will calculate the latter in the basis of Fourier modes—
the eigenmodes of Fbrane. By resolving the d-dimensional delta-function in the Fourier integral we have

 

1

2
Tr�d� lnFbrane �

1

2

Z
ddx ln����m

������������������
M2 ��

p
���x; x0�jx0�x �

1

2

Z
ddx

1

�2��d
Z
ddp ln�p2 �m

�������������������
M2 � p2

q
�

�
1

�4��d=2��d=2�

Z
ddx

Z 1
0
dppd�1 ln�p2 �m

�������������������
M2 � p2

q
�; (2.7)

where p is the radial integration variable in the
momentum-space,

 p �
�������������
p�p

�
q

: (2.8)

As we see, the mass parameterM2 enters the logarithmic
function here in a very nontrivial way, so a typical
1=M2-expansion of the local Schwinger-DeWitt expansion
is far from being straightforward. In the next section we
derive this expansion by converting the expression (2.7)
into the form of a so-called integral with a weak singularity
to which a known asymptotic expansion technique can be
directly applied.

III. INVERSE MASS EXPANSION

By integrating in (2.7) by parts and using the rules of the
dimensional regularization, which annihilates purely
power-divergent integrals, we have

 

Z 1
0
dppd�1 ln�p2 �m

�������������������
M2 � p2

q
�

� �
1

d

Z 1
0
dppd�1 2�m=

�������������������
M2 � p2

p
p2 �m

�������������������
M2 � p2

p : (3.1)

Then, with the change of the integration variable from p to
t,

 t �
p2

2M
�������������������
M2 � p2

p ; p � M�2t�
�������������
1� t2

p
� t��1=2;

(3.2)

the integral takes the form

 

Z 1
0
dppd�1 ln�p2 �m

�������������������
M2 � p2

q
� �
�2M2�d=2

d
"I; (3.3)

where

 I �
Z 1

0
dttd=2�1�t� "��1’�t�; (3.4)
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 ’�t� � �
�������������
1� t2

p
� t�d=2; (3.5)

and

 " �
m

2M
: (3.6)

Obviously the 1=M asymptotic expansion corresponds
to the asymptotic expansion in "! 0—the limit in which
the power-law singularity of the integrand occurs at the
lower integration limit t � 0. Here the integrand is not
analytic because of the factor td=2�1 having a branch point
at t � 0. Remember that the integral should be calculated
for a generic dimensionality d that should be analytically
continued to the complex plane in order to regularize the
ultraviolet divergences appearing at the upper integration
limit t! 1. Therefore, one should expect that the expan-
sion of the integral will also have a part nonanalytic in
"! 0.

As shown in Appendix A by the asymptotic expansion
method for integrals with a weak singularity [25], this
expansion indeed has the form

 I �
�"d=2�1

sin��d=2�
’��"� �

X1
j�0

a2j"2j; (3.7)

where the first term—the nonanalytic part—has a branch-
point singularity. Interestingly, the coefficient of this non-
analytic factor is exactly expressed through the function
(3.5) itself but with the flipped sign of the argument. Its
expansion in higher powers of ", given by Eq. (A9) in
Appendix A, is determined by the derivatives ’�n��0� �
dn’=dtn�0� which explicitly equal
 

’�n��0� � 2n�2��1�n�1
d��n2�

d
4�

��1� n
2�

d
4�

�
d
2

�
d
2
� �n� 2�

��
d
2
� �n� 4�

�
� � � �

�

�
d
2
� �2� n�

�
: (3.8)

The analytic part of (3.7) contains only even powers of ",
with the coefficients

 a2j � �22j�1�d=2d
��j� d�1

2 ���
d
2� 1� 2j�

���j� 1
2�

: (3.9)

Thus, finally, on account of (2.7) and (3.3) the inverse
mass expansion for the brane part of the action takes the
form of two terms having qualitatively different analytic
behavior in the mass parameters M and m,
 

1

2
Tr�d� lnFbrane �

1

d��d=2�

Z
ddx

�
�

sin�d2

�
Mm
4�

�
d=2
’��"�

�

�
M2

2�

�
d=2 X1

j�0

a2j"
2j�1

�
: (3.10)

IV. ULTRAVIOLET DIVERGENCES VERSUS
SPURIOUS INFRARED POLES

The integral (3.4) has a power divergence of order d� 1
at the upper integration limit. Its differentiation with re-
spect to " improves the convergence of the integral which
becomes ultraviolet finite after d differentiations. This
means that the ultraviolet divergence of (3.4) is a polyno-
mial in " of order d� 1. The ultraviolet divergence of the
brane action is a polynomial of order d in m and M,
respectively, cf. Equation (3.3). In dimensional regulariza-
tion these divergences manifest themselves as poles in the
dimensionality d analytically continued to the complex
plane. From (3.10) it follows, however, that for even d
the nonanalytic and analytic parts of the inverse mass
expansion separately have poles to all orders in "—the
poles of �= sin��d=2� and the poles of one of the Gamma
functions in the numerator of (3.9) for all 2j 
 d=2� 1.
This implies an intrinsic cancellation between the infinite
sequence of poles in the nonanalytic and analytic parts of
(3.10). This cancellation of spurious poles, which have the
nature of infrared divergences, can be directly observed by
calculating separately these two contributions.

The real ultraviolet divergences of (3.4) can be indepen-
dently obtained by means of integration by parts. In terms
of the new integration variable x � 1=t the integral be-
comes divergent at the lower integration limit,

 I �
Z 1

0
dxx�df�x�; (4.1)

 f�x� � �1� "x��1�
��������������
1� x2

p
� 1�d=2: (4.2)

We call in the following the physical dimension of space-
time N in order to distinguish it from the formal dimension
used in the integrals. Analytically continuing the spacetime
dimensionality from its physical value N to the domain of
convergence, where integrations by parts are possible with-
out introducing extra surface terms, we have

 I �
1

�d� 1��d� 2� � � � �d� N�

Z 1
0
dxxN�df�N��x�:

(4.3)

Then taking the limit to the real physical dimensionality,

 d � N � �; �! �0; (4.4)

we have the logarithmic divergence of this integral as a
residue of the pole in �! 0,

 Idiv �
1

�
f�N�1��0�

��N�
: (4.5)

By applying this formula we obtain the ultraviolet di-
vergences which for even and odd dimensionalities look as
follows. For even d being a multiple of 4, d � 4k� �, k �
0; 1; � � � , the divergences read

EFFECTIVE ACTION AND HEAT KERNEL IN A TOY . . . PHYSICAL REVIEW D 75, 044010 (2007)

044010-5



 

1

2
Tr�d� lnFbranejdiv � �

1

�
1

2�4��d=2��d2�

Z
d4kx

X2k�1

j�k�1

��j� 1�M4k�2j�2m2j�2

��2k� j��2j� 2� 2k�!
: (4.6)

For even d being a multiple of 2, d � 4k� 2� �, k � 0; 1; � � � , they have the form

 

1

2
Tr�d� lnFbranejdiv � �

1

�
�

1

2�4��d=2��d2�

Z
d4k�2x

X2k
j�k

��j� 1�M4k�2jm2j�2

��2k� 1� j��2j� 1� 2k�!
: (4.7)

Similarly, for odd d � 2k� 1� � the ultraviolet divergences of the brane effective action read

 

1

2
Tr�d� lnFbranejdiv �

1

�
�

1

2�4��d=2��d2�

Z
d2k�1x

Xk
j�0

��1�k�j�1��k� 2j� 1
2�

��12� j��k� j�!
M2k�2jm2j�1: (4.8)

These results can be directly checked by disentangling
the poles in spacetime dimensionality in the general in-
verse mass expansion (3.10). This calculation confirms the
cancellation of the fictitious infrared divergences in even d
mentioned above. Although these divergences have a spu-
rious nature and only arise at intermediate calculational
stages, their presence reflects a nontrivial analytic structure
of the asymptotic mass expansion (3.10). As we will see
below, they entail a nontrivial form of the heat kernel
expansion corresponding to the generalized Neumann
boundary conditions with second-order derivatives tangen-
tial to the boundary.

V. HEAT KERNEL EXPANSION

Because of the nontrivial pseudodifferential nature of
the brane-to-brane operator (1.11) and the inverse mass
expansion of its action (3.10) the heat kernel for the gen-
eralized Neumann boundary conditions (1.10) does not

have a typical expansion in integer and half-integer powers
of the proper time (1.12). Thus we assume a more general
structure of this expansion in the form

 Tr �d�1�
N es��d�1� �

1

�4�s��d�1=2�

�Z
y
0

dd�1X

�
X
fpg

sp
Z
ddxbfpg

�
; (5.1)

where the summation runs over some unknown set of
powers fpg of the proper time with some unknown coef-
ficients of the surface integrals bfpg. The bulk integral here
involves only one term corresponding to the only non-
vanishing bulk Schwinger-DeWitt coefficient a0�X;X� �
1 (which is independent of the boundary conditions and
coincides with the one in spacetime without boundaries).

This expansion generates the inverse mass expansion for
the effective action of the problem (1.1),

 

1

2
TrN ln�M2 ���d�1�� � �

1

2
TrN

Z 1
0

ds
s
es��d�1��sM2

� �
1

2

�
M2

4�

�
�d�1=2�

�
�
�
�
d� 1

2

�Z
y
0

dd�1X�
X
fpg

��p� d�1
2 �

M2p

Z
ddxbfpg

�
: (5.2)

Our goal now will be to determine the range of summation fpg and the coefficients bfpg by comparing this expression with
the inverse mass expansion of (1.6) known from (2.4) and (3.10).

We begin by considering the most interesting case of even dimensionality which under dimensional regularization reads
as d � 2k� �, �! 0. Even though the heat kernel is an ultraviolet finite object (which generates UV divergences in the
action due to the divergence of the proper-time integration), we need this regularization to regulate intermediate infrared
divergences which cancel out in the final answer. Thus, assembling together (2.4) and (3.10) we get

 

1

2
TrN ln�M2���d�1�� ��

1

2

�
M2

4�

�
�d�1=2�

�
�
�
d� 1

2

�Z
y
0

dd�1X�
�
M2

4�

�
d=2Z

ddx
�
1

8
���d=2��

X1
j�0

2d=2�2j�1

d��d2�
a2j

m2j�1

M2j�1

�
1

2
���d=2�

X1
n�k

�
�

1

2

�
n�k ’�n�k��0�
�n� k�!

mn��=2

Mn��=2

�
; d� 2k��: (5.3)

Comparing it with (5.2) we immediately get the range of summation over the proper-time powers fpg which we will label
by the integer numbers j and n,
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 fpg �

8><
>:

1=2;
j; j 
 1;
n=2� �=4; n 
 k� 1;

(5.4)

and the corresponding coefficients

 bfpg �

8><
>:
b1=2;
bj; j 
 1;
bn=2��=4 � ~bn=2; n 
 k� 1:

(5.5)

In terms of b1=2, bj and ~bn=2 the heat kernel trace takes
the form
 

Tr�d�1�
N es��d�1� �

1

�4�s��d�1=2�

Z
y
0

dd�1X�
1

�4�s��d�1=2�

�
Z
ddx

�
b1=2s1=2 �

X1
j�1

bjsj

�
X1

n�k�1

~bn=2s�n�k�=2�d=4

�
: (5.6)

The lowest order surface coefficient coincides with the
Dirichlet one,

 b1=2 � bD1=2 � �

����
�
p

2
; (5.7)

whereas the higher order ones take the following form in
view of the known expressions (3.8) and (3.9) for the
coefficients of the nonanalytic and analytic parts of the
action,

 bj �
����
�
p ��k� 2j� 1� �

2�

��d2���
3
2� j�

m2j�1; j 
 1; (5.8)

 

~bn=2 �
����
�
p ��1� k� �

2�

��3�n2 �
�
4�

1

�n� 1� k�!
mn�1��=2;

n 
 k� 1:
(5.9)

The first few coefficients bj are ultraviolet finite,

 bj !
����
�
p ��k� 2j� 1�

��k���32� j�
m2j�1; �! 0;

2  2j  k:

(5.10)

However, for 2j > k they are divergent,

 

bj ��24�2j��1�j�k
��2j� 2�

��j� 1���2j� k���k�
m2j�1 1

�
� . . . ;

�! 0; (5.11)

but the complimentary coefficients ~bj have poles with
residues that are exactly opposite in sign, �bj � ~bj�pole �

0. This is certainly a manifestation of the cancellation of
infrared divergences between the analytic part of (3.10)
related to bj and the nonanalytic part related to ~bj. As a
result the heat kernel stays well defined but acquires loga-
rithmic terms in s because

 bjs
j � ~bjs

j��=4 � sj��j ln�sm2� � �j�; (5.12)

 �j � �22�2j��1�j�k
��2j� 2�

��j� 1���2j� k���k�
m2j�1:

(5.13)

The rest of the coefficients with half-integer numbers
~bj�1=2 are finite,

 

~b j�1=2 �
����
�
p
��1�k�j

��j�
2��2j� 1� k���k�

m2j: (5.14)

Thus finally the heat kernel trace in even integer (un-
regulated) dimensionality of a brane d � 2k takes the form

 Tr �d�1�
N es��d�1� �

1

�4�s��d�1=2�

Z
y
0

dd�1X�
1

�4�s��d�1=2�

Z
ddx

�
b1=2s

1=2 �
X�k=2�

j�1

bjs
j �

X1
2j
k

~bj�1=2s
j�1=2

�
X1

2j
k�1

��j ln�sm2� � �j�s
j
�
: (5.15)

In odd dimensions, d � 2k� 1, the poles of infrared
nature are absent, so that both bj and ~bn=2 are finite, and no
logarithmic terms arise in the heat kernel. One can check
that its trace has explicitly the form (5.6) with d � 2k� 1.
Thus it has not only half-integer powers of the proper time,
but also powers multiple of a quarter.

Note that b1=2 for all finite m has the value (5.7) char-
acteristic of the Dirichlet problem. At the same time, for
m! 1 our problem reduces to the case of Neumann

conditions, cf. Equation (1.10), corresponding to bN1=2 �

�
����
�
p

=2 [17]. However, this does not present any contra-
diction, because the asymptotic expansion in 1=M is ob-
viously not homogeneous in m! 1, as it involves
growing positive powers of m. To analyze the limit of
large m or "! 1, which includes the case of the massless
DGP model, M � 0, we have to consider another repre-
sentation of the effective action. This is discussed in the
next section.
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VI. MASSLESS LIMIT: EFFECTIVE POTENTIAL IN A TOY DGP MODEL

As shown in Appendix B, the brane part of the effective action (2.7) can be exactly represented in terms of the
hypergeometric function. This representation has the form

 

1

2
Tr�d� lnFbrane �

1

d��d=2�

Z
ddx

�

sin�d2

�
Mm
4�

�
d=2
’��"� �

�
M2

4�

�
d=2 ��1�d2 �

2d
����
�
p

Z
ddx

X
v�v�

vF
�
1;

1� d
2

; 1�
d
2

; 1� v2

�
;

(6.1)

where F�a; b; c; u� is a hypergeometric function given by (B4), and its argument u is defined in terms of the following two
functions of " � m=2M,

 v� � �
��������������
1� "2

p
� " � �1=v�: (6.2)

This representation exactly recovers the nonanalytic part of the 1=M-expansion (3.10), whereas the analytic part of the
latter follows from the known hypergeometric series F�a; b; c; u� � 1�O�u� in powers of the argument u � 1� v2

� 	 ".
In the opposite limit of large " (corresponding to largem or smallM) the brane action can be equivalently represented in

a form useful for the expansion in v� 	 1=2"� 1. As shown in Appendix B by using the transformation formulas for
F�a; b; c; u� it reads

 

1

2
Tr�d� lnFbrane �

�
M2

4�

�
d=2 Z

ddx
�
�

1

4
���d=2��1� v2

��
d=2 �

�

2��1� d
2� sin��d�

�1� v2
��

d=2

vd�

�
��� 1�d

2 �

4
����
�
p v�

�
�d� 1�F

�
1;

1� d
2

;
3

2
;v2
�

�
� F

�
1;

1

2
;
3� d

2
;v2
�

���
: (6.3)

Using this representation one can consider the limit of
exactly Neumann boundary conditions corresponding to
m! 1 and a finite value of the massM in the bulk. In this
limit v� ! 0 and the last two terms of (6.3) vanish.
Naively, the second term 	"d is growing to infinity, but
in the domain of ultraviolet convergence d < 0, so that
with the appropriate order of taking the limits (first inm!
1 and second in the dimensionality) it vanishes, too. Thus,
only the first term remains,

 

1

2
Tr�d� lnFbrane � �

1

4
���d=2�

�
M2

4�

�
d=2 Z

ddx; (6.4)

which is obviously one-half of the contribution of the
d-dimensional massive particle corresponding to the
brane-to-brane mode propagating with the square-root op-
erator Fbrane �

������������������
M2 ��
p

,

 

1

2
Tr�d� lnFbrane �

1

4
Tr�d� ln�M2 ���: (6.5)

When added to the Dirichlet effective action (2.4) it alters
the sign of the brane (d-dimensional integral) term, which
corresponds to the transition from the Dirichlet value of the
bD1=2 surface coefficient (5.7) to the Neumann value,

 bN1=2 �

����
�
p

2
: (6.6)

Another interesting limit of "! 1 corresponds to the
massless case of the DGP model with M � 0. In this case
the only nonvanishing term is contained in the second term
of (6.3), and it yields

 

1

2
Tr�d� lnFbrane �

1

2

�
m2

4�

�
d=2 �

��1� d
2� sin�d

Z
ddx;

(6.7)

because M=v� ! 2"M � m. This result can be confirmed
by a direct calculation of the effective potential of the
brane mode, circumventing the operation of taking the
limit M ! 0 in the general answer (6.3).

Indeed, the effective potential Veff�m�,

 

1

2
Tr�d� lnFbrane �

Z
ddxVeff�m�; (6.8)

for the brane operator in the toy DGP model, Fbrane �

����m
���������
��
p

�=m, can be written down in the form of
a momentum-space integral similar to (2.7),
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Veff�m� �
1

�4��d=2��d2�

Z 1
0
dppd�1 ln�p2�mp�

�

�
m2

4�

�
d=2 1

��d2�

Z 1
0
dttd�1�ln�t� 1�� lnt� lnm2�:

(6.9)

Within the dimensional regularization only the first loga-
rithmic term gives a nonvanishing contribution which we
transform by using the proper-time representation of the
logarithm and changing the order of integrations,
 

Veff�m� � �
�
m2

4�

�
d=2 1

��d2�

Z 1
0
dttd�1

Z 1
0

ds
s
e�st�s

�
1

2

�
m2

4�

�
d=2 1

��d2� 1�

�
sin�d

: (6.10)

After subtracting the ultraviolet divergence in the limit
of the physical dimensionality, d! N, this gives the re-
normalized effective potential of the usual Coleman-
Weinberg structure,

 Veff�m� �
1

2

��1�N

��N2 � 1�

�
m2

4�

�
N=2

ln
m
�
: (6.11)

Here � is the parameter reflecting the renormalization
ambiguity, and the role of the field (argument of the
potential) is played by the scale m of the brane term in
the classical action (1.7)—the analogue of the DGP scale.
This result confirms the boundary effective action calcu-
lation of [5].

VII. CONCLUSIONS

In conclusion, we have derived the one-loop effective
action in a simplified model of brane-induced gravity
which gives rise to special boundary conditions involving
second-order tangential derivatives. The main peculiarity
of this action is the presence of logarithmic ultraviolet
divergences for both even and odd dimensionalities of
the spacetime. This is different from analogous one-loop
calculations in spacetimes without boundaries leading to
divergences only for even spacetime dimensionalities. The
action has a nontrivial analytic structure in the mass pa-
rameter—for generic M and m it is given by two repre-
sentations in terms of hypergeometric functions (6.1) and
(6.3) and simplifies for the case of the massless field in the
bulk, M � 0, to the form (6.10). After ultraviolet renor-
malization this gives rise to the familiar logarithmic
Coleman-Weinberg effective potential 	’d ln�’2=�2�
with the field ’ played by the parameter m in the boundary
conditions (1.10)—the result used in [5] for the stabiliza-
tion of the DGP crossover scale in the Brans-Dicke modi-
fication of the DGP model [26].

We also derived the proper-time expansion for the func-
tional trace of the heat kernel subject to these generalized

Neumann boundary conditions. This turns out to be non-
trivial, because for even dimensionalities of the boundary it
involves together with the well-known half-integer powers
of the proper time s also the logarithmic terms 	 lns,
cf. Equation (5.15), and for odd dimensionalities contains
powers of s which are multiples of one quarter, see
Eq. (5.6). Such peculiarities of the proper-time expansion
are usually associated with the lack of strong ellipticity of
the boundary value problem [24] when a naively positive
elliptic operator acquires due to the presence of the bound-
ary an infinite set of negative modes. These modes make
the heat kernel operator unbounded and violate usual as-
sumptions underlying its proper-time expansion. But, as
we show in Appendix C, strong ellipticity of our problem
gets violated only for negative m in (1.10)—when the
relevant classical action (1.7) and the brane-to-brane op-
erator Fbrane, Eq. (1.11), are both not positive definite.
However, the heat kernel expansions become exotic also
for m> 0 with no violation of strong ellipticity, which
implies deeper reasons of these peculiarities.

To summarize, we conclude that the technique for quan-
tum effects in brane models is more complicated than in
systems without boundaries. Moreover, it does not reduce
to a simple bookkeeping of surface terms in the heat kernel
expansion of [17,19,21], and so on, because of the com-
plicated square-root structure of the brane propagator
(1.11) mediating the effect of the generalized Neumann
boundary conditions (1.10). The proper-time method that
was fundamentally efficient in models without boundaries
[14,16] in our calculations above became a derivative of an
alternative calculation. Namely, the surface terms in the
heat kernel expansion were recovered from the
1=M-expansion of the action obtained by a different
method of a Fourier decomposition.

Nevertheless, the proper-time method still does not
loose its power and can be used in realistic brane models
including gravity. In these models the effective action
should be expanded in powers of the bulk spacetime cur-
vature and the extrinsic curvature of the brane, starting
with the approximation considered above. The
momentum-space decomposition is not very efficient for
sake of such an expansion—the difficulty usually circum-
vented in background field formalism by the use of the
Schwinger-DeWitt proper-time method [14–16]. Here we
present without derivation (that will be given in forthcom-
ing publications) such a representation for the Green’s
function of the DGP brane-to-brane operator and its func-
tional determinant. They have a form of the weighted
proper-time integrals

 

1

���m
���������
��
p �

Z 1
0
dses�w�s�; (7.1)

 Tr ln����m
���������
��
p

� � �Tr
Z 1

0

ds
s
es�

1� w�s�
2

;

(7.2)
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with the weight function w�s� given in terms of the error
function ��x� � 2���

�
p

R
x
0 dy exp��y2� and having the fol-

lowing ultraviolet and infrared asymptotics

 w�s� � esm
2
�1���m

���
s
p
�� !

�
1; m

���
s
p
! 0;

1=m
������
s�
p

; m
���
s
p
! 1:

(7.3)

The advantage of this representation1 is that it applies also
to the case of the curved-space d’Alembertian �, so that
the generally covariant expansion of (7.1) and (7.2) in
curvatures can be directly obtained by using a well-known
Schwinger-DeWitt expansion for es�. Thus the lowest
order approximation for the exact brane-to-brane operator
(1.5) in models with a curved bulk and curved branes can
be considered by means of the manifestly covariant tech-
nique which can be systematically extended to higher
orders. Combined with the method of fixing the back-
ground covariant gauge for diffeomorphism invariance in
brane models, developed in [27], this will ultimately give
the universal background field method of the Schwinger-
DeWitt type in gravitational brane systems.
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APPENDIX A: ASYMPTOTIC EXPANSION FOR
INTEGRALS WITH A WEAK SINGULARITY

The analytic and nonanalytic parts of the asymptotic
expansion for the integral (3.4) (a so-called integral with
a weak singularity) can be found by the method of [25]. For
an integral of a slightly more general form this expansion
reads

 

Z 1
0
dtt��1�t� "�	’�t� � "	��

X1
n�0

��n� �����	� �� n�
���	�

’�n��0�
n!

"n �
X1
n�0

an"n; "! 0: (A1)

Here ’�t� is a function which is analytic at t � 0 and has a
Taylor series with coefficients ’�n��0� � dn’=dtn�0�. The
parameter � is positive in order to guarantee the conver-
gence of the integral at t � 0. The first sum gives a non-
analytic part of the expansion determined entirely by the
derivatives of the function ’, ’�n��0�, whereas the second
sum determines the analytic part with coefficients involv-
ing a (nonlocal) dependence of the function ’�t� at all t.
These coefficients are given by the following expression:

 

an �
	�	� 1� . . . �	� n� 1�

n!

�Z 1
0
dt’S�t�t	���n�1

�
X�n�	���
m�0

T	���m�n

	� ��m� n
’�m��0�
m!

�
; (A2)

where ’S�t� is a piecewise smooth function obtained from
’�t� by subtracting its first few terms of the Taylor expan-
sion at t � 0 on a finite segment of the t-axes, 0  t < T,

 ’S�t� � ’�t� �
X�n�	���
m�0

’�m��0�
m!

tm; t < T;

’S�t� � ’�t�; t 
 T:

(A3)

Here the number of subtracted terms is given by
[n� 	� �]—the integer part of n� 	� �, and T is
arbitrary positive. The value of the latter is immaterial,
because it is easy to check that @an=@T � 0. These sub-
tractions are necessary to guarantee the convergence of the
integrals in (A2) at t � 0. For the first few an these sub-
tractions are absent,
 

an �
	�	� 1� . . . �	� n� 1�

n!

Z 1
0
dt’�t�t	���n�1;

n < 	� �; (A4)

while for n > 	� � their effect can be explicitly circum-
vented by multiple integrations by parts in (A2). After
�Nn � 1� integrations by parts, all nonintegral terms of
(A2) cancel out and the expansion coefficients take the
following alternative form,

1Note, in passing, that the interpretation of this weight and its
asymptotics is very transparent. In the ultraviolet domain of
small proper time m

���
s
p
� 1 (or big

���������
��
p

� m) it approximates
the brane operator by ��, whereas in the infrared domain
m

���
s
p
� 1 (or

���������
��
p

� m) it corresponds to its low-energy
behavior m

���������
��
p

. All the results above could be obtained with
the aid of this representation generalized to the case of a nonzero
M. We did not use it, however, because this generalization has a
complicated weight function.
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an �
	�	� 1� . . . �	� n� 1�

n!

��n� 	� �� Nn � 1�

��n� 	� �� 1�

�
1

n� 	� �� Nn

Z 1
0
dt’�Nn�1��t�t	���n�Nn;

n > 	� �; (A5)

where

 Nn � �n� 	� ��: (A6)

Finally, when	� � is a positive integerN the two sums of
(A1) formally become analytic, but their coefficients de-
velop pole singularities in 	� �� N ! 0. These singu-
larities come from these two sums with opposite signs and
cancel. The finite remnant of this cancellation is a term
logarithmic in ".

If we apply now this asymptotic expansion to the case of
our integral (3.3) and (3.4) with

 ’�t� � �
�������������
1� t2

p
� t�d=2; 	 � �1; � �

d
2
;

(A7)

then in view of

 

��n� �����	� �� n�
���	�

� ��1�n
�

sin��d=2�
; (A8)

the nonanalytic part is explicitly expressed in terms of the
function ’��"� with the flipped sign of its argument,

 

�"d=2�1

sin��d=2�

X1
n�0

’�n��0�
n!

��"�n �
�"d=2�1’��"�

sin��d=2�
: (A9)

The coefficients of the analytic part can be explicitly
calculated by taking the integrals (A4) in the domain n <
d=2� 1 and extended beyond this domain by analytic
continuation (which is equivalent to using (A5)). The result

is

 an � 2n�1�d=2��1�n�1d
��n�d�1

2 ���d2� 1� n�

��� n�1
2 �

: (A10)

Therefore for odd n � 2j� 1 they vanish due to the un-
regulated (by the dimensionality d) infinity in the denomi-
nator, whereas for even n � 2j they are given by (3.9), and
the final form of the expansion for I is given by (3.7).

APPENDIX B: HYPERGEOMETRIC FUNCTION
REPRESENTATION

The integral (2.7) can be rewritten in terms of the

integration variable x �
�������������������
p2 �M2

p
=M as

 

Z 1
0
dppd�1 ln�p2 �m

�������������������
M2 � p2

q
�

� Md
Z 1

1
dxx�x2 � 1�d=2�1 ln�x2 � 2"x� 1�: (B1)

By factorizing the argument of the logarithm and integrat-
ing the result by parts we convert it to the sum of two terms,

 

Z 1
1
dxx�x2 � 1�d=2�1 ln�x2 � 2"x� 1�

�
X
v�v�

Z 1
1
dxx�x2 � 1�d=2�1 ln�x� v�

� �
1

d

X
v�v�

Z 1
1
dx�x2 � 1�d=2�x� v��1; (B2)

where v� are the roots (6.2) of the quadratic polynomial
x2 � 2"x� 1 � �x� v���x� v��.

With the change of the integration variables x � 1=
��
t
p

we have

 

Z 1
1
dx�x2 � 1�d=2�x� v��1 �

1

2

Z 1

0
dtt�1�d=2�1� t�d=2�1� tv2��1 �

v
2

Z 1

0
dtt�1=2�d=2�1� t�d=2�1� tv2��1; (B3)

so that finally in terms of the hypergeometric function

 F�a; b; c; u� �
��c�

��b���c� b�

Z 1

0
dttb�1�1� t�c�b�1�1� tu��a (B4)

the basic integral reads as

 

Z 1
1
dx�x2 � 1�d=2�x� v��1 �

��� d
2���1�

d
2�

2��1�
F
�
1;�

d
2

; 1;v2

�
�
v
2

��1� d
2���

1�d
2 �

��32�
F
�
1;

1� d
2

;
3

2
;v2

�
: (B5)

We will need its "-expansion. At "! 0 the parameter v � v� ! �1, so we have to transform the hypergeometric
functions to the series in 1� v2. Because of the known relation F�a; b; a; u� � F�b; a; a; u� � �1� u��b we have

 F
�
1;�

d
2

; 1;v2

�
� �1� v2�d=2 (B6)

and in view of Eq. 9.131.2 of [28],
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 F
�
1;

1� d
2

;
3

2
;v2

�
�

��32���
d
2�

��12���1�
d
2�
F
�

1;
1� d

2
; 1�

d
2

; 1� v2

�
� �1� v2�d=2

��32����
d
2�

��1���1�d2 �
F
�
1

2
; 1�

d
2

; 1�
d
2

; 1� v2

�
;

(B7)

where again F�12 ; 1�
d
2 ; 1� d

2 ; 1� v2� � �1� �1� v2���1=2 � jvj�1. Therefore

 F
�
1;

1� d
2

;
3

2
;v2

�
� �

����
�
p

d

��1� d
2�

��1�d2 �

�1� v2�d=2

jvj
�

1

d
F
�

1;
1� d

2
; 1�

d
2

; 1� v2

�
(B8)

Substituting (B6) and (B8) into (B5) we have

 

Z 1
1
dx�x2 � 1�d=2�x� v��1 � �

�
sin��d=2�


�v��1� v2�d=2 �
1

2
����
�
p �

�
d
2

�
�
�
1� d

2

�
vF

�
1;

1� d
2

; 1�
d
2

; 1� v2

�
;

(B9)

where a step function 
�v� arose as the result of summation of two terms,

 
�v� �
1

2

�
1�

v
jvj

�
: (B10)

The first term in (B9) exists only for positive v and is nonanalytic at v! 1, whereas the second term is analytic. Obviously
for negative v this integral is an analytic function because the argument of the logarithm nowhere tends to zero in the
integration domain. This explains the absence of the first term for v < 0.

Substituting (B9) to (B1) and (B2) we finally get

 

Z 1
0
dppd�1 ln�p2 �m

�������������������
M2 � p2

q
� �

Md

d
�

sin��d=2�
�1� x2

��
d=2 �

Md

d

��d2���
1�d

2 �

2
����
�
p

X
v�v�

vF
�
1;

1� d
2

; 1�
d
2

; 1� v2

�
:

(B11)

Bearing in mind that �1� v2
��

d=2 � �2"v��d=2 � �2"�d=2’��"� we finally have the representation useful for small ",

 

Z 1
0
dppd�1 ln�p2 �m

�������������������
M2 � p2

q
� �

Md

d
�

sin��d=2�
�2"�d=2’��"� �

Md

d

��d2���
1�d

2 �

2
����
�
p

X
v�v�

vF
�

1;
1� d

2
; 1�

d
2

; 1� v2

�
;

(B12)

which gives rise to the representation (6.1).
To consider the limit of "! 1 we need another representation, because in this limit v� ! 1=2" and v� 	�2"!

�1, so that the contribution of v � v� in (B2) should be expandable in 1=v. This can be achieved by the transformation
formula 9.132.2 of [28] which in our case reads as

 F
�

1;
1� d

2
;
3

2
;v2

�
�

1

1� d
1

v2 F
�
1;

1

2
;
3� d

2
;

1

v2

�
�

����
�
p

2

��1�d2 �

��1� d
2�

�1� v2�d=2

��v2�1=2
: (B13)

Using this in the representation (1.6) of the v � v� term of (B2) and taking into account that 1=v� � �v� we finally
arrive at the equation underlying the representation (6.3):
 Z 1

0
dppd�1 ln�p2 �m

�������������������
M2 � p2

q
� �

�Md

2d sin��d=2�
�1� v2

��
d=2 �

�Md

d sin��d�
�1� v2

��
d=2

vd�

�Md ��d2����
1�d

2 �

4
����
�
p v�

�
�d� 1�F

�
1;

1� d
2

;
3

2
;v2
�

�
� F

�
1;

1

2
;
3� d

2
;v2
�

��
: (B14)
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APPENDIX C: STRONG ELLIPTICITY PROBLEM

The strong ellipticity problem for the operator (1.8) with
generalized Neumann boundary condition (1.10) consists
in the existence of an infinite set of normalizable eigen-
modes with a spectrum which is unbounded from below
[24]. This implies that the relevant heat kernel is an un-
bounded operator which cannot be rendered bounded by
the elimination of a finite number of states from its func-
tional space, and therefore it has an unusual proper-time
asymptotics different from (1.12). This situation occurs
when the parameter m in the operator (1.9) of the boundary
condition is negative.2 Here we show that these negative
modes correspond to the negative modes of the brane-to-
brane operator (1.11), localized near the brane/boundary
and responsible for brane-to-brane propagation.

Indeed, in this case there is a set of eigenmodes localized
near the boundary y � 0 of the form

 �p�x; y� � eipx��py (C1)

in which �p is given on account of the boundary condition
by the expression

 �p � �
p2

m
> 0; m < 0: (C2)

Negative m guarantees the normalizability of these eigen-
modes which, therefore, cannot be excluded from the func-
tional space of the operator. Their eigenvalues �p,

 �M2 ���d�1���p�X� � �p�p�X�; (C3)

 �p �

�
M2 � p2 �

�p2�2

m2

�
; (C4)

are negative for sufficiently high Fourier momenta p,

 �p < 0; p2 >
m2

2
�1�

���������������������������
1� 4M2=m2

q
�; (C5)

and tend to �1 for p2 ! 1. But the momentum-space
domain where they are negative exactly coincides with the
domain in which the brane operator is negative definite for
m< 0,

 F brane’p�x� �
�
p2

m
�

�������������������
M2 � p2

q �
’p�x�; ’p�x� � eipx:

(C6)

Thus, the lack of strong ellipticity of the generalized
Neumann boundary value problem is in fact the lack of
positivity of the action (1.7) with m< 0, from which this
problem originates by the variational procedure.
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