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Low frequency gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA),
will have to contend with large foregrounds produced by millions of compact galactic binaries in our
galaxy. While these galactic signals are interesting in their own right, the unresolved component can
obscure other sources. The science yield for the LISA mission can be improved if the brighter and more
isolated foreground sources can be identified and regressed from the data. Since the signals overlap with
one another, we are faced with a ‘‘cocktail party’’ problem of picking out individual conversations in a
crowded room. Here we present and implement an end-to-end solution to the galactic foreground problem
that is able to resolve tens of thousands of sources from across the LISA band. Our algorithm employs a
variant of the Markov chain Monte Carlo (MCMC) method, which we call the blocked annealed
Metropolis-Hastings (BAM) algorithm. Following a description of the algorithm and its implementation,
we give several examples ranging from searches for a single source to searches for hundreds of
overlapping sources. Our examples include data sets from the first round of mock LISA data challenges.
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I. INTRODUCTION

Galactic compact binary systems are expected to be the
major source of gravitational waves detected by the LISA
observatory [1]. Tens of millions of such binaries will be
emitting gravitational waves in the LISA band [2–6].
Though most will have a signal-to-noise ratio (SNR) too
low to be detectable, tens of thousands are expected to be
resolvable if optimal signal analysis algorithms are avail-
able [7]. The signals from unresolved binary systems will
constitute a gravitational wave confusion noise. Iden-
tification of the brighter galactic binaries will be an im-
portant aid to resolving other sources for LISA, such as
supermassive black hole binaries (SMBHBs) [8–12] and
extreme mass ratio inspirals of compact objects into super-
massive black holes (EMRIs) [13–16]. The SMBHB,
EMRI, and compact binary signals have small, but non-
vanishing overlap with one another, so we will ultimately
want a simultaneous fit to all sources and source types.

Various techniques have been proposed to extract the
parameters of sources from the LISA data stream. The
methods include Markov chain Monte Carlo methods
[17–21], genetic algorithms [22], iterative methods
[23,24], grid-based template searching [25], tomographic
reconstruction [26], and time-frequency methods [27]. For
most of these methods (tomography and time-frequency
analysis being the exceptions), optimal filtering is accom-
plished through the construction of templates describing
the signals from all sources in the data stream. For LISA,
the vast number of sources involved makes a direct ap-
proach (such as a grid-based template bank) computation-
ally impractical. It is for this reason ergodic methods such
as Markov chain Monte Carlo (MCMC) and genetic algo-
rithms have been applied to the LISA data analysis
problem.

In this work we develop an extension of the MCMC
method [28–30] that is able to search the entire LISA band
and simultaneously solve for thousands of galactic bi-
naries. Our approach is based on the observation that,
while some signals can have significant overlap, signals
that are well separated in frequency have little or no over-
lap [31]. We exploit this quasilocality by breaking the
search up into subregions in frequency, taking care with
edge effects. In a departure from our previous approach
[17], we do not try and update all the source parameters
simultaneously at each iteration. This greatly reduces the
computational cost, while still providing a global solution
as the full multitemplate is used to evaluate the likelihood.
The multitemplate is the superposition of all the individual
7 parameter search templates. We refer to the individual
components of the multitemplate as ‘‘searchers’’ as the
evolution of the parameter chains is reminiscent of blood-
hounds latching onto a scent trail. The parameter updates
are done in small blocks of highly correlated search tem-
plates, and the solution is updated using Metropolis-
Hastings sampling. Simulated annealing is employed dur-
ing the search phase to improve the mixing of the chains.
We demonstrate this ‘‘blocked annealed Metropolis-
Hastings’’ (BAM) algorithm on simulated LISA data that
contains the signals from monochromatic white dwarf
binary systems (WD-WD) immersed in Gaussian instru-
mental noise.

The paper is organized as follows: In Sec. II we review
the LISA galactic foreground problem, and give a brief
introduction to the MCMC algorithm and the Metropolis-
Hastings sampling kernel. Additionally, we give a descrip-
tion of the BAM algorithm and demonstrate how its com-
putational cost scales with the number of sources being
searched for. Section III discusses various aspects of using
the BAM algorithm, such as hierarchical searching, opti-
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mal choices for search ranges, stopping criteria, and rates
of occurrence for false positives and false negatives.
Example searches are performed in Sec. IV, ranging from
individual sources to hundreds of sources in a restricted
range of the LISA band. Concluding remarks are made in
Sec. V.

II. ALGORITHM OVERVIEW

In this section we describe the BAM algorithm and the
issues and difficulties that we worked through in the devel-
opment process. We start with a brief review of the basic
MCMC approach and Metropolis-Hastings sampling. This
is followed by a review of how the extrinsic source pa-
rameters are analytically solved for using the F-statistic.
We then describe how the speed of the BAM algorithm
scales with the number of sources that are being searched
for.

A. The galactic foreground problem

It is anticipated that tens of millions of compact binary
systems will emit radiation at frequencies that lie within
the LISA band. The majority of these systems will be
detached double white dwarf binaries, or interacting
double white dwarf binaries of the AMCVn class. A
much smaller fraction will involve naked helium stars,
neutron stars, or stellar mass black holes. The number of
compact binaries is predicted to increase sharply with
decreasing frequency, and it has been estimated that the
average number of systems per 1=year ’ 31 nHz fre-
quency bin exceeds unity for frequencies below �3 mHz
[4–6]. This inevitably leads to a confusion limited residual
at low frequencies, and is the reason why most of the
resolvable systems have frequencies in the 2 to 5 mHz
range [7].

It has been estimated that it will be possible to resolve
�15 000 individual compact binary systems from a 1-year

LISA data stream [7]. Since the signals are continuous, and
described by 7! 9 parameters, it might appear that we are
faced with the problem of having to simultaneously solve
for a model with �105 components. However, the band-
width of each individual signal is limited (� 0:1!
10 �Hz), so most of the signals have very small overlap.
Taking the �17 000 binary systems of the Nelemans-
Yungelson-Zwart [6] galaxy model that were identified as
having signal-to-noise ratios >10 by Timpano et al. [7]
and computing the maximum correlation between them
yields the correlation histogram shown in Fig. 1. We find
that 68% of the bright sources suffer correlations no larger
than 0.2 with other bright sources. Here the correlation is
defined as the absolute value of the overlap, where the
overlap between signals a and b is defined as

 Cab �
�ajb�

�aja�1=2�bjb�1=2
; (1)

where �ajb� denotes the noise-weighted inner product

 �ajb� � 2
Z 1

0

~a��f�~b�f� � ~a�f�~b��f�
Sn�f�

df; (2)

and Sn�f� is the one-sided noise spectral density. Figure 2
shows how the correlation between bright sources decays
as they get further apart in frequency, and underlines the
fact that the problem of finding a global fit to the galactic
foreground is an essentially local problem in frequency
space.

B. The Markov chain Monte Carlo algorithm and
Metropolis-Hastings sampling

The MCMC algorithm is becoming a familiar tool in
gravitational wave data analysis. Initially introduced to the
field by Christensen and Meyer [32], its application to
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FIG. 1. Histogram of the largest correlations between bright
galactic binaries (SNR> 10).
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FIG. 2. The maximum (dashed lined) and average (solid line)
correlation between bright galactic sources as a function of the
difference in their barycenter frequencies (binned in units of
10 nHz).
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ground-based interferometers has been explored in the
context of parameter extraction of coalescing binaries
[33] and spinning neutron stars [34]. With its ability to
explore large parameter spaces while simultaneously per-
forming model selection and noise estimation, the MCMC
method is ideally suited to the LISA data analysis problem.
The reverse-jump MCMC algorithm has been applied to
the LISA-like problem of identifying a large, yet unknown
number of sinusoids in simulated Gaussian noise [35,36]. It
was shown that the method could correctly identify the
number of resolvable signals present in the data and re-
cover the signal parameters and an estimate of the noise
level. The MCMC approach was first applied to simulated
LISA data in the context of galactic binaries [17], and it has
since been applied to SMBHBs [18–20].

In using an MCMC approach, one wants to generate a
sample set f ~xg that corresponds to draws made from the
posterior distribution of the system p� ~xjs�. The procedure
for generating such a set is surprisingly simple.

We begin at a point in the parameter space of the binary
system(s), ~x (which may or may not be chosen at random),
and propose a jump to a new position, ~y, based on some
proposal distribution, q��j ~x�. The Hastings ratio is calcu-
lated using

 H �
p� ~y�p�sj ~y�q� ~xj ~y�
p� ~x�p�sj ~x�q� ~yj ~x�

; (3)

where p� ~x� is the prior of the parameters at ~x, q� ~xj ~y� is the
value of the proposal distribution for a jump from ~x to ~y,
and p�sj ~x� is the likelihood at ~x. The likelihood function, if
the noise is a normal process with zero mean, is given by
[37]

 p�sj ~x� � C exp�	1
2��s	 h� ~x��j�s	 h� ~x���
; (4)

where the normalization constant C is independent of the
signal, s. The jump will be accepted with probability � �
min�1; H�. If the jump is rejected (Metropolis rejection
[28]) the chain remains at its current state, ~x. Repeated
jumps will produce a Markov chain whose stationary
distribution is equal to the posterior distribution in ques-
tion, p� ~xjs�. Andrieu et al. [35,38] provide a more general
and thorough review of MCMC methods.

The convergence to the correct posterior will occur for
any (nontrivial) proposal distribution [39]. However, the
closer the proposal distribution is to the posterior distribu-
tion, the quicker the chain will converge. Since we do not
know the form of the posterior in advance of running the
chain, we instead opt for flexibility in our choice of pro-
posal distribution. We accomplish this by using a mixture
of proposal distributions, including occasional ‘‘bold’’
proposals that attempt large changes in the parameter
values along with many ‘‘timid’’ proposals that attempt
small changes in the parameter values of the chain (for a
detailed description of some of these proposals see [17]).
Also added to our list of proposals are a few ‘‘tailored’’

proposals. These are proposed jumps based on our knowl-
edge of the symmetries and degeneracies of the likelihood
surface. For example, for LISA there is a secondary max-
ima in the likelihood surface of a binary system that
corresponds to a reflection about the ecliptic equator com-
bined with a shift of � in the ecliptic longitude. Thus, we
include a proposal that attempts such a reflection.

Another tailored proposal that was highly effective uses
the fact that local maxima occur in the likelihood surface at
multiples of the modulation frequency (fm � 1=year). The
presence of these maxima are easily understood. The de-
tector response imparts sidebands on the monochromatic
barycenter signal to produce a comb whose teeth are
spaced by the modulation frequency. A template with a
Barycenter frequency offset from the signal by a multiple
of fm will produce a similar comb whose teeth align with
those of the signal. The fit can be improved by adjusting the
other template parameters to better match the shape of the
source comb. Figure 3 shows the power spectrum of a
source and a template offset by 1fm in frequency, while
in Fig. 4 the template has had its other parameters altered to
better fit the source comb. This improves the log likelihood
from 16.7% to 66.4% of the true parameter value. It proved
to be difficult to find an analytic description of how the
other parameters should be modified to improve the fit, so
we went with a simple proposal that shifted the frequency
of the source by 1fm � �, and shifted the other parameters
using a uniform draw in a small range around the current
binary parameters.

Since the search used an F-statistic to extremize over the
amplitude, inclination angle, polarization angle, and initial
phase, we only needed to assign priors to the frequency and
sky location. For the frequency we used a uniform prior
across the search range, and for the sky locations we used a
distance weighted galactic distribution.
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FIG. 3. Spectrum of a source and template with the same
parameters save their frequencies, which differ by one modula-
tion frequency. The source has f � 3:0 mHz, A � 1:4� 10	22,
� � 1:0, � � 3:141 59,  � 0:5, � � 0:785 398, and ’o � 0:0.
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While a general MCMC algorithm functions as both a
means to search the likelihood surface and sample from the
posterior distribution, the Markovian nature is only re-
quired for the sampling portion of the process. For the
purpose of searching to determine the neighborhood of
the true parameters, which is the focus of this work, we
allow ourselves the extra freedom provided by non-
Markovian Metropolis-Hastings sampling and simulated
annealing (described below). Once the search phase is
complete the non-Markovian moves are suspended, and
the algorithm performs a standard MCMC exploration of
the posterior distribution. One example of a non-
Markovian proposal involves how we implement the pre-
viously described 1fm jump. Early in the search phase, if
one of these proposals was accepted, a second (identical)
jump was attempted. The reason for this is that just as a
local maximum occurs �1fm away from the global maxi-
mum, another (smaller) local maximum occurs �2fm
away. In fact, a chain of maxima occur spaced about one
modulation frequency apart from each other in likelihood
space (see Fig. 5). This non-Markovian move allowed
searchers to ‘‘island-hop’’ around the likelihood surface
if it found itself on one of the maxima in the island chain.

To encourage the chains to explore the full parameter
space, and to discourage the chains from getting stuck on
local maxima, we employ simulated annealing during the
search phase. This is done by multiplying the noise-
weighted inner product by an ‘‘inverse temperature’’ �,
and applying the cooling schedule

 � �
�
�0�

1
�0
�i=Nc 0 � i � Nc

1 i > Nc:
(5)

Here �0 is the initial heating factor and Nc is the length of
the annealing phase. The choice of �0 depends on the SNR
of the sources. When very bright sources are present we set
�0 � 10	2, while smaller values of �0 � 10	1 work better
once the brightest sources have been removed. Our criteria
for choosing �0 was that the chains should explore the full
parameter range during the first 1000 or so iterations. If full
range movement was not seen we dialed up the heat. The
choice of Nc depends on �0, and can be set by demanding
that it takes, say, 500 steps for � to decrease by a factor
of 2.

C. F-statistic

The F-statistic [40] uses multiple linear filters to obtain
the extremum for the likelihood over the extrinsic parame-
ters of the signal. Using the F-statistic, one can search the
intrinsic parameters, and recover the extrinsic parameters
as a last step in the process. For a monochromatic binary
detected by LISA, this reduces the search space to three
parameters: frequency and sky location ��;��. Note: the
tumbling orbit of LISA induces modulations of the fre-
quency into the signal, thus creating an interdependency in
the signal between frequency and sky location that pre-
vents � and � from being treated as purely extrinsic
quantities.

At low frequencies, the LISA response to a gravitational
wave can be written

 h�t� � h��t�F��t� � h��t�F��t�; (6)

where h��t� and h��t� are the two polarizations of the
incident gravitational wave [41,42], which for a monochro-
matic binary, to leading post-Newtonian order, are given by

 h��t� � A�1� cos2�� cos���t� � ’0�

h��t� � 	2A cos� sin���t� � ’0�:
(7)

F��t� and F��t� are the beam pattern factors:

 

FIG. 5 (color online). Contours of constant likelihood for a
single, monochromatic WD-WD binary system. Sky position
directions lie in the plane shown, while frequency is directed
orthogonal to the plane. The visible maxima are separated by
approximately one modulation frequency.
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FIG. 4. Spectrum of a source and a template with frequencies
that differ by one modulation frequency. The parameters of the
template have been adjusted to maximize the overlap. The
source has the same parameters as in Fig. 1, while the template
has A � 1:472 54� 10	22, f � 3:000 031 688 mHz, � �
0:787 087, � � 3:187 81,  � 0:512 18, � � 0:894 19, and
’o � 0:179 034.
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 F��t� � 1
2�cos2 D��t� 	 sin2 D��t��

F��t� � 1
2�sin2 D��t� � cos2 D��t��;

(8)

where D��t� and D��t� are the detector pattern functions,
whose mathematical form can be found in Eqs. (36) and
(37) of Ref. [43].

In the gravitational wave phase

 ��t; f; �; �� � 2�ft� 2�fAU sin� cos�2�fmt	��;

(9)

one can see the coupling of the sky location and the
frequency through the term that depends on the radius of
LISA’s orbit, 1 AU, and its orbital modulation frequency,
fm � 1=year. For the low frequency galactic sources we
are considering, the gravitational wave amplitude, A, is
effectively constant. Thus (6) can be rearranged as

 h�t� �
X4

i�1

ai�A; ; �; ’0�Ai�t; f; �;��; (10)

where the time-independent amplitudes ai are given by
 

a1 �
A
2
��1� cos2�� cos’0 cos2 	 2 cos� sin’0 sin2 �;

a2 � 	
A
2
�2 cos� sin’0 cos2 � �1� cos2�� cos’0 sin2 �;

a3 � 	
A
2
�2 cos� cos’0 sin2 � �1� cos2�� sin’0 cos2 �;

a4 �
A
2
��1� cos2�� sin’0 sin2 	 2 cos� cos’0 cos2 �;

(11)

and the time-dependent functions Ai�t� are given by

 A1�t� � D��t; �;�� cos��t; f; �;��

A2�t� � D��t; �;�� cos��t; f; �;��

A3�t� � D��t; �;�� sin��t; f; �; ��

A4�t� � D��t; �;�� sin��t; f; �; ��:

(12)

Writing LISA’s signal as a superposition of gravitational
waves and noise,

 s��t� � h��t; ~	� � n��t� �
XN
i�1

hi��t; ~	i� � n��t�; (13)

and defining the four constants Ni � �sjAi� and the
M-matrix, Mij � �AijAj�, one can express (10) as a matrix
equation:

 Mijaj � Ni: (14)

Therefore, with a signal from LISA and the three intrinsic
parameter values, one can solve (by iteration or inversion)
for the amplitudes, and thus the extrinsic parameters. The
values of the intrinsic parameters are found by use of
iterative Metropolis-Hastings sampling. The extrinsic pa-

rameter values are given by
 

A �
A� �

��������������������
A2
� 	 A

2
�

q
2

 �
1

2
arctan

�
A�a4 	 A�a1

	�A�a2 � A�a3�

�

� � arccos
�

	A�

A� �
��������������������
A2
� 	 A

2
�

q
�

’0 � arctan
�
c�A�a4 	 A�a1�

	c�A�a3 � A�a2�

�
;

(15)

where
 

A� �
��������������������������������������������������
�a1 � a4�

2 � �a2 	 a3�
2

q

�
��������������������������������������������������
�a1 	 a4�

2 � �a2 � a3�
2

q

A� �
��������������������������������������������������
�a1 � a4�

2 � �a2 	 a3�
2

q

	
��������������������������������������������������
�a1 	 a4�

2 � �a2 � a3�
2

q
c � sign�sin�2 ��:

(16)

This description of the F-statistic automatically incorpo-
rates the two independent LISA channels through the use
of the dual-channel noise-weighted inner product.

We generalize the F-statistic to handle N overlapping
sources by writing i � 4K � l, where K labels the source
and l � 1! 4 labels the four filters for each source. The
F-statistic has the same form, but with 4N linear filters Ni,
and Mij is a 4N � 4N dimensional matrix. For slowly
evolving galactic binaries, which dominate the confusion
problem, the limited bandwidth of each individual signal
means that the Mij is band diagonal, which lessens the
difficulty in solving (14) for the large numbers of sources
that are expected to be detected.

D. The blocked annealed Metropolis-Hastings
algorithm

Metropolis [28] noted that a multiparameter model can
be explored by updating just one parameter at each itera-
tion of the chain. A popular example of this approach is the
Gibbs sampler [44], where each parameter is updated
sequentially using a proposal distribution that is the condi-
tional of the posterior evaluated at the current values of the
other parameters. One drawback of single parameter up-
dates is that correlations between parameters can hinder
the mixing of the chain. The Blocked-Gibbs algorithm [45]
addresses this problem by simultaneously updating blocks
of highly correlated parameters. For our search algorithm,
we adopt a similar strategy, and perform Metropolis-
Hastings updates to blocks of searchers that are close in
frequency.

The blocks in the BAM algorithm are small subunits of
the frequency range being searched. As can be seen in

SOLUTION TO THE GALACTIC FOREGROUND PROBLEM . . . PHYSICAL REVIEW D 75, 043008 (2007)

043008-5



Fig. 6, which shows a schematic representation of a search
region in our BAM algorithm, the search region is broken
up into equal sized blocks. The algorithm steps through
these blocks sequentially, updating all sources within a
given block simultaneously. After all blocks have been
updated, they are shifted by one-half the width of a block
for the next round of updates. This allows two correlated
sources that might happen to be located on opposite sides
of a border between two neighboring blocks to be updated
together on every other update. This blocking provides a
means to handle highly correlated searchers/sources, and
yields a speed enhancement which is covered in II E.

This simple extension to an MCMC algorithm allows for
quick and robust searching of isolated data snippets with
up to�100 templates (the limit on the number of templates
is due to the computational cost of the multisource
F-statistic). In order to be able to handle the entire LISA
band, we have to break the search up into subregions
containing a manageable number of sources. This introdu-
ces the problem of edge effects from sources that lie just
outside the chosen search region, but deposit power into
the search region. To combat the edge effects we intro-
duced ‘‘wings’’ and an ‘‘acceptance window.’’ The purpose
of the wings is to create a buffer between the search region
and the regions beyond, so that sources in those outer
regions do not adversely affect the searchers in the accep-
tance window. Searchers that end up in the wings are
discarded (even though many might be perfectly good fits
to actual sources). This allows us to step through frequency
space, using multiple search regions.

A problem, which we call ‘‘slamming,’’ can occur when
a bright source lies just outside the search region.
Slamming is the tendency of the searchers to migrate to
the edge of the search region in an effort to fit the power
that bleeds into the search region. Since the search region
contains only a portion of the signal from the exterior

source, a single searcher is a poor match, and so other
searchers soon are recruited to improve the fit. Figure 7
shows a case of slamming, where four searchers (in a data
snippet with four sources) are drawn off to the edge of the
search region by a bright source just outside the search
region. A tell-tale feature of slamming is the large ampli-
tudes of the searchers and their high degree of correlation
or anticorrelation.

One fix to the slamming problem is to weight the
matches in the wings less than matches in the acceptance
window. We do this by attenuating the contribution from
the wings in the noise-weighted inner product. The attenu-
ation is done by increasing the noise spectral density in the
wings, which we call ‘‘wing noise.’’ We exponentially
increase the noise spectral density, starting at the edge of
the acceptance window, as shown in Fig. 6. Figure 8 shows
a search using wing noise in the same region as Fig. 7. As
can be seen there is no slamming, and the searchers were
able to find the true sources.
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FIG. 7. An example of slamming, in which four searchers are
drawn to the edge of the search region by a bright source placed
just outside the search region.
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FIG. 8. The same search shown in Fig. 7, but with the inclusion
of wing noise. The wing noise has cured the slamming.
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FIG. 6. A schematic representation of a search region in fre-
quency space, showing the block structure of the BAM algo-
rithm.
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Another fix to the slamming problem is to adopt a
hierarchical approach that starts by identifying and remov-
ing the brightest sources in the data stream. Com-
putationally inexpensive pilot searches can be performed
using a small number of searchers, which naturally tend to
lock on to the brightest sources. Information gleaned from
the pilot searches can then be used to subtract bright
sources that might lead to slamming. This hierarchical
approach will be described in more detail in the
Sec. III A. In general use of our BAM algorithm, we use
both wing noise and information about bright sources out-
side the search regions to lessen the chance of slamming.

E. Time scaling

Since our ultimate goal is to simultaneously solve for
15 000� galactic binary systems, careful attention has to be
given to the computational cost of the algorithm. Even
though the BAM algorithm exploits the local nature of
the correlations between sources, there can be dozens of
highly correlated sources in the �1 �Hz bandwidth of a
single source. Thus, we have to pay particular attention to
how the computation cost scales with the number of
searchers in a search region.

A straightforward BAM algorithm that does not employ
the F-statistic to compute the likelihood or multisource
Fisher matrices in the proposal distributions would have a
computational cost that scales linearly with the number of
sources being searched for, as the computational cost per
source would be constant. The goal of a purely linear
scaling is unrealizable in our current version of the BAM
algorithm for two reasons.

First, in using the F-statistic to calculate the likelihood
values we are required to solve Eq. (14) for the time-
independent amplitudes ai. Inverting this equation would
scale as N3, and while solving for the amplitudes using an
iterative method is significantly better it does not scale
linearly with N. In future versions of the algorithm, we
are considering the option of limiting the usage of the
F-statistic to each frequency block, thereby significantly
reducing the scale of the linear algebra problem.

The second impediment is that some proposal distribu-
tions, such as a multivariate normal distribution jumping
along the eigendirections of the variance-covariance ma-
trix, are inherently nonlinear in computational cost (calcu-
lation of the Fisher information matrix alone scales as N2).
It is here that the use of the blocks shows great benefit.
Figure 9 shows how the time to perform a searcher update
is affected by the number of searchers. The plot shows the
average cost per individual searcher that is updated in a
search using only multivariate normal proposal distribu-
tions. In one case, all searchers are updated simultaneously
(i.e. the entire search region is treated as one block). In the
other case, breaking the updates into the blocks lessens the
number of searchers being updated simultaneously, greatly
reducing the overall computational cost as the number of
sources grows. The search was performed on a one-year
data stream in a 0.01 mHz snippet starting at frequency of
3 mHz with blocks that were 4=year wide. Up throughN �
20, no blocks contained more than one search template and
the increase in computational cost per search template
update was just 1.25 times greater than a single template
search, due solely to the use of the multisource F-statistic.
Beyond N � 20, the blocks began to contain more than
one searcher, and the nonlinear nature of the normal pro-
posal started to drive up the cost per update.

III. ISSUES WHEN USING THE ALGORITHM

Thus far, we have described the features of the BAM
algorithm, and discussed how those features aid in opti-
mizing the algorithm. In this section some of the imple-
mentation issues will be addressed. We will discuss choices
of the sizes of search regions, the sizes of the wings,
hierarchical searching, stopping criteria, and false-posi-
tive/false-negative levels.

A. Hierarchical method

We are able to perform searches in a hierarchical manner
simply by choosing to use fewer search templates than
there are sources. For example, if we search a region that
contains 10 sources with a multitemplate built from 2
galactic binary templates, the algorithm will generally
recover the 2 sources that return the highest likelihood
value (usually they will correspond to the highest SNR
sources in the region). In this hierarchical approach, the
solution for the brightest sources will be thrown off by the
sources that were neglected, but this bias can be corrected
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at subsequent stages in the hierarchy. At the next stage in
the hierarchy more galactic binary templates are used, with
the information from the earlier searches providing starting
locations for some of the search templates. In practice, we
will not know the true number of sources in any given
search region; here our estimates of the local source den-
sity will inform our choice of a staring number of
searchers.

Figure 10 illustrates an example where a 1000fm data
snippet containing 281 sources with an observation time of
three years was searched using 10, 30, and 50 searchers. In
the case using 10 searchers, the 10 sources with the highest
SNRs were found, while for the case with 30 searchers only
25 of the 30 highest SNR sources were among those found
(the other 5 searchers did find true sources, albeit with
lower SNRs).

One may be tempted to subtract the signals of sources
found in the pilot search, before looking for more sources
in the region, but our experience leads us to believe that
this is not the best way to proceed. In a hierarchical search,
the initial solution for the bright sources will be thrown off
by dimmer sources that they overlap with. To stop these
errors from propagating it is better to allow the algorithm
to refine the fit to the bright sources at subsequent stages in
the hierarchy.

Instead of removing the signal from the data stream, we
include the information in the multitemplate represented
by the combination of the search templates. Within the
framework of our algorithm, one has several options of
how to include the information at subsequent stages. One
option is to begin the next search with some of the search

templates at the source locations determined at the pre-
vious iteration, then allowing them to behave like any other
searchers from that point on. Another option is to hold the
intrinsic parameters of the previously determined signals
fixed during the high heat portion of the annealing phase
(the extrinsic parameters of all templates are still updated
since we are using a multitemplate F-statistic). The advan-
tage of the latter approach is that it protects the information
gleaned from earlier stages in the hierarchy, as there is a
danger that a previously determined template will be dis-
lodged during the annealing phase. When the temperature
reaches a selected value, the constraints are withdrawn and
the inherited search templates get treated like any other.
This allows the information gathered in the earlier runs to
be preserved, and also allows for adjustments to be made to
the parameters as needed due to the inclusion of other
searchers.

Another benefit is that such hierarchical searching can
be used to improve efficiency. Knowing where the very
bright sources are in the data snippet can be used to lessen
the sizes of the wings of the search regions. This will be
discussed in more detail in the next subsection.

B. Choosing window sizes

There are several factors that influence the choice of
window size. In Sec. II E we saw that the cost per template
update grows with the number of templates in a window.
This argues for using small search windows. However, in
Sec. II D we saw that it was necessary to include a wing
region to mitigate edge effects, and any signals recovered
in the wings had to be discarded. Thus, we would like for
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the wings to cover a small fraction of the search window, so
that the fraction of templates assigned to wings is small.
The size of the wings is determined by the typical band-
width of a source. A natural choice is to set the wing size
equal to the typical half-bandwidth as this ensures that
little power from sources located outside of the search
region leaks into the acceptance window. The source band-
width is determined by two factors, the width of the
sideband comb,

 Bc  2
�
5� 2�f

1AU

c

�
fm; (17)

and the degree of spectral leakage caused by the finite
observation time. The spectral leakage depends on the
amount the carrier frequency differs from being an integer
multiple of 1=Tobs, and falls off inversely with the number
of frequency bins. For observation times on the order of
years and for frequencies in the milli-Hertz range, the two
contributions to the bandwidth are of similar size.
Somewhat larger wings are needed if very bright sources
have not been regressed from neighboring frequency
windows.

These physical considerations dictate a total wing size of
�15! 30fm, and we would like to use snippets consid-
erably larger than this in order to maximize the fraction of
the templates that appear in the acceptance window. The
problem with this is that in regions of high source density
we end up with template densities of 1 per �4 frequency
bins, so for a 1 yr data stream the wings alone account for
4! 7 templates. Thus, to keep us in the regime where the
cost per update is close to that of a single source, we were
forced to use snippets where the acceptance window was
comparable in size to the wings. In future upgrades we
hope to improve the scaling of the algorithm so that we can
use larger search windows.

C. Stopping criteria

In LISA data analysis we will not only have to determine
source parameters, but also the number of sources that can
be resolved. Studies of the galactic confusion noise levels
[4–7,46,47] provide some answers concerning source pop-
ulations across the LISA band, as well as estimates of the
number of resolvable binaries as a function of frequency
[7]. However, this information is better suited to determin-
ing the number of source templates to start with, than the

number with which to end. In order to discover where we
must stop we will have to listen to the data.

Models with more parameters will always produce bet-
ter fits to the data, but beyond a certain point the recovered
parameters become meaningless. What we seek is the best
fit to the data with the simplest possible model. For a model
with uniform priors we seek to minimize

 
2 � �s	 hjs	 h�; (18)

using the smallest number of source templates. Using
2 �
��h� nj�h� n� and �h � 	h;i�	

i, along with the
maximum likelihood estimate for the parameter errors,
�	i � ��	1�ij�hjjn�, where �ij � �h;ijh;j� is the Fisher
information matrix, we find that the expectation value of

2 is given by

 h
2i � h�njn�i 	 ��	1�ij�ij �N 	D; (19)

where N is the total number of data points and D is the
model dimension. As one might have anticipated, it does
not make sense to use a model with more parameters than
there are data points. This sets an upper limit of 1 source
template every �2 frequency bins, as there are 4 data
points per frequency bin (2 independent data channels,
each with a real and imaginary part), and 7 parameters
per template. More refined criteria, such as the Bayesian
evidence, set more stringent stopping criteria.

There have been many different suggestions of how to
weight goodness of fit against model complexity. Two in
common use are the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC) [48]. We
tried both, and found neither to be particularly satisfactory
as a stopping criteria, as they generally overestimated the
number of sources in the data. Instead we settled on the
Laplace approximation to the full Bayesian evidence. The
evidence pX�s� for a model X given data s is given by the
integral

 pX�s� �
Z
p�sj ~	; X�p� ~	; X�d ~	: (20)

Computing this integral is extremely expensive for high
dimension models, but the Laplace approximation pro-
vides the estimate:

 pX�s� ’ p�sj ~	MAP; X�
�
�VX
VX

�
; (21)

where p�sj ~	MAP; X� is the maximum of the posterior, VX is

TABLE I. Source parameter for the 4 sources in the data snippet.

SNR A (10	24) f (mHz) � �  � ’0

1.23 2.05 3.001 514 406 1.259 4.012 0.759 1.183 2.551
7.67 10.8 3.000 315 843 2.437 2.753 2.484 2.173 2.550
9.65 12.1 3.000 454 748 2.198 0.422 2.880 2.263 2.991
10.76 9.27 3.001 985 584 1.336 5.863 0.931 2.805 4.048
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the volume of the model’s parameter space, and �VX is the
volume of the uncertainty ellipsoid, which can be esti-
mated from the curvature of the posterior. (To simplify
the calculation, we ignored the gradient of the priors and
used the maximum likelihood estimate for ~	 and the Fisher
information matrix as a proxy for the curvature of the
posterior.) In general, adding another source template to
the model will increase the likelihood, however, the
�VX=VX term penalizes larger models and serves as a
built-in Occam factor.

As an example we will look at a data snippet containing
4 sources. The source parameters and SNRs are shown in
Table I. There is one dim source which is not expected to be
recovered (see Sec. III D for more details). Figure 11 plots
the logarithms of the evidence and likelihood for models of
increasing size. One can see that the evidence is peaked at
the model with 3 source templates, while the likelihood
continues to climb as the model dimension is increased.
This tells us that the data favors a model with 3 sources
over one with 4.

An alternative approach to model selection is to use the
reverse-jump MCMC algorithm [49], which allows for
transitions between models of different dimension. The
fraction of the time the chain spends exploring each model
is used as a measure of the relative evidence for the differ-
ent models. We plan to use the RJMCMC approach in
future versions of the algorithm.

One limitation of the way we have formulated our
Bayesian model selection is that the evidence for a zero
source model is ill defined, so we cannot compare models
with 0 and 1 source templates. This limitation can be
removed if we expand our models to include the instrument
noise parameters, which we plan to do in future versions of
the algorithm.

For those that favor the frequentist approach to data
analysis, we provide some rough estimates of the false
alarm and false dismissal rates in the following subsec-
tions. To make such estimates we need to adopt some
criteria to decide if a signal has been detected. Since we
know the parameters of the injected sources, we based the
detection criteria on how well the source parameters were
recovered. We found that setting a 5-� error threshold for
each parameter (as determined from the Fisher matrix) was
a reliable indicator. Setting the threshold anywhere be-
tween 4! 10� gave almost identical results as the misses
tend to be very far from the mark, while the detections have
errors compatible with Fisher matrix predictions.

D. False negatives

Here we study the detection rate for the BAM algorithm
as a function of the SNR of an isolated source. To this end
we performed searches of data snippets between 3 mHz
and 3.031 688 mHz (a 1000fm segment of the LISA band),
each containing a single source. A set of parameters for
100 sources were chosen at random. Keeping all other
parameters constant, the amplitudes were varied to in-
crease the SNR. Simulated data sets for each of the 100
sources were created at different SNR levels. The BAM
algorithm was then applied to the simulated data using
short chains of 15 000 steps (10 000 steps in the annealing
phase and 5000 set in the sampling phase of each run). The
searches were also run using longer chains, consisting of
75 000 steps (50 000 annealing=25 000 sampling). For
each of two types of chains, two analysis methods were
used to determine the parameter values. In one method the
parameter values were determined by using average values
of the parameters in the chain from the sampling phase (i.e.
Bayes estimates). In the second method the parameter
values were determined from the mode of the parameter
histograms from the sampling phase. Figure 12 shows the
detection probabilities for these searches based on the two
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analysis methods. The resulting parameter set is called a
detection when they deviate by less than 5-� in each of the
true source’s intrinsic parameters.

As expected, the detection probability depends on the
length of the chain, with the longer chains giving higher
detection rates. However, a single very long chain is not the
best way to ensure detection. Consider the search for
sources with SNR � 5 using the parameter mode esti-
mates. The detection rate for the shorter chains was 0.45,
while for the longer chain the rate was 0.57. However, if the
search for a single SNR � 5 source is repeated multiple
times, the detection rate also comes out at �0:45. Thus, if
the short chain search is run twice and the results from the
two runs are combined, the detection probability improves
to�1–0:552 � 0:7, at a total cost of 30 000 steps, which is
still less than half the cost of the long chain searches.

Of the two methods for determining the source parame-
ters, the mode performed better than the Bayes estimate in
the low SNR region. On the other hand, the mode is harder
to compute, especially when there are a large number of
sources, so the current implementation of the full scale
BAM algorithm still uses Bayes estimates. This will be
corrected in future versions.

E. False positives

We now turn our attention to computing the false alarm
rate by searching data streams that contain only instrument
noise. We employed two approaches: in the first we per-
form multiple searches with differing noise realizations
and in the second we performed an extended search of
one noise realization.

For the first test we performed 20 000 searches using a
single search template in the same frequency band we used
to study the false negatives. Figure 13 shows a histogram of
the SNRs for the finishing points of the searches. This can
be used to give an idea as to the level where false positive

begins to become a concern. In this frequency range, the
histogram tells us that more than 99% of the searches
ended on parameters leading to a SNR less than 5. So in
accepting any result from a search with SNR above 5 in this
regime there is roughly a 1% chance of accepting a false
positive, with the probability dropping precipitously for
searchers returning higher SNRs. We repeated the analysis
at different frequencies and found the false-positive level to
be much the same across the LISA frequency band.

The second test used the same 1000fm band at 3 mHz,
but now a single long chain of 1� 106 steps was per-
formed. Figure 14 shows the frequency parameter over
100 000 steps in the chain. One notices that the chain
does not lock in on any particular frequency, rather it
continually wanders about the entire search region.
While this is common, it is not always the case, as instru-
ment noise can sometimes mimic a monochromatic source
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well enough to slow or even stop such exploratory move-
ment in a chain. Two other reliable indicators of a false
positive are the amplitude and the inclination angle of the
binary system. Figures 15 and 16 show their respective
histograms. The cosine of the inclination angle is peaked
around zero, and the amplitude is peaked at a level that
gives templates whose spectral density has the same mag-
nitude as the noise. The reason for these preferences is that
they allow the template to optimally match the noise in the
two LISA data channels. An inclination angle of�=2 gives
equal weight to the two channels, which allows the tem-
plate to match the noise level in both channels equally well.

To summarize, if the BAM algorithm recovers a source
with SNR � 5 it is unlikely to be a false positive.
Moreover, the chains show some very characteristic fea-
tures when the templates are just matching noise, and these
features can be used as a diagnostic to exclude false
positives. Lastly, one can always run the search multiple
times, and if the same set of parameters are recovered over
and over again it is less likely that we have found a false
positive.

IV. EXAMPLE SEARCHES

In this section we show the results of several types of
searches performed with the BAM algorithm. While results
for single source searches are easy to describe, when the
search is for hundreds of sources, and there are hundreds of
successes, the numbers are much harder to present in a
condensed manner. To that end, we will present multiple
search cases using plots like those in Fig. 10, where the
frequency values are shown, and we will list the deviations
of the recovered intrinsic parameters scaled by the uncer-
tainties given by the Fisher information matrix for the
sources. Since we are mostly interested in the search phase
of the algorithm the post-search MCMC runs we chose to
be rather short, so the recovered posteriors are a little

ragged. With this in mind we set our cutoff criteria for
‘‘finding’’ a source at a deviation of 5-� from any one of
the true source’s intrinsic parameters. In practice this cutoff
was fairly robust as any template that did not have all
parameters within a few � of the source typically had
one or more parameters that were tens to hundreds of �
out. We also imposed a SNR minimum of 5 in addition to
the Bayesian evidence criteria. This was perhaps stricter
than necessary to keep down the possibility of a false
positive (and in fact did lead to one actual detection being
discounted), but with that cutoff there were no instances of
false positives in any of the searches presented here.

A. Searches of the mock LISA data challenge training
sets

The mock LISA data challenge (MLDC) consists of
several types of challenges for the LISA data analysis
community to test search algorithms using simulated
LISA data. The first round in the MLDC consists of
challenges for three source types: galactic binaries, super-
massive black holes, and extreme mass ratio inspirals. For
this work we will focus on the challenges dealing with
galactic binaries. Provided with each challenge are two
data sets, one is a blind test where the source parameters
are unknown, while the other is an open test where the
source parameters are provided so that one may synchro-
nize conventions. In this paper we will only be discussing
results from the open data sets, as the MLDC task force has
asked that all results for the blind challenges be embargoed
until December 2006.

1. Single binary searches

The first challenges consist of single binary systems
injected into a LISA data stream with instrumental noise.
In Challenge 1.1.1 there are three tests. The first is a
monochromatic binary with frequency, f � 1:0�
0:1 mHz, the second has a frequency of f � 3:0�
0:1 mHz, and the third a frequency of f � 10:0�
1:0 mHz. While the BAM algorithm is designed to handle
multiple source searches, these single source challenges
provide a means to test our conventions as well as check for
any modeling errors. One source of modeling error is that
we used a low frequency detector response model, which
restricts us to searching for signals below 7 mHz. Thus we
have only performed searches on the first two of these
single source challenges.

In the 1 mHz case, the true source parameters and the
results from the BAM algorithm are given in Table II. For
this work all uncertainties will be calculated using a Fisher
information matrix at the parameter values given by the
chain. A longer run of the data chains after burn-in could
also provide a means to calculate these uncertainties, but as
was shown in [17] for the intrinsic parameters these will be
a very good match to those from the Fisher calculation.
Here the deviations (or discrepancies) between the true
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parameter values of the three intrinsic parameters and the
values determined through the search are less than 1�:
�f � �ftrue 	 fsearch� � 	0:7530�f, �� � 	0:5563��,
and �� � 	0:204 98��.

For the 3 mHz case, the search returned mean parameter
values that were also discrepant from the true source
parameters by less than 1� (�f � 0:2164�f, �� �
	0:094 66��, �� � 	0:7860��).

In these two searches, the algorithm is performed ex-
actly as expected. This suggests that our current imple-
mentation of the algorithm is free of any significant
systematic errors in either waveform generation or calcu-
lation of the likelihood values, as the MLDC data was
created with an independently developed code.

2. Low source confusion

Challenge 1.1.4 for the MLDC is a test for algorithms in
the low source confusion regime, where the source density
is �1 source per 10fm. Results for a search of the training
data set are presented here.

Using only the frequency range given in the challenge
(3:000 mHz< f < 3:015 mHz), the BAM was run on the
data stream (an approximate range of the number of source
was given in the challenge, and indeed the exact number in
the training data is known to be 50, but that information
was not used in directing the algorithm). The log evidence
was used as the stopping criteria for each search region.
The frequency range of the data snippet was divided into
20 search regions such that each acceptance window was
0:75 �Hz in width, and the width of the wings were 0.1
times the bandwidth of a typical source with a frequency in
the search region.

Figure 17 gives a visual representation of the results of
the search. The upper left plot gives the locations in
frequency of the 50 individual sources in the data snippet.
The heights of the bars show the SNR of each source, while
the width of the bars is 1fm. Results of the search are
similarly expressed in the upper right plot. As these two
plots are very similar, he lower left plot has been provided
to highlight the difference between the them. The lower
right plot shows how well the search algorithm fit the true
source parameters. It is a histogram of the differences in
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FIG. 17. Plots detailing the results of a search of the LISA data stream for training data set 1.1.4 of the mock LISA data challenge.
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TABLE II. Results of a search of the MLDC training data set 1.1.1a.

A (10	22) f (mHz) � �  � ’0

True parameters 1.789 229 908 0.993 034 853 5 0.474 114 326 8 5.199 21 3.975 816 0.179 395 6 5.781 211
Recovered parameters 2.364 0.993 034 139 0.4575 5.196 4.475 0.7364 4.832
Parameter uncertainties 0.3876 9:493� 10	7 0.029 83 0.017 54 0.3126 0.2095 0.6234
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the 135 intrinsic parameters of the recovered sources in
units of their respective variances (as calculated via a
Fisher information matrix located at the recovered parame-
ter values). Nearly 92% of the parameters recovered by the
algorithm differed from their true values by less than 2�.
This fit might be improved some with a so-called ‘‘fin-
isher’’ step, which will be briefly discussed in more detail
in the following subsection.

The five unrecovered sources shown in the lower left
plot of Fig. 17 represent the false negatives of this particu-
lar search. Three of these sources had SNRs< 5 and thus
were not expected to be recovered given the results of
Sec. III D. The remaining two unrecovered sources had
SNRs< 5:6.

3. Strong source confusion

Challenge 1.1.5 for the MLDC is a test for algorithms in
the high source confusion regime, where the source density
is �1 source per �2:5fm. Results for a search of the
training data set are presented here.

The BAM algorithm was run on the data stream using
the frequency range given in the challenge (2:9985 mHz<
f < 3:0015 mHz). Again, the approximate range of the
number of sources that was given in the challenge was
not used in directing the algorithm. The log evidence was
used as the stopping criteria for each search region. The
frequency range of the data snippet was divided into 10
search regions such that each acceptance window was
0:3 �Hz in width, and the width of the wings were 0.5
times the bandwidth of a typical source in the search

region, BW � 28fm. The wing size of this search is con-
siderably larger than was used in the previous example.
Initial runs on this data set with smaller wings showed
signs of slamming, so the wing size was increased.

Figure 18 gives a visual representation of the results of
the search. The upper left plot gives the locations in
frequency of the 44 individual sources in the data snippet.
The heights of the bars show the SNR of each source, while
the width of the bars is 1fm. The density of sources is even
higher than first appears in the plot, however, since four
sources share an identical frequency (2.998 999 384 mHz)
as do three other pairs of sources (3.000 085 802,
3.000 629 082, and 3.001 173 008 mHz).

Results of the search are expressed in the upper right plot
of Fig. 18. As can be seen in the plot, the extremely high
density of sources prevents the algorithm from recovering
all of the sources. Of the 44 sources injected into the data
stream, 27 were recovered, which corresponds to a recov-
ered source density of 1 per 4 frequency bins.

The lower left plot shows the sources that were not
recovered in the search. Of the 17 unrecovered sources,
13 had a nearest neighbor that was within 1fm, including 5
of the unrecovered sources that shared an identical fre-
quency with at least one other source. Sources that are
close in frequency are much more likely to be highly
correlated than those that are well separated (e.g. the
brightest of the sources at f � 2:998 999 384 mHz anti-
correlates with two of the other sources at that frequency at
the level of 	0:81 and 	0:67). This high density and
corresponding high levels of correlation introduces two
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problems for the current implementation of the BAM
algorithm. First is that analysis of the chains was done
using the mean values of a particular search template. With
nearby sources, the individual searchers can jump between
the sources and the calculated mean value is a weighted
mean of the two, or more, close sources (weighted by the
number of steps in the chain spent at each source). In the
next implementation of the algorithm, we combine all the
parameter chains of a given type into a single histogram

and use standard spectral line fitting software to fit the
combined posterior distribution function by multiple
Gaussians. Second, the current implementation of the al-
gorithm includes a ‘‘blast’’ proposal distribution that sep-
arates highly anticorrelated sources (� <	0:9). This
proposal was included to lessen the effect of slamming
(by performing a uniform draw on one of the two anti-
correlated searchers). With the inclusion of the wing noise
and returning to a 7 parameter search (per template), this
proposal will most likely not be needed. This should allow
the search templates to spend more time in areas with
highly anticorrelated sources.

The lower right plot shows how well the search algo-
rithm fit the true source parameters. It is a histogram of the
differences in the 81 intrinsic parameters of the recovered
sources in units of their respective variances (as calculated
via a Fisher information matrix located at the recovered
parameter values). The spread of the discrepancies for the
recovered sources is larger than those for the case of low
source confusion shown in Fig. 17 Just over 76% of the
parameters recovered by the algorithm differed from their
true values by less than 2�. This departure from the Fisher
matrix predictions is due to the additional confusion noise
from unrecovered sources.

Lastly, the fit could be improved using a finisher step in
the analysis process. While the full details of such a
finisher are beyond the scope of this paper, one can think
of it as continuing the search algorithm using proposals
specific to providing efficient mixing of the chain (such as
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a drawing from a multivariate Gaussian distribution) that
will allow for searchers to work through the issues created
by the high levels of correlation and reach the posterior
distribution. Also, in this step sources can be introduced to
the fit given by the BAM algorithm to provide a better fit.

B. A Large N search for resolvable binaries

In this subsection we will discuss the results of a search
for sources in a 1000fm data snippet at 3 mHz. These
sources were chosen from a galactic model described by
Nelemans et al. [6]. For this realization there are 281
sources in the data snippet.

Unlike the previous searches, the observation time is
3 years. This provides a test of the algorithm for multiyear
observation times, and models a search through a nontrivial
section of the galactic background (nearly 1% of the over-
all frequency range, and >1% of the expected resolvable
sources). With a 3 yr observation time, all but four of the
sources have a SNR> 5. Figure 19 shows a histogram of
the SNRs for sources below 100 (another 9 sources have
SNRs >100).

The upper left plot of Fig. 20 shows the locations in
frequency of the individual sources in the 1000fm data
snippet. The heights of the bars show the SNR of each
source, while the width of the bars is 1fm, while the results
of the search are shown in the upper right plot. As these two
plots are very similar, the lower left plot is provided (and
rescaled) to highlight the difference between them. The
search was able to find 365 of the 281 sources, with all but
3 of the unrecovered sources having a SNR< 6. One of
these ‘‘unrecovered’’ sources was an instance of the SNR
cutoff inadvertently omitting a detected source (the source
at f � 3:026 345 19 has a SNR � 4:50, and it was recov-
ered with a SNR � 4:62). It is interesting to note that these
results are consistent with the prediction in Sec. III D
regarding the rate of false negatives. This suggests that
most of the 12 sources that were not recovered and have a
SNR> 5 might be found with repeated searches.

The lower right plot of Fig. 20 shows a histogram of the
differences in the 795 intrinsic parameters of the recovered
sources in units of their respective variances (as calculated
via a Fisher information matrix located at the recovered
parameter values). Slightly more than 91% of the parame-
ters recovered by the algorithm differed from their true
values by less than 2�.

V. CONCLUSION

We have developed and tested an algorithm that is
capable of locating and characterizing galactic binaries
across the entire LISA band. In regions of strong source
confusion, we found that the algorithm could recover 1
source every 4 frequency bins. We found that the algorithm
performs very well on snippets taken from a full galactic
foreground model, and since the BAM algorithm develops
a global solution by sewing together searches over subsets
of the LISA data, completing the full analysis of the
galactic simulation is just a matter of computer time.

While the current algorithm is very effective, we iden-
tified many improvements and extensions that are now
being implemented. The waveform modeling has been
updated to include the full LISA response and frequency
evolution, and we have reverted to performing full parame-
ter searches due to the computational cost incurred by the
multisource F-statistic. Work is currently in progress to
extend the search to include parameters that describe the
noise in each data channel. This extension will be particu-
larly important below 3 mHz as the effective noise level
will be set by unresolved sources, so we will not know in
advance what weighting to use in the inner products. Our
current stopping criteria using the Laplace approximation
to the Bayes evidence could be eliminated if we switch to a
transdimensional reverse-jump MCMC method [50]. The
analysis of the post-search chains can also be improved
using spectral line fitting techniques.

Even with our current algorithm, we estimate that it
would take less than two weeks to process a full galactic
foreground on a 3 GHz, 128 node cluster. With the mod-
ifications we are implementing we expect both the speed
and fidelity of the algorithm to be much improved. We will
have an opportunity to test the updated BAM algorithm on
a full galactic simulation in the second round of mock
LISA data challenges, which are set for release in
January 2007.
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