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Exotic dark matter together with the vacuum energy (associated with the cosmological constant) seem
to dominate the Universe. Thus its direct detection is central to particle physics and cosmology.
Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP).
One essential ingredient in obtaining the direct detection rates is the density and the velocity distribution
of the LSP in our vicinity. In the present paper we study simultaneously density profiles and velocity
distributions in the context of the Eddington approach. In such an approach, unlike the commonly
assumed Maxwell-Boltzmann (M-B) distribution, the upper bound of the velocity arises naturally from the
potential.
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I. INTRODUCTION

The combined MAXIMA-1 [1], BOOMERANG [2],
DASI [3] and COBE/DMR Cosmic Microwave
Background (CMB) observations [4] imply that the
Universe is flat [5], � � 1:11� 0:07 and that most of
the matter in the Universe is Dark [6]. i.e. exotic.
Combining the WMAP data with other experiments,
crudely speaking one finds:

 �b � 0:05; �CDM � 0:30; �� � 0:65

Since the non exotic component cannot exceed 40% of the
CDM [7], there is room for the exotic WIMP’s (Weakly
Interacting Massive Particles). Supersymmetry naturally
provides candidates for the dark matter constituents [8,9].
In the most favored scenario of supersymmetry the LSP
(Lightest Supersymmetric Particle) can be simply de-
scribed as a Majorana fermion, a linear combination of
the neutral components of the gauginos and higgsinos [8–
10]. In most calculations the neutralino is assumed to be
primarily a gaugino, usually a bino. Even though there
exists firm indirect evidence for a halo of dark matter in
galaxies from the observed rotational curves, it is essential
to directly detect [8–11] such matter. Until dark matter is
actually detected, we shall not be able to exclude the
possibility that the rotation curves result from a modifica-
tion of the laws of nature as we currently view them. This
makes it imperative that we invest a maximum effort in
attempting to detect dark matter whenever it is possible.
Furthermore such a direct detection will also unravel the
nature of the constituents of dark matter. The possibility of
such detection, however, depends on the nature of the dark
matter constituents (WIMPs). Since the WIMP is expected
to be very massive, m� � 30 GeV, and extremely non

relativistic with average kinetic energy T �
50 KeV�m�=100 GeV�, it can be directly detected [8–11]
mainly via the recoiling of a nucleus (A,Z) in elastic
scattering. The event rate for such a process can be com-
puted from the following ingredients:

(1) An effective Lagrangian at the elementary particle
(quark) level obtained in the framework of super-
symmetry as described, e.g., in Refs. [10,12].

(2) A well defined procedure for transforming the am-
plitude obtained using the previous effective
Lagrangian from the quark to the nucleon level,
i.e. a quark model for the nucleon. This step is not
trivial, since the obtained results depend crucially on
the content of the nucleon in quarks other than u and
d. This is particularly true for the scalar couplings,
which are proportional to the quark masses [13–15]
as well as the isoscalar axial coupling [15,16].

(3) Knowledge of the relevant nuclear matrix elements
[17,18], obtained with as reliable as possible many
body nuclear wave functions. Fortunately in the case
of the scalar coupling, which is viewed as the most
important, the situation is a bit simpler, since then
one needs only the nuclear form factor.

(4) Knowledge of the WIMP density in our vicinity and
its velocity distribution. Since the essential input
here comes from the rotational curves, dark matter
candidates other than the LSP (neutralino) are also
characterized by similar parameters.

In the past various velocity distributions have been
considered. The one most used is the isothermal
Maxwell-Boltzmann velocity distribution with h�2i �
�3=2��2

0 where �0 is the velocity of the sun around the
galaxy, i.e. 220 km=s. Extensions of this M-B distribution
were also considered, in particular, those that were axially
symmetric with enhanced dispersion in the galactocentric
direction [19,20]. In such distributions an upper cutoff
�esc � 2:84�0 was introduced by hand.

Nonisothermal models have also been considered.
Among those one should mention the late infall of dark
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matter into the galaxy, i.e caustic rings [21–25], dark
matter orbiting the Sun [26], Sagittarius dark matter [27].

The correct approach in our view is to consider the
Eddington proposal [28], i.e. to obtain both the density
and the velocity distribution from a mass distribution,
which depends both on the velocity and the gravitational
potential. Our motivation in using Eddington [28] ap-
proach to describing the density of dark matter is found,
of course, in his success in describing the density of stars in
globular clusters. Since this approach adequately describes
the distribution of stars in a globular cluster in which the
main interaction is gravitational and because of its general-
ity, we see no reason why such an approach should not be
applicable to dark matter that also interact gravitationally.
It should be noted that the attempt to use Maxwellian (M-
B) distribution to describe the star distribution in globular
clusters led to results that did not correspond to observa-
tions [28]. So it seems that the use of M-B distribution to
describe dark matter is not very well motivated and a
different approach is required.

It seems, therefore, not surprising that this approach has
been used by Merritt [29] and applied to dark matter by
Ullio and Kamionkowski [30] and more recently by us
[31]. It is the purpose of the present paper to obtain a
dark matter velocity distribution, which is consistent with
assumed halo matter distributions and has a natural upper
velocity cut off. The results presented here are motivated
by the dark matter candidate provided by supersymmetry,
namely, the LSP (neutralino). They can easily be extended,
however, to be applied to other heavy WIMP candidates.

II. THE DARK MATTER DISTRIBUTION IN THE
CONTEXT OF THE EDDINGTON APPROACH

As we have seen in the introduction the matter distribu-
tion can be given as follows

 dM � 2�f���r�; �r; �t�dxdydz�td�td�r (1)

where the function f the distribution function, which de-
pends on r through the potential ��r� and the tangential
and radial velocities �t and �r. In general the distribution
function is not symmetric. In the above expression we
assumed that it is only axially symmetric, with the two
tangential components being equal. Thus the density of
matter � satisfies the equation:

 d� � 2�f���r�; �r; �t��td�td�r (2)

It is more convenient instead of the velocities to use the
total energy E and the angular momentum J via the equa-
tions

 J � �tr; 2E � �2
r �

J2

r2 � 2��r� (3)

The use of these variables, which are constants of motion,
is very useful, when one wants to study steady states. In
doing this Eddington used the result of Jeans [32] that the

density must be a function of first integrals of the equations
of motion which follows from Liouville’s theorem. The
advantage of this approach is that the density can be
’inverted’ and the velocity distribution can be found.
Following this approach we find

 � �
2�

r2

ZZ f�E; J�J��������������������������������������������
2�E���r�� � J2=r2

p dJdE (4)

The limits of integration for E are from � to 0 and for J
from 0 to 	2r2�E���r��
1=2. Furthermore if the distribu-
tion function is known one can obtain the velocity distri-
bution at some point, e.g. in our vicinity, by

 f���r�; �r; �t�jr�rs

The problem which is more interesting is: Can one obtain
the distribution function given the density (and hence the
potential via Poisson’s equation)? The answer is affirma-
tive via Eddington’s treatment of the distribution function
and quite easy, if the distribution does not explicitly depend
on J, but is only a function of E. In the present work we
will be concerned with spherically symmetric velocity
distributions and we will leave out the more realistic
axially symmetric case [33,34]. Such axially symmetric
velocity distributions have, however, been found to have
interesting consequences on the direct dark matter detec-
tion rates, especially in directional experiments [35,36]. If
the angular momentum dependence is ignored, by integrat-
ing Eq. (4) one finds

 � � 4�
Z
f�E�

��������������������������
2�E���r��

p
dE (5)

with the range of E as above. In this case one can obtain the
density as a function of the potential. Conversely if the
density is given as a function of the potential one can
proceed to find the distribution function according to the
Eddington approach. The distribution then is a function of
the total energy E � v2=2���r� and satisfies the
Boltzmann Equation with the collision term zero, i.e.

 �v:5r �5�:5v�f � 0 (6)

In this case the distribution can be expressed as follows:

 f�E� �

���
2
p

4�2

d
dE

Z 0

E

d���������������
�� E
p

d�
d�

(7)

The above equation can be rewritten as:

 f�E� �
1

2
���
2
p
�2

�Z 0

E

d���������������
�� E
p

d2�

d�2 �
1��������
�E
p

d�
d�

����������0

�
(8)

Thus we can obtain the distribution, if the density � is
given as a function of the potential �. We find it convenient
to rewrite the last equation in terms of dimensionless
variables by introducing:
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 � � ����; � �
�
�0
; � �

�

�0
(9)

The constants �0 and �0, which set the scale of these two
quantities, are related through Poisson’s equation. Then the
Eddington distribution function takes the form:

 f�e� �
�0

�2j2�0j
3=2

�
�0�0����
e
p �

Z e

0

�00���������������
e� �
p d�

�
(10)

where e is given by

 e � �
E
j�0j

� ��
�2

2j�0j
(11)

i.e. e the negative of the total energy � (e > 0. In the
presence of asymmetry one finds

 e � �� � ��
1

2j�0j
��2 � �s�2

t � (12)

where �s is the asymmetry parameter, �t is the tangential
velocity.

For numerical integrations it is more convenient to
rewrite the last integral as follows:
 

f�e� �
�0

�2j2�0j
3=2

�
�0�0����
e
p � 2�00�0�

���
e
p

� 2
Z e

0
�000���

������������
e� �

p
d�
�

(13)

The first term is singular as e! 0. This, however, causes
no problem, since, as we have seen in our earlier work, the
integrals over the velocity distribution are relevant in dark
matter calculations and these remain finite as the velocity
approaches the maximum velocity. Anyway in the example
considered in the present work �0�0� � �00�0� � 0. Once
this function is known one obtains the velocity distribution
of matter in our neighborhood (r � rs � 0:8a, a �
the galactic radius) with respect to the center of the galaxy
via the relation

 f��v� � f�e�jr�rs�0:8a; (14)

which must be normalized. The characteristic feature of
this approach is that the velocity distribution vanishes
outside a given region specified by a cut off velocity vm,
by setting ejr�rs�0:8a � 0

III. A SIMPLE DENSITY PROFILE

We will consider three types of matter density:
(i) A spherical ordinary matter density (bulge density)

(ii) Ordinary matter density in the form of a disc
(iii) Dark matter density.

A. Spherical ordinary matter density

To obtain analytical expressions we will simulate this
density as follows:

 �b�x� � �0b

���
2
p

�1� x2�5=2
; x �

r
a

(15)

with �0b a constant and a the galactic radius. So if this were
the whole story, �0b � 2�s with �s the mass density in our
vicinity. A distribution found by Plummer [37] and Von
Zeipel [38], ��x� / �1� x2��5=2 was obtained by consid-
ering a gas in spherical container with a specific heat ratio
of 	 � 1:2. We note that a value of 	 � 1, which leads to
isothermal distribution, was excluded by observation. This
normal matter density profile is shown in Fig. 1.

With this density one finds the potential:

 �b�x� � �4�GNa
2�0b

���
2
p

6
��������������
x2 � 1
p (16)

and the rotational velocity:

 v2
b�x� � x

d��x�
dx

� 4�GNa2�0b

���
2
p
x2

3�x2 � 1�3=2
(17)

The above potential and rotational velocity are shown in
Fig. 2.

B. Ordinary matter density distributed on a disc

This is a more complicated problem. We will adopt the
simplification that the matter distribution is a 
 function
along the axis of the disk. The radial density has been
successfully modeled in the form of exponential profiles
[39]. Nevertheless, to minimize the number of parameters
employed, we will assume further that it has the same
radial dependence as discussed above. In other words

 �d�x; z� � �0d
�z�

���
2
p

�1� x2�5=2
; x �

r
a

(18)

where r is now the radial distance from the axis of sym-
metry (both x and z are measured in units of a). The
potential now takes the form:
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FIG. 1. The ordinary matter density distribution in dimension-
less units.
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 �d�x; z� � 4�GNa
2�0d

1

�

Z 1
0
dk cos�kz�G�x; k� (19)

where the Green’s function in momentum space is given in
terms of the modified Bessel functions:

 G�x; k� � G<�x; k� �G>�x; k� (20)

with

 G> � �I0�kx�
Z 1
x
K0�ky��b�y�dy (21)

 G< � �K0�kx�
Z x

0
I0�ky��b�y�dy (22)

The radial rotational velocity is given by

 v2
d�x; z� � 4�GNa

2�0d
1

�
x
Z 1

0
cos�kz�g�x; k�dk (23)

with

 g�x; k� � g<�x; k� � g>�x; k� (24)

 g< � I0�kx�K0�kx��d�x� � kK1�kx�
Z x

0
I0�ky��d�y�dy

(25)

 g< � I0�kx�K0�kx��d � kI1�kx�
Z 1
x
K0�ky��d�y�dy

(26)

The obtained potential and the square of the rotational
velocity on the plane of the galactic plane are shown in
Fig. 3. In the same Figure we also plot the same quantity
obtained with the exponential profile:

 �ed�x; z� � �0ed
�z�e�3:5x; x �
r
a

(27)

We see that the two densities give essentially the same
rotational velocities with the possible exception at very
small distances.

C. Dark matter density

There are many halo density profiles, which have been
employed. In the present case we will consider only spheri-
cal distributions, since it is not easy to extend the
Eddington approach to deal with the most general case.
Among the most commonly used are:

(i) A simple dark matter density profile

 ��x� �
�0

1� x2 ; x �
r
a

(28)

with a the radius of the Galaxy. This profile has the
advantage that the rotational velocity remains con-
stant with the distance from the center of the galaxy
becomes very large.

(ii) Another simple profile is:

 ��x� �
�0

x�1� x�2
; x �

r
a

(29)

suggested by N-body simulations [30]. This profile
was designed to give a higher accumulation of matter
near the center of the galaxy. Some people view it as
more realistic and expect the center of the galaxy to
be the source of copious production of neutrinos
following, e.g., neutralino annihilation. We should
emphasize, though, that there is no experimental
evidence for that. Any anomalous gravitational at-
traction near the center of the galaxy could, in prin-
ciple, be construed as the result of the presence of
black holes there. We will, therefore, pay more at-
tention to the observational fact of the constancy of
the rotational velocity at large distances, which our
choice, Eq. (28), yields, but the density given by
Eq. (29) does not. We will, however, compare the
results of the two densities, whenever feasible.

In the present work we will consider the density profile
of Eq. (28) Unfortunately with this density the potential
diverges at infinity. On the other hand the solution to
Poisson’s equation is finite at the origin and it can be
chosen to vanish there, i.e. it takes the form:
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FIG. 2. The Potential (a) and the rotational velocity (b) both in units of 4�GNa
2�0b due to the spherical ordinary matter distribution

discussed in the text.
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FIG. 3. We show: (a) the Potential in units of 4�GNa
2�0d on the plane of the galactic disc resulting from the ordinary matter

distribution on the disc discussed in the text, (b) the square of the rotational velocity resulting from this density and (c) the same
quantity resulting from an exponential density profile.
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FIG. 4. The dark matter density distribution in dimensionless units.
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�

�0
�

tan�1�x�
x

�
1

2
ln�1� x2� � 1 (30)

One may choose a radius x � c outside of which the
density can be chosen to go faster to zero. One convenient
choice is:

 ��x� � c2
�0

�1� x2�2
� c3

�0

�1� x2�3
(31)

with the requirement that at x � c the density is continuous
with a continuous derivative. we thus find:

 �>�x� � �0

�
2�c2 � 1�

�x2 � 1�2
�
�c2 � 1�2

�x2 � 1�3

�
(32)

The obtained density is shown in Fig. 4.
The potential in the region x < c is the same as before:

 

�<�x�
�0

� I<�x� � c3 (33)

The solution in the outer region takes the form:

 

�>�x�
�0

� I<�c� � I>�x� � I>�c� � c3 (34)

where the constant c3 can be chosen to make the potential
vanish at some point and

 I< �
tan�1�x�

x
�

1

2
log�x2 � 1� (35)

 I> �
1

8

�
�c2 � 1�2

x2 � 1
�
�c2 � 7�tan�1�x��c2 � 1�

x

�
��c4 � 6c2 � 15�tan�1�c� � c�c2 � 15�

x

�
(36)

by choosing c3 as

 c3 �
1

4
�2 log�c2 � 1� � 7�

With the above choice of the density the total dark mass in
the galaxy is finite. Furthermore the potential can be made
to vanish at infinity. Our choice of the potential is shown in
Fig. 5.

With the above ingredients it is not very difficult to
obtain the function needed in the Eddington approach,
namely ����. The results are shown in Fig. 6.

In all cases Poisson’s equation yields a relation between
�0 and �0, namely

 �0 � �4�GNa2�0:

The obtained rotational velocity curve, due to dark matter

alone, is given in Fig. 7 in units of
�����������������������
4�GNa2�0

p
From the observed rotational velocity one can fix the

constant �0.

D. Combining ordinary matter and dark matter

We will now combine the three kinds of distribution
considered above. We will assume that �0d � �ob � �s
and �s � �0. This means that in our vicinity the density of
dark matter is equal to that of ordinary matter. Furthermore
the ordinary matter density in our vicinity is equally split
between the spherical and disc geometries. The obtained
results are shown in Figs. 8 and 9.

We see that in order to fit the rotational velocity of the
sun, 220 km=s we need a density �0 � 1:0�
10�21 kg=m3. This is in agreement with the value of
0:3 GeV=cm3 � 0:5� 10�21 kg=m3 used in calculations
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FIG. 6. The density � as a function of the potential �.
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FIG. 5. The potential � � ��x�
�0

, ’i.e the absolute value of the potential in units 4�GNa2�0, obtained with the density function shown
in Fig. 4 and chosen to vanish at infinity. The potential drops to zero very slowly at large distances.
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of the rates for direct dark matter searches (in our model
the dark component is half of the total).

IV. THE VELOCITY DISTRIBUTION IN OUR
VICINITY

It is clear that the velocity distribution and, in particular,
the maximum allowed velocity, is related to the escape
velocity via the density �0. For the moment we will ignore
the asymmetric term and set �s � 0.

A. Dark matter only

The relation between the density and the potential has
already been shown in Fig. 6. In this case we obtain the

velocity distribution shown in Fig. 10, with the usual
normalization imposed

 4�
Z ym

0
y2f��y�dy � 1:

Instead of the velocity we have used the dimensionless
quantity y:

 y �
v�����������������������

4�GNa2�0

p :

For comparison we present the velocity distributions
obtained with the profile of Eq. (29) in Fig. 11 and with
the standard M-B distribution in Fig. 12.
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FIG. 7. The rotational velocity due to dark matter as a function of the distance in units of
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. Shown is that obtained with

the density profile of Eq. (28) adopted in this work (a) and the NFW profile [30] (b), (see Eq. (29)).
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FIG. 9. The rotational velocity resulting from the potential of Fig. 8.
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The maximum velocity allowed by our distribution is
only ym � 2:8. Assuming a � 3:1� 1020 m and �jx�1 �
�s=2, i.e. half of the local density to be due to dark matter,

we find �0 � �s which yields vm � ym
�����������������������
4�GNa2�0

p
�

2:8� 270 km=s � 7:5� 105 m=s. This is a bit higher
than the escape velocity, vesc � 6:2� 105 m=s, assumed
in theories employing the M-B distribution. For compari-

son we present the same quantities for the M-B distribution
in Fig. 12. Since the M-B distribution does not go to zero at
finite values of the velocity, the maximum allowed velocity
is set by hand equal to the escape velocity. We should
emphasize that in this approach we encounter two charac-
teristic velocities. One is the rotational velocity and the
other the maximum allowed velocity vm. The first depends
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FIG. 12. The same as in Fig. 10 in the case of the M-B distribution. Now, however, the parameter y is the velocity in units of the sun’s
rotational velocity, i.e. y � v=v0 with v0 � 2:2� 105 m=s. Note that, in these units, the escape velocity is at 2.84.
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on the square root of the derivative of the potential, while
the second scales with the square root of the potential itself.

B. Both ordinary matter and dark matter

To improve the situation one will attempt to include
gravity. Since it is very hard to incorporate the disc ge-
ometry into the Eddington approach, we will attempt to
mimic the gravitational effects of ordinary matter with a

spherical distribution like the one discussed above, but
twice a large, so that in our position the usual and cold
dark matter contribution are about equal. The thus obtained
function � � ���� is shown in Fig. 13.

In this case we find ym � 3:2. In other words the effect
of ordinary matter is small, since the dark matter potential
in our vicinity is about 12 times stronger than the potential
due to ordinary matter. Again the condition �jx�1 � �s
implies that overall constant �0 in the density distribution
is �s, which gives vm � 3:1� 2:7� 105 m=s �
8:0� 105 m=s. With this modification the obtained results
for the velocity distribution are shown in Fig. 14. We see
that the inclusion of gravity has very little effect on the
velocity distribution. So in what follows we will consider
only the dark matter component.

V. DIRECT DARK MATTER RATES

In the present work we find it convenient to write the
event rate in the form1:

 R � �K	ccoh�A;�r�A���
S
p;�0 � cspin�A;�r�A���

spin
p;�0spin


(37)

In this expression �S
N;�0 is the LSP-nucleon scalar cross

section, while �spin
p;�0 is the proton cross section associated

with the spin. The quantity spin is given by [15]:

 spin �
1

3�1�
f0
A

f1
A
�2
S�u� (38)

 S�u� � S�0�

�

��
f0
A

f1
A

�0�0�
�

2
� 2

f0
A

f1
A

�0�0��1�0� ��1�0��
2

�
(39)

The static spin matrix elements are obtained in the context
of a given nuclear model (see, e.g., previous work
[15,17,18,40] and references therein). Even, though most
of what we are going to say applies in the case of the spin
induced rate we are not going to further elaborate here.

In Eq. (37) �K is given by:

 

�K �
��0�

100 GeV

m
mp

���������
hv2i

q

’ 160 10�4 �pb��1 y�1 ��0�

0:3 GeV cm�3

m
1 Kg

�

���������
hv2i

p
280 kms�1 (40)

and
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FIG. 14. The same as in Fig. 10, when both ordinary and dark
matter are included.
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FIG. 13. The density � as a function of the potential �, when
both ordinary and dark matter are included.

1see our previous recent work [15,40] for a more detailed
discussion and additional references
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 ccoh�A;�r�A�� �
100 GeV

m�0

�
�r�A�
�r�p�

�
2
Atcoh�A� (41)

 cspin�A;�r�A�� �
100 GeV

m�0

�
�r�A�
�r�p�

�
2 tspin�A�

A
(42)

The parameters ccoh�A;�r�A��, cspin�A;�r�A��, which give
the relative merit for the coherent and the spin contribu-
tions in the case of a nuclear target compared to those of
the proton, have already been tabulated [40] for energy
cutoff Qmin � 0 and 10 keV.

Via Eq. (37) we can extract the nucleon cross section
from the data. The most interesting quantity is tcoh�A�. It is
defined as:

 tcoh �
Z umax

umin

dtcoh

du
du (43)

u is the energy transfer to the nucleus (in dimensionless
units, see below)

 umin , detector threshold

 umax , maximum WIMP velocity

 

dtcoh

du
�

���
2

3

s
�par

�0
T�u�; T�u� � a2jF�u�j2��a

���
u
p
�

(44)

for the coherent mode and

 tspin �
Z umax

umin

dtspin

du
du (45)

 

dtspin

du
�

���
2

3

s
�par

�0
T�u�; T�u� � a2F11u���a

���
u
p
�

(46)

where vpar � vm in the present approach and vpar � v0 in

the case of the M-B distribution and The nucleon cross
sections, which carry the dependence on the particle model
parameters, are the most important ones, but they are not of
interest in our present calculation. One such parameter is,
of course, the WIMP mass. In the above expressions F�u�
is the form factor, entering the coherent scattering and
F11�u� is the spin response function entering via the axial
current. The function � depends on the WIMP distribution
velocity employed and is a function of the energy Q trans-
ferred to the nucleus

 u �
Q
Q0

; Q0 �
4Amp

b2 � 4:1� 104A�4=3 KeV (47)

where A is the nuclear mass number and the dimensionless
parameter a is given by:

 a � 	
���
2
p
�rb�par


�1; (48)

where�r is the reduced mass of the WIMP-nucleus system
and b is the (harmonic oscillator) size parameter. The
function, which is basic to us, �, is given by

 ��a
���
u
p
� �

Z ym

a
��
u
p dy

Z �

0
sin�d�

Z 2�

0
d�yfv�y; �; �� (49)

with

 fv�y; �; �� � fv�
������������������������������������������������
y2 � 2yysun cos�� y2

sun

q
� (50)

where � is the polar angle as measured from the direction
of the sun’s motion and ysun is the sun’s velocity in units of
vm. Note that since the argument of the function fv is
constrained to be less than ym. If ym is small the allowed
region in the �y; �� space is very restricted. The function
��a

���
u
p
� is plotted in Fig. 15. On the same figure we plot

the function ��a
���
u
p
� obtained with all three distributions.

From this Figure we see that our distribution yields results
similar to those obtained with the density of Eq. (28). In
fact our results are in the middle, between the M-B distri-
bution and that of Eq. (28). So from now on we will limit
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FIG. 15. The function ��a
���
u
p
� which enters the differential (with respect to the energy transfer u) event rate in dark matter searches

as obtained in the context of the Eddington approach as discussed in the text (a). For comparison we present in (b) the same function
(continuous curve) together with that obtained using the M-B distribution (dotted curve) and the density profile of Eq. (28) (thick solid
curve).
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our discussion to the results obtained using the standard M-
B as well as our distribution.

We should stress that the relative differential rate 1
�R
dR
du

can be obtained by combining the above results of ��a
���
u
p
�

with the nuclear form factor for the target of interest. The
dependence on the WIMP mass comes through the parame-
ter a.

VI. APPLICATION IN THE CASE OF THE TARGET
127I

In this section we are going to apply the above formal-
ism in the case of a popular target, 127I, which is an odd
mass target and can detect both the coherent and the spin
modes of the WIMP-nuclear interaction. We will include in
our only the coherent mode but we do not expect any real
differences as far as the quantity 1

�R
dR
du is concerned. The

nuclear form factor employed was obtained in the shell
model description of the target and is shown in Fig. 16.

The quantity dtcoh

du obtained both for our distribution as
well as for the familiar M-B distribution is shown in
Figs. 17–20 for various WIMP masses m�.

It is clear that the differential rate is a fast decreasing
function of the energy transfer. This is particularly true for
low WIMP masses. Integrating the differential rate from
zero to umax � y2

max=a2, with ymax � ym (ymax�2:84) for the
present (M-B) distributions, respectively, we find the total
rate R

�R as a function of the WIMP mass. The results are
shown in Fig. 21.

As we have already mentioned the nucleon cross sec-
tions also depend on the LSP mass. So the absolute event
rates, which include these cross sections, are expected to
drop even faster as a function of the LSP mass. In practice,
however, the detectors have a low energy threshold. So
only the event rates above an energy transfer Qth can be
detected. Thus we present the relative total rates tcoh as a
function of Qth in Figs. 22–24.

From these plots we see that it is crucial for experiments
to lower the threshold energy as much as possible. This is
particularly true for small WIMP masses.

VII. MODULATION

In the above discussion we did not take into account the
motion of the Earth. The expected event rates, however, are
very small due to the smallness of the nucleon cross
sections not discussed in this work. So the experiments
must fight against formidable backgrounds. Fortunately
there are some signatures of the WIMP-nuclear interaction,
which must be exploited. One such comes from the fact
that the event rates depend on the relative velocity between
the WIMP and the target. The most important velocity
dependent contribution comes from the rotation of the
Earth around the sun with a velocity v1 � 0:27v0. It turns
out that only the component of the Earth’s velocity along
the sun’s direction of motion, �v1�z � 0:135 cos�, is rele-
vant (� is the phase of the Earth, � � 0 around June 3rd).
We can thus apply the above formalism by
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FIG. 16. The form factor employed in our calculation. u is the
energy transfer to the nucleus in units ofQ0, i.e. u � Q=Q0, with
Q0 � 64 keV.
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FIG. 18. The same as in Fig. 17 for m� � 30 GeV (solid line) and m� � 50 GeV (dashed line).
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FIG. 20. The same as in Fig. 19 form� � 200 GeV (thick solid line), m� � 250 GeV (thin solid line), m� � 350 GeV (short dashed
line) and m� � 500 GeV (long dashed line).
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FIG. 19. The same as in Fig. 17 for m� � 75 GeV (thick solid line), m� � 100 GeV (thin solid line), m� � 125 GeV (short dashed
line) and m� � 150 GeV (long dashed line).
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FIG. 21. We show (a) the quantity tcoh in the case of the present distribution as a function of the WIMP mass and threshold energy
(Qth � 0, thick solid curve, Qth � 5 keV, fine solid curve and Qth � 10 keV, dashed curve) and (b) the same quantity in the
case of the M-B. It is clear that the rates decrease as the threshold energy increases. This is is especially true for low LSP mass.
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 ysun ) ysun�1� 0:068 cos��

Thus Eqs. (44) and (46) become

 T�u� ) a2jF�u�j2	��a
���
u
p
� �H�a

���
u
p
� cos�
 (51)

for the coherent mode and similarly for the spin We will
examine the modulation effect in the case of 127I. The
behavior of the function H�a

���
u
p
� is exhibited in Fig. 25.

We notice the sign change of H as the energy transfer
changes.

Integrating the differential rates we obtain the total rates,
which now now take the form:

 t) t�1� h cos�� (52)

The exact behavior of the modulation of event rates de-
pends, of course, on the parameter a and the nuclear form
factor. Quite generally for light nuclear targets, i.e. large a,
the lower range of Fig. 25 does not enter and the modula-
tion h is not suppressed. On the other hand, for intermedi-
ate and heavy nuclei, the lower part tends to cancel the
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FIG. 23. The same as in Fig. 22 for m� � 75 GeV (thick solid line), m� � 100 GeV (thin solid line), m� � 125 GeV (short dashed
line) and m� � 150 GeV (long dashed line).
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FIG. 24. The same as in Fig. 23 form� � 200 GeV (thick solid line), m� � 250 GeV (thin solid line), m� � 350 GeV (short dashed
line) and m� � 500 GeV (long dashed line).
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FIG. 22. The relative rates tcoh as a function of threshold energy for WIMP masses m� � 10 (thick solid line), m� � 30 GeV (fine
solid line) and m� � 50 GeV (dashed line) corresponding to the present distribution (a) and to a M-B distribution (b).
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effect of the upper part of Fig. 25. This leads to a reduction
of the modulation of the total rates and even in a change of
sign of h, i.e. minimum in June and maximum in
December. The behavior of the quantity h, in the case of
the present velocity distribution foe 127I, is exhibited in

Fig. 26. We see that the modulation predicted by the
present distribution is much smaller than that obtained
with a M-B distribution (see Fig. 27). This is true regard-
less of the energy cut off. Similar results have been ob-
tained in a modified M-B distribution [41] obtained in a
model that couples gravity to a scalar field. This way the
characteristic velocity is not �0, the sun’s rotational veloc-
ity, but <�d >

���
2
p
� �0.

We should emphasize that h is the ratio of the modulated
rate to the average rate. In other words the increase of h as
the threshold energy increases, results from the fact that the
average rate (denominator) decreases much faster than the
modulated rate (numerator). So the increase in h, which is
a good signal against background, is not cheap. It comes at
the expense of the number of counts.

VIII. CONCLUSIONS

In the present paper we discussed the dependence of the
direct dark matter event rates on the density and velocity
distribution of WIMP’s. This was done in a self consistent
way by applying Eddington’s approach. Even though at
present only spherically symmetric matter distributions
can be treated this way, one can draw the following con-
clusions:

(i) Simple dark matter distributions can adequately de-
scribe the rotational curves of both spherical and disc
galaxies. With the assumed form of the density its
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FIG. 26. The modulation function h is shown as a function of
the WIMP mass for various threshold energies obtained with the
present velocity distribution. In this figure: Qth � 0,
thick solid curve, Qth � 5 keV, fine solid curve and Qth �
10 keV, dashed curve.
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scale was determined by fitting the rotational veloc-
ity of the sun. The value of dark matter density
extracted is in agreement with that hitherto em-
ployed in dark matter calculations, ’ 0:3 GeV=cm3.

(ii) From the assumed density profile we obtained the
distribution function. Evaluation of the distribution
function in our vicinity yields the velocity distribu-
tion. This velocity distribution automatically van-
ishes for velocities larger than a velocity �m. �m
depends on the square root of the potential in our
vicinity. It is quite different from the rotational ve-
locity, which depends on the square root of the
derivative of the potential.

(iii) The velocity distribution obtained is not very differ-
ent from the standard M-B in the range of velocities
of interest to dark matter searches.

(iv) We focused our attention on the factor t entering dark
matter rates, which is independent of the nucleon
cross section, i.e. it holds for all heavy WIMPs. The
values obtained in our model are larger than those
obtained using the M-B distribution. The relative
magnitude depends on the WIMP mass. For small
WIMP masses the obtained results are 3–4 times
larger than those of the M-B case.

(v) We also computed the modulation amplitudes H�u�
and h. We find that both are more suppressed than
those obtained with the M-B distribution. It seems

that the precise value of the modulation sensitively
depend on the assumed velocity distribution (the
form of the function H�u� is independent of the
assumed nuclear form factor). It appears, though,
that the modulation obtained with the present veloc-
ity distribution is perhaps too small to be of practical
interest experimentally.

We did not consider in this work asymmetric velocity
distributions. Another signature not discussed in this
work is the asymmetry, with respect to the sun’s direction
of motion, expected in directional experiments [42]. In
such experiments, which detect not only the energy of
the recoiling nucleus, but its direction of motion as well,
the modulation is expected to be direction dependent. It is
expected to be quite large in some directions. Such effects
in the context of the present approach are currently under
study.
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