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This paper investigates evolution of cosmic structures in different environments. For this purpose the
quasispherical Szekeres model is employed. The Szekeres model is an exact solution of the Einstein field
equations within which it is possible to describe more than one structure. In this way investigations of the
evolution of the cosmic structures presented here can be freed from such assumptions as a small value of
the density contrast. Also, studying the evolution of two or three structures within one framework enables
us to follow the interaction between these structures and their impact on the evolution. Main findings
include a conclusion that small voids surrounded by large overdensities evolve slower than large, isolated
voids do. On the other hand, large voids enhance the evolution of adjacent galaxy superclusters which
evolve much faster than isolated superclusters.
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I. INTRODUCTION

At the end of the 1970s astronomers provided observa-
tional evidence that galaxies in the Universe are distributed
inhomogeneously. Galaxy redshift surveys show that the
galaxies form structures such as voids, superclusters, and
filaments. Although this is only the distribution of visible
matter, there are some strong indications that visible matter
does trace the distribution of dark matter, so real matter
distribution is similar. All these structures evolved from
small initial fluctuations which started to grow after the
last scattering moment. However, different structures
evolved in various ways, depending on their environment
and neighborhood. The present-day density contrast
[Eq. (10)] of overdense regions is larger than 1 [1], and
inside voids it descends to �1 [2]. Thus, these structures
must be described by exact solutions of the Einstein equa-
tions without such assumptions as a small value of a
density contrast. This paper provides the analysis of cos-
mic structures’ evolution which is free of such assump-
tions. The evolution of the cosmic structures in different
environments is investigated by employing the quasispher-
ical Szekeres model which is an exact solution of the
Einstein field equations.

The structure of this paper is as follows: Sec. II presents
the Szekeres model; Sec. III presents the evolution of pairs
of voids and superclusters in the quasispherical Szekeres
model; Sec. IV presents the role of expansion in the
process of structure formation; Sec. V presents the con-
nection between the results obtained in the Szekeres model
and the real large-scale structure of the Universe.

II. THE SZEKERES MODEL

For our purpose it is convenient to use a coordinate
system which is different from that in which Szekeres [3]
originally found his solution. The metric is of the following
form [4]:

 ds2 � c2dt2 �
��0 �� E0

E�
2

�"� k�
dr2 ��2 �dp

2 � dq2�

E2 ; (1)

where 0 � @=@r, � � ��t; r�, " � �1, 0, and k � k�r� �
" is an arbitrary function of r.

The function E is given by

 E�r; p; q� �
1

2S
�p2 � q2� �

P
S
p�

Q
S
q� C; (2)

where the functions S � S�r�, P � P�r�, Q � Q�r�, and
C � C�r� satisfy the relation

 C �
P2

2S
�
Q2

2S
�
S
2
"; " � 0;�1; (3)

but are otherwise arbitrary.
As can be seen from (1), only " � �1 allows the model

to have all three Friedmann limits (hyperbolic, flat, and
spherical). This is induced by the requirement of the
Lorentzian signature of the metric (1). As we are interested
in the Friedmann limit of our model, i.e. we expect that it
becomes a homogeneous Friedmann model at a large
distance from the origin, we will focus only on the " � 1
case. This case is often called the quasispherical Szekeres
model.

Applying metric (1) to the Einstein equations, with the
assumption that the energy momentum tensor describes
dust, the Einstein equations reduce to the following two:
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1

c2
_�2�t; r� �

2M�r�
��t; r�

� k�r� �
1

3
��2�t; r�; (4)

 4�
G

c2 ��t; r; p; q� �
M0�r� � 3M�r�E0�r; p; q�=E�r; p; q�

�2�t; r�	�0�t; r� ���t; r�E0�r; p; q�=E�r; p; q�

: (5)

In a Newtonian limit Mc2=G is equal to the mass inside
the shell of radial coordinate r. However, it is not an
integrated rest mass but rather active gravitational mass
that generates a gravitational field. Although the � function
in Eq. (5) is a function of all coordinates, it can be shown
that the density can be decomposed into two parts: the
monopole distribution and the part which has a dipole
structure [5–7]:

 � � �mon�t; r� � �dip�t; r; p; q�: (6)

The function k�r� is another arbitrary function defining
the Szekeres model. By analogy with the Newtonian en-
ergy conservation equation, Eq. (4) shows that the function
��k=2� represents the energy per unit mass of the particles
in the shells of matter at constant r. On the other hand, by
analogy with the Friedmann equation and from the metric
(1), the function k determines the geometry of the spatial
sections t � const. However, since k is a function of the
radial coordinate, the geometry of the space is now position
dependent.

Equation (4) can be integrated:

 

Z �

0

d ~��������������������������������������������
2M�r�

~�
� k�r� � 1

3 � ~�2
q � c	t� tB�r�
; (7)

where tB is an arbitrary function of r. This means that the
big bang is not a single event as in the Friedmann models
but occurs at different times for different distances from the
origin.

As can be seen, the Szekeres model is specified by six
functions. However, by a choice of the coordinates, the
number of independent functions can be reduced to five.

The equations of motion T��;� � 0 are reduced to the
continuity equation:

 _�� �� � 0; (8)

where � is the scalar of expansion and is equal to

 ��t; r; p; q� � 3
_��t; r�

��t; r�

�
_�0�t; r� � _��t; r��0�t; r�=��t; r�

�0�t; r� ���t; r�E0�r; p; q�=E�r; p; q�
:

(9)

In the expanding Universe � is positive so the density
decreases. The structures which exist in the Universe
emerged either due to slower expansion of the space (for-
mation of overdense regions) or due to faster expansion

(formation of underdense regions). In the Friedmann limit,
R! ra, where a is the scale factor and �! 3H0.

The Szekeres model is known to have no symmetry [8].
It is of great flexibility and wide application in cosmology
[9] and in astrophysics [4,5], and still it can be used as a
model of many astronomical phenomena. In this paper it
will be employed to study the evolution of cosmic struc-
tures in different environments.

A. Density contrast

To compare the evolution of different models, the
change in their density contrast is going to be considered.
Two different types of density contrast indicators are taken
into account.

The first one is a usual density contrast defined as
follows:

 � �
�� �b
�b

; (10)

where �b is the background density.
However, the density contrast defined as above is a local

quantity and is not covariant with the coordinate trans-
formations. The spatially invariant density contrast can be
defined as follows [10]:

 SIK �
Z

�

��������h
��

�I
@�
@x�

@�

@x�

��������K
dV; (11)

where I 2 R and K 2 Rnf0g. This family of the density
contrast indicators can be considered as local or global
depending on the size of �. Such a quantity not only
describes the change of density but also the change of
gradients and the volume of a perturbed region. So this
density indicator describes the evolution of the whole
region in a more sophisticated way than the �. Here, only
the case I � 2, K � 1=2 will be considered.

All models presented in this paper are calculated nu-
merically, as, unfortunately, the class of models described
by an analytical solution is not sufficient enough to de-
scribe the considered cosmic structures. However, in the
" � 1 (and in the " � 0) case the p, q coordinates have an
infinite range. Therefore, it is more convenient to use a
different coordinate system where coordinates do have a
finite range.

Coordinate system

The surface of constant t and r can be represented by a
stereographic projection. Employing the stereographic
projection, we can map the infinite surface of p, q coor-
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dinates to a surface of a sphere which has a finite range of
coordinates �, �.

After the following transformations,
 

p� P � S cot
�
�
2

�
cos���; q�Q � S cot

�
�
2

�
sin���;

r � r; (12)

we obtain

 

1

E2
�dp2 � dq2� � �d�2 � sin2�d�2�: (13)

The metric (1), after such transformations, becomes
nondiagonal:

 

ds2 � cdt2 �
�
��0 ��E0=E�2

1� k
�

�2

E2

�
S02cot2 �

2
� 2S0 cot

�
2
�Q0 sin�� P0 cos�� � �P02 �Q02�

��
dr2

�
�2

E2

�
2S cot

�
2
�Q0 cos�� P0 sin��

�
drd�� 2

�2

E

�
Q0 sin�� P0 cos�� S0 cot

�
2

�
drd���2�d�2 � sin2�d�2�;

(14)

where

 

1

E
�

1� cos�
S

; (15)

and

 

E0

E
�
S0 cos�� sin��P0 cos��Q0 sin��

S
: (16)

As can be seen, if t � const and r � const, the above
becomes the metric of the 2-dimensional sphere. Hence,
every t � const and r � const slice of the Szekeres " � 1
space-time is a sphere. However, as S, P, and Q are now
functions of r, the spheres are not concentric. For the
spheres to be concentric, the following conditions must
hold:

 P0 � 0; Q0 � 0; S0 � 0: (17)

Such conditions entail spherical symmetry, and the metric
(14) becomes the line element of the Lemaı̂tre-Tolman
model [11,12]. Because of this nonconcentricity of
spheres, the density distribution has the structure of a
time-dependent mass dipole superposed on a monopole.
However, since S, P, and Q are position dependent, the
axis of the dipole also changes in the space. The functions
S, P, and Q describe the position of this dipole, and as can
be seen from Eq. (16), S describes the vertical position of
the dipole component, while P and Q describe its horizon-
tal position.

B. Model setup

To specify model 5, functions of the radial coordinate
need to be known. Let us define the radial coordinate as a
value of � at the initial instant t0 � 0:5� 106 yr after the
big bang:

 ~r :� ��r; t0�: (18)

However, for clarity in further use, the~sign is omitted and
the new radial coordinate will be referred to as r.

Two of these functions will be tB�r� and M�r�. Let us
assume that tB�r� � 0. The function M�r� describes the
active gravitational mass inside the t � const, r � const
sphere. Let us describe the mass function in the following
form:

 M�r� � M0�r� � �M�r�; (19)

where M0 is the mass distribution as in the homogeneous
universe, and �M is a mass correction, which can be either
positive or negative. The �M is defined similarly as in the
spherical symmetric case:

 �M�r� � 4�
G

c2

Z r

0
du�2�u; t0��0�u; t0�� ���u�; (20)

where � ���r� is an arbitrary function chosen to specify the
�M. Although � ���r� is not the initial function of density
fluctuations (since an initial density fluctuation is a func-
tion of all coordinates), it gives some estimation of the
initial density fluctuation of the monopole density
component.

The next three functions are P�r�, Q�r�, S�r�. All func-
tions defining the model are presented as each case is being
considered. The numerical algorithm used to solve the
Szekeres model’s equations is presented in detail in
Ref. [13].

The chosen background model is the homogeneous
Friedmann model with the density

 �b � �m � �cr � 0:24�
3H2

0

8�G
; (21)

where the Hubble constant is H0 � 74 km s�1 Mpc�1.
The cosmological constant � corresponds to �� � 0:76,
where �� � �1=3��c2�=H2

0�.

III. DOUBLE STRUCTURES

In this section the evolution of double structures,
namely, a void with an adjacent galaxy supercluster, is
investigated. Although within the Szekeres model more
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than two structures can be described, such investigations of
less complex cases may also be useful because they enable
us to draw some general conclusions without going into too
much detail which could easily obscure the larger picture.
Even then, in Sec. V a more complex model is also inves-
tigated and it is found that the rules extracted on the basis
of the investigations of the double structures are still valid
for such more complex situations. The evolution of a
double structure was also previously investigated by
Bolejko [14]. However, the analysis presented in this paper
is much more detailed and comprehensive.

A. Models with P0 � 0 � S0, Q0 � 0

As mentioned above, if P0 � 0 � S0 � Q0 the Szekeres
model becomes the Lemaı̂tre-Tolman model. Hence, the
class of models considered in this subsection is the sim-
plest generalization of the spherically symmetric models.

The double structure of a void and an adjacent super-
cluster can be described in the Szekeres model in two
different ways. The first alternative is when �M < 0, and
the second is when �M > 0. Both these possibilities are
examined here.

1. Models specification

Model 1:
 

� �� � �5� 10�3 � exp	��r=8 Kpc�2
;

S � 1;

P � 0;

Q � �0:6 ln�1� r=Kpc� � exp��0:003 Kpc�1 � r�:

(22)

Model 2:
 

� �� � 1:14� 10�3 � exp	��r=9 Kpc�2
;

S � 1;

P � 0;

Q � �1:45 ln�1� 0:2 Kpc�1 � r�

� exp��0:003 Kpc�1 � r�: (23)

The density distributions of models 1 and 2 are pre-
sented in Fig. 1. As can be seen, the model with �M < 0
has the void in the center, and the supercluster is described
by the dipole component of the density distribution. In
model 2 the converse applies. The overdense region is at
the origin and the void is described by the dipole compo-
nent of the density distribution.

2. Evolution

In this section we compare the evolution of the density
contrast, ��t; r; �; ��, and the S2;1=2�t;�� density indicator
for models 1, 2, with the corresponding models of a single

void and with the models of a single supercluster obtained
within the Lemaı̂tre-Tolman model. The Lemaı̂tre-Tolman
model is considered because within this model one can
describe a single spherically symmetric structure. Such a
comparison can demonstrate how evolution of a structure
changes if there is another structure in its close proximity.

Figure 2 presents the evolution of the density contrast of
model 1 in comparison with corresponding models ob-
tained within the Lemaı̂tre-Tolman model. The Lemaı̂tre-
Tolman model was specified by assuming the same condi-
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FIG. 1. The present-day density distribution, �=�b. The upper
panel presents model 1 (�M < 0) and the lower panel presents
model 2 (�M > 0).
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tion as the ones in the Szekeres model at the initial instant.
Namely, the Lemaı̂tre-Tolman model was specified by
tB � 0 and the profile of the density distribution. The local
density contrast, �, is compared at the point of the maximal
and minimal density value. The upper panel of Fig. 2
presents the evolution of the density contrast inside the
void. As can be seen, the behavior of the density contrast in
both models is similar. This is due to the regular conditions
at the origin; i.e. at the origin, where � � 0 and some other
functions are also equal to zero, such conditions have to be
imposed so that there will be no singularity at the origin
(for a detailed description of the regularity conditions at the
origin, see [4]). These conditions imply that the origin
behaves like a Friedmann model and this is the reason
why the quasispherical Szekeres and Lemaı̂tre-Tolman
models are of a very alike evolution pattern at the origin.
The lower panel of Fig. 2 presents the evolution of the
density contrast at the very center of the overdense region
of model 1 and the corresponding Lemaı̂tre-Tolman model.

The growth of density contrast in the Szekeres model is
much faster than in the corresponding Lemaı̂tre-Tolman
model. The results of this comparison indicate that, within
the perturbed region of mass below the background mass
(�M < 0), the evolution of underdensities does not change
but the evolution of the overdense regions situated at the
edge of the underdense regions is much faster than the
similar evolution of isolated structures.

The evolution of the density contrast of model 2 (�M >
0) is presented in Fig. 3: the evolution of the density
contrast at the point of minimal density is depicted in the
upper panel of Fig. 3, and the evolution at the origin is
depicted in the lower panel of Fig. 3. Similarly as in
model 1, the evolutions at the origin in the Szekeres model
and in the Lemaı̂tre-Tolman model are very alike. The
evolution of the void, however, is slower within the
Szekeres model than it is in the Lemaı̂tre-Tolman model.
This implies that single, isolated voids evolve much faster
than the ones which are in the neighborhood of large
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FIG. 3. The evolution of the density contrast inside the void
(upper panel), and inside the supercluster (lower panel) for
model 2 (�M > 0). The SZ curve presents the evolution within
the Szekeres model; the LT curve presents the evolution within
the Lemaı̂tre-Tolman model.
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the Lemaı̂tre-Tolman model.
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overdensities where the mass of the perturbed region is
above the background mass (�M > 0).

Now, let us compare the evolution of the S2;1=2 density
indicator:

 S2;1=2 �
Z

�

��������������������������������������������h
��

�2

@�
@x�

@�

@x�

��������
s ���������������

� detg
p

drd�d�: (24)

Similarly as above, two different types of � are going to
be considered:

 � > �b ! � � C; � < �b ! � � V:

Since the value of SIK depends on units, the results
presented in Fig. 4 were normalized, so they are now of
order of unity.

The upper panel of Fig. 4 presents the evolution of S2;1=2

for an underdense region. The lower panel of Fig. 4 depicts
the evolution of S2;1=2 for an overdense region. As can be
seen, S2;1=2 for the quasispherical Szekeres models consid-
ered is comparable and the growth of S2;1=2 for the
Lemaı̂tre-Tolman model is much smaller. This is because

the volumes of the considered regions are different. In the
Szekeres model the volume is larger than the volume in the
Lemaı̂tre-Tolman model.

Figures 1 and 2 present the shape of the structures
without corrections for the shell displacement. For ex-
ample, the void in Figs. 1 and 5 (upper panels) seems to
be almost spherical. In fact, this void is squeezed in the�Y
direction and elongated in the �Y direction [Q0 � 0,
P0 � 0 � S0—see the metric (14) and Eq. (16)]. This
fact also leads, in some regions, to density gradients larger
than in the Lemaı̂tre-Tolman model, hence such a large
disproportion in S2;1=2 between the Szekeres model and the
Lemaı̂tre-Tolman model.

The results presented above indicate that the evolution
of the Szekeres model is much more complex than the
evolution of the Lemaı̂tre-Tolman model. The evolution
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FIG. 4. Comparison of S2;1=2 for models with �M > 0, �M <
0, and the corresponding LT model of a void (upper panel) and
supercluster (lower panel).

 

FIG. 5. The present-day color coded density distribution,
�=�b. Models with �M < 0. Upper panel—P0 � S0 � 0.
Lower panel—P0 � 0 � S0.
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not only depends on the value of the density contrast but
also on the density gradients and the volume of the per-
turbed region. This is the reason why S2;1=2 of the void in
model 2 (�M > 0) is higher than in other models, although
the density contrast in this model evolved slower than in
model 1. Similarly, as can be seen by comparison of Figs. 5
and 6, the overdense region in the model with �M < 0 is
much larger than in other models, and as a consequence the
S2;1=2 for this model evolves much faster than in other
models. The S2;1=2 provides us with information about
the evolution of the whole perturbed region.

The evolution of the density at a single point is described
with the local density contrast �. As can be seen, the
evolution of the maximal and minimal density contrast
depends on the value of �M of the perturbed region. The

evolution of the density contrast inside large and isolated
voids is faster than inside small voids which are surrounded
by highly dense regions. On the other hand, the evolution
of the density contrast in highly dense regions in close
proximity to large voids is faster due to faster mass flow
from the voids.

B. Models with P0 � 0 � S0, Q0 � 0

In this section models of nonconstant P, Q, and S are
investigated. The evolution of these models is compared
with the evolution of models which were considered in
Sec. III A.

1. Models specification

Model 3:
 

� �� � �5� 10�3 � exp	��r=8 Kpc�2
;

S � ��r=Kpc�0:4;

P � 0:55�r=Kpc�0:4;

Q � 0:33�r=Kpc�0:4: (25)

Model 4:
 

� �� � 1:14� 10�3 � exp	��r=9 Kpc�2
;

S � ��r=Kpc�0:9;

P � 0:55�r=Kpc�0:8;

Q � 0:33�r=Kpc�0:8: (26)

Figure 5 presents the comparison of the present-day
density distribution in models 1 and 3 in color coded
diagrams. It presents the vertical cross sections of the
considered structures. The upper panel of Fig. 5 presents
the vertical cross section through the surface of � � �=2
and the lower panel presents the cross section through the
surface of � � �=6. The comprehensive study of the
vertical and horizontal cross sections of similar models
was presented by Bolejko [14]. Figure 6 also presents the
vertical cross sections of models 2 and 4. As can be seen,
both structures appear to be similar but, in comparison with
model 1, in model 3 the dipole component is moved down
and to the right. Model 4, on the other hand, presents the
structure moved down and to the right in comparison with
model 2.

The next section discusses the evolution of these
structures.

2. Evolution

The evolution of the density contrast inside the voids and
superclusters of models 3 and 1 is very similar, which need
not be surprising as model 3 has the same ���r� as model 1.
Also, the evolution of the corresponding density contrasts
of models 4 and 2 is similar. The functions S, P, Q were
chosen so that they reproduce the same shape of current

 

FIG. 6. The present-day color coded density distribution,
�=�b. Models with �M > 0. Upper panel—P0 � S0 � 0.
Lower panel—P0 � 0 � S0.
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structures and the same density contrast inside them—that
is why the evolution of a local density contrast is compa-
rable for models 1 and 3, and for models 2 and 4. However,
it is not clear whether or not the evolution of S2;1=2 is
comparable too. When the functions S, P, Q are not
constant, the axis of a density dipole changes. Also, the
volume of the perturbed region as well as the density
gradients can be different. So it may be interesting to
compare the evolution of the whole perturbed underdense
and overdense regions of models 1, 2, 3, and 4.

Figure 7 presents the comparison of S2;1=2 evolution of
models 1–4. Similarly as in Fig. 4, the values of SIK were
normalized so they are now of order of unity. The primed
letters denote models of S0 � 0 � P0, Q0 � 0. As can be
seen, the evolution of S2;1=2 for all these models is also
comparable. These results imply that the evolution in the
quasispherical Szekeres model does not depend on the
position of the dipole component. As long as the shape

and density contrast of the analyzed models are similar,
such models evolve in a very similar way.

IV. THE ROLE OF EXPANSION

The faster or slower evolution rate of the previously
presented models is reflected by their current expansion
rate. As has been shown above, the evolution does not
depend on a relative position of the dipole component
(evolution of models 1 and 3 is similar). Thus, let us focus
on model 1 and model 2 only.

Figure 8 presents the ratio, �SZ=�0, of the expansion
parameter in the considered Szekeres models to the expan-
sion parameter in the homogeneous background. As can be
seen, model 1, with �M < 0, has a larger amplitude of this
ratio, and the evolution of a supercluster in this model is

 

FIG. 8. The �SZ=�0 ratio. The upper panel presents the ratio
of model 1, and the lower panel presents the ratio of model 2.
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much faster than in the corresponding Lemaı̂tre-Tolman
model. On the other hand, model 2 (�M > 0) has a smaller
amplitude of the �SZ=�0 ratio and, within model 2, the
evolution of the density contrast inside the void was much
slower than in the Lemaı̂tre-Tolman model. So, clearly the
rate of the evolution is connected with the rate of the
expansion. This conclusion is also supported by the con-
tinuity equation [Eq. (8)].

Still, there remains a question of whether the conclu-
sions presented at the end of Sec. III A 2 about the evolu-
tion of a density contrast being dependent on the mass of
the perturbed region are not limited to the class of models
considered in this paper. Are these conclusions general?
How are they relevant to the real large-scale structure of
the Universe? These are the questions that are addressed in
this and the next section of this paper.

The models presented above were defined by choosing
functions tB, M�r�, S�r�, Q�r�, P�r�. As can be seen, the
functions S�r�, Q�r�, P�r� describe the position of the
dipole, and, even with S and P�r� constant, we are still
able to reconstruct the cosmic structures. Moreover, the
functions S, P, and Q are chosen in such a way that they
reproduce the present-day cosmic structures.

The other functions which are chosen to specify the
model include M�r� and tB�r�. Is it also possible to choose
other sets of functions, such as k�r� and tB�r�, or any other
functions such as those described in Ref. [15]?

However, if we choose, for example, k�r� � 0 and the
mass distribution as in model 1 or in model 2, we find that
the initial fluctuations diminish with time. This is consis-
tent with the behavior of the Lemaı̂tre-Tolman models,
where t0B is known to describe the decaying modes and k0

growing modes [16].
Therefore, it is not the �M but the k function that is

significant for the evolution. This was also noticed in
spherically symmetric models of structure formation. In
Ref. [17] it was concluded that the evolution of cosmic
voids is generally driven by the velocity fluctuations rather
than by the density fluctuations. In Ref. [18], where the
function k could also change in time, the conclusion is
similar, i.e. it is this function that plays an essential role in
the process of the structure formation.

However, we cannot take any arbitrary k�r� andM�r� (or
any other function, instead of �M, defining the model),
because such arbitrary pairs of functions are in many cases
‘‘unnatural’’ and lead either to a large amplitude of tB or to
a shell crossing singularity (one of the conditions to avoid
the shell crossing is t0B < 0—see Ref. [4]), and, in most
cases, to both of these situations. The large amplitude of tB
is undesirable. The function tB�r� describes the moment of
initial singularity. The observations of the cosmic micro-
wave background radiation (CMB) indicate that the
Universe was very homogeneous at the last scattering mo-
ment and, as a consequence, the bang time function, tB�r�,
cannot have a larger amplitude than a few thousand years.

Larger values of tB�r� would induce temperature fluctua-
tions on the CMB sky larger than observed. On the other
hand, models with tB � const are known to describe grow-
ing modes only [16], so the assumption that tB � const
seems very natural. If we set tB and specify M�r�, then k�r�
is already specified by the Einstein equations. On the
contrary, if we set tB and specify k�r�, then the M�r� is
already fixed. Therefore, for the class of models which
evolve from small initial fluctuations and do not have shell
crossings during the evolution, as well as reproduce struc-
tures similar to the observed cosmic structures, the con-
clusions drawn at the end of Sec. III A 2 are valid.
However, it can now be seen that it is not the mass
fluctuations that matter but the expansion rate. Higher
mass in the perturbed region slows down the expansion
rate—this is a condition hindering the evolution of cosmic
voids. On the other hand, if the mass of the perturbed
region is below the background mass, such a region ex-
pands much faster than the background, leading to the
formation of large underdense regions. Such large voids
enhance the formation of large elongated overdensities
formed at the edges of voids, which are usually called
walls.

V. CONNECTION TO THE LARGE-SCALE
STRUCTURE OF THE UNIVERSE

The models presented above are models of two struc-
tures embedded in the homogeneous universe. Although
the Universe is much more complicated than that, such
simple models enable us to come to some general conclu-
sions. In this section the triple structure is considered and it
will be seen that the behavior of the evolution of cosmic
structures in this model is similar to that observed in the
previous models.

Model 5 is specified by the following set of functions:

 

tB � 0;

�� � 1� 10�3 � exp	��r=20 Kpc�2


� 6:5� 10�4 � expf�	�r� 35 Kpc�=10 Kpc�2
g;

S � 1;

P � 0;

Q � 0:33�r=Kpc�0:8: (27)

Figure 9 presents the density distribution. There is an
overdense region at the origin, followed by a small void
which spreads to a larger r. At a larger distance from the
origin, the void is huge and its larger side is adjacent to an
overdense region.

This is diametrically different from what happens close
to the origin where the void is adjacent to the supercluster
only with a narrow cusp.

EVOLUTION OF COSMIC STRUCTURES IN DIFFERENT . . . PHYSICAL REVIEW D 75, 043508 (2007)

043508-9



The evolution of model 5 is presented in Fig. 10. For
clarity Fig. 10 presents only the profile which is repre-
sented by the X � 0 line in Fig. 9. This profile is shown for
five different time instants. As can be seen, at a larger
distance from the origin, where the void is large, it evolves
much faster and exceeds the speed of the evolution of the
underdense region close to the origin. Another significant
fact is that the overdense region connected by the void
across a larger area evolves much faster than the super-
cluster at the origin which is more compact. This model
exhibits the features of the models previously considered.
Thus, it might be speculated that the evolution of the real
structures follows similar patterns. Namely, small voids in

the Universe which are surrounded by large high density
regions evolve much slower than the large isolated voids.
From the perspective of the continuity equation, the ex-
pansion of the space in this region is very slow, and this is
the reason why the voids do not evolve as fast as they
could. On the other hand, the expansion is much faster
inside large voids, where the mass of the perturbed region
is below the background mass (�M < 0). In these situ-
ations matter flows from central parts of the voids towards
the highly dense regions which form at the voids’ larger
sides and enhance their evolutions.

VI. CONCLUSIONS

The galaxy redshift surveys show that the Universe is
patchy with various structures. These structures include
small voids among compact superclusters and large voids
surrounded by large walls or long filaments.

We investigated the evolution of these cosmic structures
in different environments in the quasispherical Szekeres
model. The Szekeres model is one of the most complex and
spatially inhomogeneous exact solutions of the Einstein
field equations and it has a potential to be more widely used
in cosmology. Since it is an exact solution of Einstein’s
equations, it enables us to investigate the evolution of
cosmic structures without such approximations as linearity
and small value of density contrast. Moreover, the Szekeres
model is flexible enough to describe more than one
structure.

Having investigated various models with two or three
structures within one frame, it may be concluded that the
evolution of the cosmic structures depends on the environ-
ment. If the mass of the perturbed region is smaller than the
background mass, then the amplitude of the expansion’s
fluctuations in such region can be of large value and, as can
be seen from the continuity equation [Eq. (8)], such con-
ditions enhance the evolution of cosmic structures.

The analyses presented in this paper indicate that small
voids among large overdense regions do not evolve as fast
as the large voids do. This is because the expansion of the
space is faster inside large voids than inside smaller voids.
Moreover, this higher expansion rate inside the large voids
leads to the formation of large and elongated structures
such as walls and filaments which emerge at the edges of
these large voids.
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FIG. 9. The present-day color coded density distribution,
�=�b, of model 5.
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