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The new 182 gold supernova Ia data, the baryon acoustic oscillation measurement and the shift
parameter determined from the Sloan Digital Sky Survey, and the three-year Wilkinson Microwave
Anisotropy Probe data are combined to reconstruct the dark energy equation of state parameter w�z� and
the deceleration parameter q�z�. We find that the strongest evidence of acceleration happens around the
redshift z� 0:2 and the stringent constraints on w�z� lie in the redshift range z� 0:2–0:5. At the sweet
spot, �1:2<w�z�<�0:6 for the dark energy parametrization w�z� � w0 � waz=�1� z�

2 at the 3�
confidence level. The transition redshift zt when the Universe underwent the transition from deceleration
to acceleration is derived to be zt � 0:36�0:23

�0:08. The combined data is also applied to find out the geometry
of the Universe, and we find that at the 3� confidence level, j�kj & 0:05 for the simple one-parameter
dark energy model, and �0:064<�k < 0:028 for the �CDM model.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe by the supernova (SN) Ia observations [1] im-
poses a big challenge and provides opportunities to theo-
retical physics. The more accurate SN Ia data [2– 4], the
three-year Wilkinson Microwave Anisotropy Probe
(WMAP3) data [5], and the Sloan Digital Sky Survey
(SDSS) data [6] tell us that the Universe is almost spatially
flat, and dark energy (DE) with negative pressure contrib-
utes about 72% of the matter content of the Universe.
Although the existence of DE were verified by different
observations, the nature of DE is still a mystery to us. For a
review of DE models, one may refer to Ref. [7].

Many parametric and nonparametric model-independent
methods were proposed to study the evolutions of the
deceleration parameter q�z�, the DE density �DE�z�, the
DE equation of state (EoS) w�z�, and the geometry of the
Universe [8–36]. In the reconstruction of q�z�, it was found
that the strongest evidence of acceleration happens at
redshift z� 0:2 [8–10], and the evidence of the current
acceleration is not very strong [9] and model dependent
[10]. Previous studies on the reconstruction of w�z� also
showed that the stringent constraint on w�z�, or the sweet
spot, happened around redshift z� 0:2–0:5 [11–16]. As
Riess et al. pointed out, the use of additional parameters to
reconstruct w�z� does not provide a statistically significant
improvement on the fit of the redshift-magnitude relation,
so we discuss one- and two-parameter models only. In this
work, we first use the simple two-parameter model q�z� �
1=2� �q1z� q2�=�1� z�2 [10] to reconstruct q�z�, then

we use the three popular two-parameter models w�z� �
w0 � waz=�1� z� [17], w�z� � w0 � waz=�1� z�2 [18]
and �DE � 1��m � A1 � A2 � A1�1� z� � A2�1�
z�2 [14] to reconstruct w�z�. The purpose of this work is
to see if the stringent constraints on q�z� and w�z� still
happen around z� 0:2–0:5 when we use the new 182 gold
SN Ia data compiled in [4]. The geometry of the Universe
is also discussed by fitting the simple one-parameter model
w�z� � w0 exp�z=�1� z��=�1� z� [16] to the combined
SN Ia, SDSS, and WMAP3 data.

This paper is organized as follows. In Sec. II, we study
the property of q�z� by fitting the parametrization q�z� �
1=2� �q1z� q2�=�1� z�

2 to the new 182 gold SN Ia data
compiled in [4]. In Sec. III, we apply the popular parame-
trizations w�z� � w0 � waz=�1� z�, w�z� � w0 �
waz=�1� z�

2, and �DE � 1��m � A1 � A2 � A1�1�
z� � A2�1� z�

2 to study the evolutions of DE EoS. The
baryon acoustic oscillation (BAO) measurement from
SDSS and the shift parameter determined from WMAP3
data combined with the new 182 gold SN Ia data are used
in our analysis. In Sec. IV, we fit the simple one-parameter
representation w�z� � w0 exp�z=�1� z��=�1� z� to the
combined SN Ia, SDSS, and WMAP3 data to obtain the
geometry of the Universe. Note that the simple one-
parameter model fits the observational data as well as the
two-parameter models do. In Sec. V, we conclude the paper
with some discussions.

II. RECONSTRUCTION OF THE DECELERATION
PARAMETER

The Hubble parameter H�t� � _a=a and the deceleration
parameter q�t� � � �a=�aH2� are related by the following
equation,
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 H�z� � H0 exp
�Z z

0
�1� q�u��d ln�1� u�

�
; (1)

where the subscript 0 means the current value of the
variable. If a function of q�z� is given, then we can
find the evolution of the Hubble parameter. For the
flat �CDM model, q�z� � ��m�1� z�

3 � 2�1�
�m��=2��m�1� z�3 � 1��m�. In this section, we use
the simple two-parameter function [10]

 q�z� �
1

2
�
q1z� q2

�1� z�2
; (2)

to reconstruct the evolution of q�z�. Note that q0 � 1=2�
q2, and dq=dzjz�0 � q1 � 2q2, so the parameter q2 gives
the value of q0. At early times, z	 1, q�z� ! 1=2.
Substitute Eq. (2) into Eq. (1), we get

 H�z� � H0�1� z�
3=2 exp

�
q2

2
�
q1z2 � q2

2�1� z�2

�
: (3)

Since the expression for the Hubble parameter is explicit,
so we can think that we are actually modeling H�z� instead
of q�z�.

The parameters q1 and q2 in the model are determined
by minimizing

 �2 �
X
i

��obs�zi� ���zi��2

�2
i

; (4)

where the extinction-corrected distance modulus ��z� �
5log10�dL�z�=Mpc� � 25, �i is the total uncertainty in the
SN Ia data, and the luminosity distance is

 dL�z� � �1� z�
Z z

0

dz0

H�z0�
: (5)

Fitting the model to the 182 gold SN Ia data, we get
�2 � 156:25, q1 � 1:47�1:89

�1:82, and q2 � �1:46
 0:43,
here the given error is the 1� error. For comparison, we
also fit the �CDM model to the 182 gold SN Ia data
and find that �2 � 156:16, �m � 0:48�0:13

�0:15, and �k �

�0:44�0:43
�0:36. So the simple two-parameter model of q�z�

fits the SN Ia data as well as the �CDM model does. By
using the best fitting results, we plot the evolution of q�z� in
Fig. 1. From Fig. 1, we see that q�z�< 0 for 0 � z & 0:2 at
the 3� confidence level. This result is consistent with
previous analysis by using the 157 gold SN Ia data [10].
It is also interesting to note that the stringent constraint on
q�z� happens around the redshift z� 0:2. One may think
perhaps there are more SN Ia data around this redshift. On
the contrary, less SN Ia data is around z � 0:2. In Table I,
we list the number N of SN Ia in a given redshift range for
the 182 gold SN Ia data. The behavior was also found in
[10–16] in the fitting of the EoS of DE for a variety of
models. This may suggest that the behavior of DE can be
better constrained in the redshift range 0:1 & z & 0:6. The
sweet spot can be estimated from the covariant matrix of
errors, which is the inverse of the Fisher matrix in the linear
approximation [11–13]. The Fisher matrix is estimated
to be F11 � 2:37, F12 � F21 � 9:55, and F22 � 43:9.
By choosing �1 � q1 and �2 � �F12=F22�q1 � q2 �
0:2175q1 � q2, the Fisher matrix becomes diagonal, �1

and �2 are uncorrelated, and the errors of �1 and �2 are
�2��1� � F22=�F11F22 � F2

12� and �2��2� � F�1
22 [37]. In

terms of �1 and �2, we get

 q�z� �
1

2
�
�1�z� 0:2175� � �2

�1� z�2
: (6)

Now the sweet spot can be estimated from the following
equation

 

2��2��2� � �2��1��z� 0:2175�2�

1� z

� �2��1��z� 0:2175�: (7)

The sweet spot is estimated to be z ’ 0:2175 since
�2��2� � F�1

22 � 0. For a general model w�z� �
w1 � w2f�z� with arbitrary function f�z�, the sweet spot
is determined similarly from the equation f�z� � F12=F11.
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FIG. 1 (color online). The evolution of q�z� � 1=2� �q1z�
q2�=�1� z�

2 by fitting it to the 182 gold SN Ia data. The solid
line is drawn by using the best fit parameters. The shaded areas
show the 1�, 2�, and 3� errors.

TABLE I. The distribution of the gold SN Ia data

z <0:1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0 >1:0

N 36 4 5 12 31 22 16 11 17 12 16
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III. DARK ENERGY PARAMETRIZATION

In this section, we use the observational data to recon-
struct the EoS of DE. For simplicity, we consider the
spatially flat case, k � 0. In addition to the SN Ia data,
we also use the distance parameter

 A �

��������
�m

p
0:35

�
0:35

E�0:35�

�Z 0:35

0

dz
E�z�

�
2
�

1=3
; (8)

measured from the SDSS data to be A �
0:469�0:95=0:98��0:35 
 0:017 [5,6], and the shift parame-
ter [31]

 R �
��������
�m

p Z zls

0

dz
E�z�

� 1:70
 0:03; (9)

where E�z� � H�z�=H0 and zls � 1089
 1.
The first DE parametrization we consider is [17]

 w�z� � w0 �
waz

1� z
: (10)

The dimensionless DE density is

 �DE�z� � �DE0�1� z�
3�1�w0�wa� exp��3waz=�1� z��:

(11)

This parametrization can be thought as the parametrization
of the DE density instead of w�z�. By fitting this model to
the observational data, we find that �2 � 158:07, �m �
0:29
 0:04, w0 � �1:07�0:33

�0:28 and wa � 0:85�0:61
�1:38. Com-

pared with previous fitting results [16], the current data
makes a little improvement on the constraint of wa. The
evolution of w�z� is plotted in Fig. 2 and the contours of w0

and wa are shown in Fig. 3. From Fig. 2, we see that at the

3� confidence level, w�z�< 0 for z < 2, w�z� crosses the
�1 barrier around z� 0:1, and the stringent constraint on
w�z� happens around z� 0:3. From the Fisher matrix
estimation, we get z=�1� z� � F12=F11 � 0:32, so the
sweet spot is around z � 0:47. This estimation is quite
different from what we get, and the main reason is that
the distribution of wa is highly non-Gaussian. From Fig. 3,
we see that the cosmological constant is more than 1�
away from the best fit result.

The second DE parametrization we consider is [18]

 w�z� � w0 �
waz

�1� z�2
: (12)

The dimensionless DE density is

 �DE�z� � �DE0�1� z�
3�1�w0� exp�3waz

2=2�1� z�2�:

(13)

Again this parametrization can also be thought as the
parametrization of the DE density. By fitting this model
to the observational data, we find that �2 � 157:11, �m �
0:28�0:04

�0:03, w0 � �1:37�0:58
�0:57, and wa � 3:39�3:51

�3:93. These
constraints are almost at the same level as previous results
in [16]. The evolution of w�z� is plotted in Fig. 4 and the
contours of w0 and wa are shown in Fig. 5. From Fig. 4, we
see that at the 3� confidence level, w�z�< 0 for z < 0:7,
w�z� crosses the �1 barrier around z� 0:15, and the
stringent constraint on w�z� happens around z� 0:2. The
sweet spot is estimated to be z � 0:2353 from the equation
z=�1� z�2 � F12=F11 � 0:1542. From Fig. 5, we see that
the �CDM model is almost 2� away from the best fit
result.
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FIG. 2 (color online). The evolution of w�z� by fitting the
model w�z� � w0 � waz=�1� z� to the observational data.
The solid line is drawn by using the best fit parameters. The
shaded areas show the 1�, 2�, and 3� errors.
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FIG. 3 (color online). The 1�, 2�, and 3� contour plots of w0

and wa for the model w�z� � w0 � waz=�1� z�. The diamond
denotes the point corresponding to the cosmological constant.
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The last model we consider is [14]

 �DE�z� � A1�1� z� � A2�1� z�
2 � 1��m � A1 � A2:

(14)

The EoS parameter w�z� is

 w�z� �
1� z

3

A1 � 2A2�1� z�
�DE�z�

� 1: (15)

The cosmological constant corresponds to A1 � A2 � 0.
By fitting this model to the observational data, we find that

�2 � 158:48, �m � 0:30
 0:04, A1 � �0:48�1:36
�1:47, and

A2 � 0:25�0:52
�0:45. The evolution of w�z� is plotted in Fig. 6

and the contours of A1 and A2 are shown in Fig. 7. From
Fig. 6, we see that at the 3� confidence level, w�z�< 0 for
z < 1:1 and the stringent constraint on w�z� happens
around z� 0:4. From Fig. 7, we see that the �CDM model
is more than 1� away from the best fit result. Comparing
the value of �2 of the three models we considered, we find
that the second model fits a little bit better than the other
two models do.
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FIG. 5 (color online). The 1�, 2�, and 3� contour plots of w0

and wa for the model w�z� � w0 � waz=�1� z�2. The diamond
denotes the point corresponding to the cosmological constant.
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FIG. 6 (color online). The evolution of w�z� by fitting the
model �DE�z� � 1��m � A1 � A2 � A1�1� z� � A2�1� z�

2

to the observational data. The solid line is drawn by using the
best fit parameters. The shaded areas show the 1�, 2�, and 3�
errors.
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FIG. 4 (color online). The evolution of w�z� by fitting the
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2 to the observational data.
The solid line is drawn by using the best fit parameters. The
shaded areas show the 1�, 2�, and 3� errors.
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IV. THE GEOMETRY OF THE UNIVERSE

In this section, we use the observational data to find out
the geometry of our universe. When k � 0, the luminosity
distance becomes

 dL�z� �
1� z

H0

����������
j�kj

p sinn
� ����������
j�kj

q Z z

0

dz0

E�z0�

�
; (16)

where sinn�
������
jkj

p
x�=

������
jkj

p
� sin�x�, x, sinh�x� if k � 1, 0,

�1, the parameter A becomes

 A �

��������
�m

p
0:35

�
0:35

E�0:35�

1

j�kj
sinn2

� ����������
j�kj

q Z 0:35

0

dz
E�z�

��
1=3
;

(17)

and the shift parameter becomes

 R �

��������
�m

p
����������
j�kj

p sinn
� ����������
j�kj

q Z zls

0

dz
E�z�

�
: (18)

To fit the observational data, we consider the one-
parameter DE parametrization [16]

 w�z� �
w0

1� z
ez=�1�z�: (19)

During both the early and future epochs, w�z� ! 0. The
DE density is

 �DE � �DE0�1� z�
3 exp�3!0e

z=�1�z� � 3!0�: (20)

By fitting this model to the observational data, we find that
�2 � 158:85, �m � 0:30
 0:04, �k � �0:0007�0:032

�0:03 ,
and w0 � �0:93�0:17

�0:18. The data is also used to fit the
�CDM model, the results are �2 � 160:51, �m � 0:30


0:03, and �k � �0:02
 0:02. This model fits the obser-
vational data as well as the �CDM and the two-parameter
models do. The contours of �m and �k are shown in
Figs. 8 and 9. The errors on �m and �k are almost the
same. Comparing with the results in [16], we find that the
new SN Ia data improves the constraint on �k significantly.

V. DISCUSSION

By fitting the simple two-parameter representation of
q�z� to the new 182 gold SN Ia data, we find strong
evidence of acceleration in the recent past which is con-
sistent with previous studies in [9,10]. While the evidence
of current acceleration is weak from fitting the simple
piecewise constant acceleration model to the previous
gold SN Ia data [9] and fitting the simple two-parameter
representation of q�z� to the 115 nearby Supernova Legacy
Survey (SNLS) SN Ia data [3,10], we find strong evidence
of current acceleration by using the gold SN Ia data. The
strongest evidence of acceleration again happens around
the redshift z� 0:2. The transition redshift when the
Universe underwent the transition from deceleration to
acceleration is found to be zt � 0:36�0:23

�0:08 at the 1� level.
The new SN Ia data, together with the BAO measure-

ment from SDSS and the shift parameter determined from
WMAP3 data, are used to fit three popular DE parametri-
zations. When we are given the parametrizations w�z� �
w0 � waz=�1� z� and w�z� � w0 � waz=�1� z�2, the ex-
plicit analytical expressions for the DE density can be
derived. Alternatively, we can think that we are parame-
trizing the DE density �DE�z� instead of w�z�. The new
observational data makes slightly improvement on the
constraint of wa, while the �CDM model is still consistent
with current observational data. Although high redshift
SN Ia data provides robust constraint on the property of
DE [32], the stringent constraint on w�z� happens around
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FIG. 8 (color online). The 1�, 2�, and 3� contour plots of �m
and �k for the parametrization w�z� � w0 exp�z=�1� z��=�1�
z�.
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z� 0:3. In other words, at the 3� confidence level, w�z� is
best constrained around the redshift z� 0:3. Surprisingly,
we only have a few SN Ia with redshift around 0.3 in the
current 182 gold SN Ia data. The same result holds for the
DE parametrization �DE�z� � 1��m � A1 � A2 �
A1�1� z� � A2�1� z�2, although the redshift is now
around z� 0:4. We think this result is quite generic for
two-parameter parametrizations. The result also suggests
that more SN Ia data with the redshift z� 0:2–0:4 may be
valuable to give strong constraint on w�z�. The sweet spot
around the redshift z� 0:2–0:4 may be argued from the
Hubble law and the decreasing importance of DE
[12,13,33]: (1) At low redshift, the luminosity distance
can be expressed as H0dL�z� � z� 1

2 �1� q0�z
2. To the

linear approximation, it does not depend on the cosmologi-
cal parameters, so the constraint on the property of DE at
low redshift from SN Ia data is not strong; (2) At high
redshift, the role of DE diminishes. Depending on the
model, the evidence for w�z�< 0 at high redshift is
different.

We also apply the one-parameter parametrization
w�z� � w0 exp�z=�1� z��=�1� z� to study the geometry
of the Universe. Although the SN Ia data alone does not
provide valuable constraint on the geometry, the new com-
bined data improves the constraint on �k significantly. At
the 3� confidence level, we have j�kj & 0:05 for the
model w�z� � w0 exp�z=�1� z��=�1� z� and �0:064<
�k < 0:028 for the �CDM model. It should be stressed
that the effect of the heterogeneous nature of the gold SN Ia
data on the systematics is also important and it may impose
potential problem when combining with WMAP3 data
[34–36]. The more homogeneous SNLS SN Ia data avoids
this problem [34–36].
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