
Light bending as a probe of the nature of dark energy
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We study the bending of light for static spherically symmetric (SSS) space-times which include a dark
energy contribution. Geometric dark energy models generically predict a correction to the Einstein angle
written in terms of the distance to the closest approach, whereas a cosmological constant � does not.
While dark energy is associated with a repulsive force in cosmological context, its effect on null geodesics
in SSS space-times can be attractive as for the Newtonian term. This dark energy contribution may not be
negligible with respect to the Einstein prediction in lensing involving clusters of galaxies. Strong lensing
may therefore be useful to distinguish � from other dark energy models.
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I. INTRODUCTION

It is still unclear what drives the Universe into accelera-
tion recently. While a cosmological constant � is the
simplest explanation, its value seems completely at odds
with the naive estimate of the vacuum energy due to
quantum effects.

An alternative to � is obtained considering a dynamical
degree of freedom added to the primordial soup. Since
dynamical dark energy (dDE) varies in time and space,
its fluctuations are potentially important in order to distin-
guish it from � [1]. Another possibility for the explanation
of the present acceleration of the Universe is given by the
geometry itself, through a modification of Einstein gravity
at large distances [2]: these are known as geometric dark
energy (gDE) models. A nonvanishing mass for the gravi-
ton is among these possibilities [3].

Cosmological observations, such as those coming from
Supernovae, cosmic microwave background (CMB) an-
isotropies and large scale structure (LSS), have not been
able to discriminate among dDE models yet (see [4] for
updated constraints and forecasts). It is therefore important
to explore observational tests at the astrophysical level for
objects which are detached from the cosmological
expansion.

II. DEFLECTION OF LIGHT

We shall consider a static spherically symmetric (SSS)
metric in terms of the physical radius r

 ds2 � �B�r�dt2 � A�r�dr2 � r2d�2: (1)

Such a metric with

 B�r� � A�1�r� � 1�
2GM
r
�

�

3
r2; (2)

describes the Schwarzschild-de Sitter (SdS) space-time,
the vacuum solution of Einstein equations in the presence

of a cosmological constant � (in c � 1 units, where c is the
velocity of light). With the above metric, the classic gen-
eral relativistic tests can be computed in analogy with the
Schwarzschild (henceforth S) textbook case [5]. We shall
restrict here to light bending, leaving other results for
elsewhere [6,7].

The textbook deflection angle for a photon in a SSS
metric can be easily extended by keeping into account the
finite distance r at which the object is located as (see Fig. 1)

 ’ � 2j��r0� ���r�j � �� 2 arcsin
�
r0

r

�
;

� 2I�r; r0� � �� 2 arcsin
�
r0

r

�
; (3)

with r0 representing the minimal distance between the
geodesic of the light and the lens [8,9] and I�r; r0� given
by:

 I�r; r0� �
Z r

r0

A1=2�r0�
r0

��
r0

r0

�
2 B�r0�

B�r0�
� 1

�
�1=2

dr0

�
Z r

r0

I�r0; r0�dr0: (4)

In the textbook treatment [5], both the distances of the
observer and the source from the lens are much greater

 

FIG. 1. Deflection of light.
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than r0 and the upper limit of integration can be taken as1.
For DE metrics with nonasymptotically flat terms, it is safe
to keep finite the upper limit of integration.

By inserting the SdS metric in I�r; r0�, it is easy to check
that the terms including � cancel out. This cancellation is
due to the particular form of the nonasymptotically flat
terms of the SdS metric and physically means that � is
truly a potential offset for a massless particle (see below).
The light bending angle is therefore 4GM=r0 even in the
presence of � [10,11], although all the other tests and
kinematical quantities differ from the S case [6,7].

III. GEOMETRIC DARK ENERGY STATIC
SPHERICALLY SYMMETRIC METRICS

In order to study the contribution of DE to light bending,
we need physically motivated SSS metrics which differ
from the SdS case. As an example, we consider SSS
metrics parametrized by

 B�r� � C�
D
r
� �2r�; A�1�r� � C�

D
r
� �1r�:

(5)

This parametrization covers SSS metrics of well-studied
gDE models:

(i) C � 1, D � 2GM, � � 3=2, �1 � 3�2=2 �

�m2
g

�������������������
2GM=13

p
[12] corresponds to the nonpertur-

bative solution found by Vainshtein (V) for a massive
graviton [13] with massmg. Massive gravity (MG) is
an alternative to a cosmological constant [3];

(ii) C � 1� 3GM�1, D � 2GM� 3G2M2�1, � � 1,
�1 � �2 � � corresponds to the general SSS in
conformal gravity [14] (see also [15] for linear
correction to the Newtonian potential). Conformal
gravity contains the SdS solution without adding
any cosmological constant to the Weyl action, but
includes terms linear in r as well. Considering C ’
1 and D ’ 2GM is a good approximation for the
values of � we are interested in;

(iii) C � 1, D � 2GM, � � 1=2, �1 � �2=2 �����������������
GM=r2

c

p
corresponds to the self-accelerating

branch [16] of the brane-induced gravity Dvali-
Gabadadze-Porrati (DGP) model [17]. rc is the
crossover scale beyond which gravity becomes
five dimensional.

In the parametrization (5) we have omitted a possible r2

term, since we have already shown that it does not con-
tribute to light bending. For � � 1 the SSS metric is valid
to the particle horizon radius rH � ��1 (for the SdS metric
this radius is �3=��1=2). In the other two cases the metric is
roughly limited by the so-called V radius rV , which de-
notes the scale at which the Newtonian term becomes
comparable to the nonasymptotically flat term, i.e. rV �
�GM=��1=�1��� with ��1 � minf��1

1 ; ��1
2 g. At this scale

we expect deviations from Einstein gravity.
We now expand the integrand considering the DE terms

in Eq. (4) as second order with respect to the Newtonian
correction, and, defining I�r; r0� � IE�r; r0� � IDE�r; r0�,
we obtain

 IE�r; r0� �
Z r

r0

dr0
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It is possible to analytically compute both the terms in Eqs. (6) and (7):

 IE�r; r0� �
�
2
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�
r0

r

�
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; (8)
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r�0
2
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�
r
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�
��1 � ��2� � �2

r�0
2

�r=r0�
� � 1������������������������

�r=r0�
2 � 1

p ; (9)

with

 I��y� �
Z y

1
dx

x��1��������������
x2 � 1
p �

����
�
p

2

��1��2 �

��1� �
2�
�
y��1

�� 1 2F1

�
1

2
;
1� �

2
;
3� �

2
;

1

y2

�
: (10)

It is important to note that the physical structure of the
gDE metric kill the first term in Eq. (9) for all the three
values �. Of course, the type of DE contribution to the
deflection angle is not of the parametrized post-Newtonian

(PPN) form [5], since the correction in the metric coeffi-
cient is not of the PPN form. Note that our nonvanishing
result for the DGP model corrects previous claims in the
literature [18] and agrees with the previous result for Weyl
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gravity when r! 1 [19]. A non-negligible DE contribu-
tion to the total deflection angle is expected for large
virialized objects, i.e. in the case of clusters of galaxies.

In the following, we split the Einstein term ’E from the
dark energy correction �’ to the total bending angle ’.
Therefore, the DE contribution has to be compared with
the S term assuming r! 1 (up to the second order [20]):

 ’E � ’�I� � ’�II� �
4GM
r0
� 2

�
15�

8
� 2

��
GM
r0

�
2
: (11)

This comparison is shown in Table I.
The sign of the DE contribution can be understood by

the one-dimensional motion for the photon:

 

1

2

�
dr
d�

�
2
� Veff�r� �

1

2
(12)

with d� � r2d’=J and

 Veff�r� �
J2

2r2

�
1

A�r�
�
��1 � �2�r�

J2B�r�

�

�
J2

2r2

�
C�

D
r
� �1r

� �
��1 � �2�r�

J2�C� D
r � �2r��

�
:

This potential leads to the following force F on a photon:

 

F�r�

J2
� �

dVeff

J2dr

�
C

r3 �
3D

2r4 �
�1

2
��� 2�r��3 � ��2 � �1�



r�

2J2�C� D
r � �2r��2

�
�
C
r
�
D
2
�1� ��

�
:

(13)

From the above it is again clear how � acts as a null force
on the photon (in agreement with the null contribution in
light bending [21]). When �< 2, in addition to the stan-
dard terms, the third term acts as an attractive force for
�1 > 0. We also note that the sign of the fourth term is
model dependent [22]. Although the DE in cosmology is
associated to a repulsive force (which accelerates the ex-

pansion), in a static configuration it may add to the
Newtonian mass term in deflecting light, explaining the
positive contribution which we find in Eq. (9).

We note that the validity of the SSS metrics for� � 1=2,
3=2 up to the V radius—and not up to the particle hori-
zon—can be an important limitation to the applicability of
our findings. In the DGP (massive gravity) model with
rc � 5 Gpc (mg � 10�32 eV), the V radius for the Sun is
3:2
 1018 m (7:5
 1020 m), and therefore much larger
than the size of the solar system�6
 1012 m (taken as the
size of the Pluto orbit). For clusters with mass �1015M�,
instead, the V radius is 10 Mpc for DGP and 24 Mpc for
MG (with the same parameters used above): such radii are
remarkably close to the intercluster distance, i.e.
O�10� Mpc. It is then clear that an understanding of the
SSS metrics beyond the V scale (the so-called matching
problem [12]) is needed for a quantitatively exact calcu-
lation of light bending in these models. While the MG
metric is not known beyond rV , the DGP metric beyond rV
admits a scalar-tensor description [16,18], which we use
for the values reported in Table I (see the caption) and in
Fig. 2, where we show the prediction of the considered
models compared with Einstein theory as a function of
GM=r0.

TABLE I. Expected deviations of the three theories considered from Einstein theory. The parameters used are the following: mg �
10�31 eV, ��1 � 10 Gpc, and rc � 5 Gpc. The distance of closest approach are r0 � 10, 102, 103 Kpc for galaxy, galaxy groups, and
clusters, respectively. The upper limits of integration have been taken as rV for � � 1=2, 3=2 and 1 for Weyl gravity. We remind that
the Hubble distance 1=H0 is �4 Gpc for H0 � 72 kms�1 Mpc�1. As written also in the text, the contribution �’BV coming from the
region beyond rV is taken into account only in the DGP model [16,18] and it is given by �’BV � �G�rmax� �G�rV��2GM=r0, where
G�r� � �1� �r0=r�

2�1=2�1� f�!��r0=r���1� �r0=r��
�1 with f�!� � �!� 1�=�2!� 3�. The parameter ! � �3rcH0 is set to�15=4

and rmax � 1 Gpc.

’�I� ’�II� �’MG �’Weyl �’DGP

Galaxy (1011M�) 2:0
 10�6 1:9
 10�12 �4:6
 10�11 1:0
 10�6 3:9
 10�9

Galaxy group (1013M�) 1:9
 10�5 1:9
 10�10 �7:2
 10�9 1:0
 10�5 2:3
 10�7

Cluster (1015M�) 1:8
 10�4 1:8
 10�8 �1:1
 10�6 1:0
 10�4 6:6
 10�6

 

FIG. 2. Dark energy contribution �’DE to the bending angle
(in radiants) as a function of GM=r0. The solid line (�’DE � 0)
is the Einstein prediction for �; the dotted, long-dashed, and
dashed lines are the DGP, Weyl, and MG models, respectively,
with r0 � 1 Mpc (the other parameters are those of Table I).
Note that � is M independent [14].
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IV. DISCUSSIONS AND CONCLUSIONS

We have discussed light bending in SSS with DE. The
importance of general relativistic tests, such as the perihe-
lion precession, has been already emphasized for the DGP
model [16,23], while little attention was previously paid to
light bending. These tests are complementary to the ob-
servational signatures of dark energy in cosmological con-
text, mainly based on the behavior of perturbations. In
cosmology, an important difference between � and dDE
or gDE is the presence of DE perturbations in the latter
case, which are at least gravitationally coupled to the other
types of matter. Such DE perturbations are therefore a key
point to distinguish � from dDE or gDE in CMB and LSS,
and sometimes may become so important to strongly con-
strain models [1,24,25] with respect to what Supernovae
data can do.

In this article we have shown that in objects which have
detached from the expansion of the Universe, � may be
distinguishable from other DE models through the bending
of light. In order to link our findings with observations, we
should insert ’ in the lens equation, e.g. [26]:

 �� � �
dSL

dOS
’; (14)

where � and� are the angular positions of the image and of
the source measured respect to the line from the observer to
the lens; dLS and dOS are the angular diameter distances
between the lens and the source and between the observer
and the source, respectively. On considering for simplicity
alignment between the lens and the source, an Einstein ring
forms with angle �E � ��� � 0�. From our results, �E is
affected by both the nonperturbative SSS potential around
the lens (’ � 4GM=r0 if DE � �) and the cosmology of a
given model. The gDE corrections to the Einstein deflec-
tion angle for clusters in Eq. (9) are as important as the
cosmology for an observable as �E. The differential of �E
is

 

��E
�E
�

�’
’
� � ln

dSL

dOS
; (15)

which reveals how cosmological information is encoded
just in the second term to the right. By considering the
cosmology of the DGP model for instance [18], one finds
that the second term is �� 0:06���M=�M� ��H0=H0

for a source and a lens located at z � 1 and z � 0:3,
respectively (�M � 0:3 and H0 are the present matter
density and Hubble parameter, respectively). On consider-
ing the uncertainties on the cosmological parameters of the
order of percent, this simple quantitative example shows
how the corrections to the Einstein deflection angle we
have found in Table I should be taken into account in the
study of strong lensing by clusters.

We believe that results similar to what we have found
here for gDE models might occur for dDE scenarios as
well, in which the nonasymptotically flat term is due to the
nonperturbative clumping of DE into objects detached
from the cosmological expansion. However, dDE models
may be less predictive than gDE models: gDE contain the
same number of parameters of �CDM, while dDE may
need more. Let us end on noting that some of the gDE
models considered here may have serious theoretical issues
[27,28] whose resolution clearly goes beyond the present
project. However, the main result in Eq. (9) of this paper
remains valid: models alternative to general relativity with
a cosmological constant predict a correction to the Einstein
angle, which can be used to distinguish � from other DE
models.
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