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Inspirals of stellar-mass compact objects (COs) into �106M� black holes are especially interesting
sources of gravitational waves for the planned Laser Interferometer Space Antenna (LISA). The orbits of
these extreme-mass-ratio inspirals (EMRIs) are highly relativistic, displaying extreme versions of both
perihelion precession and Lense-Thirring precession of the orbital plane. We investigate the question of
whether the emitted waveforms can be used to strongly constrain the geometry of the central massive
object, and in essence check that it corresponds to a Kerr black hole (BH). For a Kerr BH, all multipole
moments of the spacetime have a simple, unique relation to M and S, the BH mass, and spin; in particular,
the spacetime’s mass quadrupole moment Q is given by Q � �S2=M. Here we treat Q as an additional
parameter, independent of S and M, and ask how well observation can constrain its difference from the
Kerr value. This was already estimated by Ryan, but for the simplified case of circular, equatorial orbits,
and Ryan also neglected the signal modulations arising from the motion of the LISA satellites. We
consider generic orbits and include the modulations due to the satellite motions. For this analysis, we use a
family of approximate (basically post-Newtonian) waveforms, which represent the full parameter space of
EMRI sources, and which exhibit the main qualitative features of true, general relativistic waveforms. We
extend this parameter space to include (in an approximate manner) an arbitrary value of Q, and then
construct the Fisher information matrix for the extended parameter space. By inverting the Fisher matrix,
we estimate how accurately Q could be extracted from LISA observations of EMRIs. For 1 yr of coherent
data from the inspiral of a 10M� black hole into rotating black holes of masses 105:5M�, 106M�, or
106:5M�, we find ��Q=M3� � 10�4, 10�3, or 10�2, respectively (assuming total signal-to-noise ratio of
100, typical of the brightest detectable EMRIs). These results depend only weakly on the eccentricity of
the inspiral orbit or the spin of the central object.
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I. INTRODUCTION

Inspirals of stellar-mass compact objects (COs) captured
by massive (� 106M�) black holes (MBHs) in galactic
nuclei are especially interesting gravitational-wave sources
for the planned Laser Interferometer Space Antenna
(LISA). Because the ratio of CO mass � to MBH mass
M is typically �=M� 10�5, these events are generally
referred to as extreme-mass-ratio inspirals (EMRIs).
Current estimates are that LISA will detect of order �102

EMRIs per year [1–4]. Captures of �10M� black holes
(BHs) are expected to dominate the detection rate
(although some captured white dwarfs and neutron stars
will be detected as well), both because mass segregation in
galactic nuclei tends to concentrate BHs very near the
central MBH [1], and because the inspiralling �10M�
black holes are intrinsically stronger sources than the white
dwarfs or neutron stars, and so are detectable to a much
greater distance: out to z� 1.

The orbits of the inspiralling COs are highly relativistic,
displaying extreme versions of both perihelion precession
and Lense-Thirring precession of the orbital plane.

Because of the tiny mass ratio, the inspiral is quite slow;
individual inspiral waveforms will be observable for years,
or equivalently for * 105 cycles. While at any instant the
EMRI waveforms will be buried in both LISA’s instrumen-
tal noise and a gravitational-wave foreground from galactic
binaries, it will nevertheless be possible to dig out the
EMRI signals using techniques based on matched filtering
[4], thanks to this large number of cycles. The matched-
filtering signal-to-noise ratio (SNR), which scales like the
square root of the number of observed cycles, will typically
be in the range �30–300 for EMRI detections. Because of
this large SNR, and because the complex waveforms are
quite sensitive to the source’s physical parameters, it will
be possible to extract these source parameters with high
accuracy; in particular, it will be possible to infer the mass
of the CO, and the mass and spin of the MBH, all to within
fractional accuracy �10�4 [5].

The famous ‘‘no hair’’ theorem of general relativity
essentially states that, almost immediately after its forma-
tion, a BH ‘‘settles down’’ to one of the Kerr solutions, and
so its entire geometry is characterized by just two physical
parameters: its mass M and its spin angular momentum S.
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In particular, all the multipole moments of a Kerr space-
time can be expressed in terms ofM and S alone, according
to the relation

 Ml � iSl � M�ia�l; (1)

where Ml and Sl are the mass and mass-current multipole
moments, respectively, and a � S=M is the standard Kerr
spin parameter. For example, the mass quadrupole moment
Q � M2 of the pure Kerr geometry is given by

 Q � �S2=M: (2)

It has been suggested by several authors (e.g., [6–8])
that LISA detections of EMRIs could provide a highly
accurate observational test of the ‘‘Kerr-ness’’ of the cen-
tral massive object. (In what follows we will continue to
refer to the central massive object as ‘‘MBH’’ for brevity,
even though in our analysis we allow it not to be a black
hole.) Indeed, Ryan [6] showed that for inspiralling trajec-
tories that are slightly eccentric and slightly nonequatorial,
in principle all multipole moments of the spacetime are
redundantly encoded in the emitted gravitational waves,
through the time-evolution of the orbit’s three fundamental
frequencies. (Basically, these are the fundamental frequen-
cies associated with the �, r, and � motions; see [9,10] for
a proof that the waveform corresponding to a Kerr geodesic
is a discrete sum of integer harmonics of these 3 funda-
mental frequencies.)

Ryan [7] went on to estimate how accurately the central
massive object’s lower-order multipole moments could be
measured by LISA. Because the CO’s complex motion
depends strongly on the background geometry, one might
expect to be able to measure the lowest moments rather
well. Basically, the long-term phase evolution of the orbit
(and that of the emitted gravitational wave) can act as a
microscope, probing the fine features of the geometry.
Lacking a theory that accurately describes the orbital
evolution in spacetimes with arbitrary multipole structure
(in fact, such a theoretical framework is not yet at hand,
even for the pure Kerr case), Ryan considered a simple
waveform model based on lower-order post-Newtonian
(PN) theory. For simplicity, he also restricted the EMRI
parameter space to orbits that are circular and equatorial,
and he neglected the modulations imposed on the observed
signal by the spacecraft motions. Within these simplifica-
tions, he calculated the Fisher matrix on the space of EMRI
waveforms, and inverted it to obtain (to lowest order in
SNR�1) the variance-covariance matrix, which describes
the distribution of statistical errors associated with a given
measurement. Ryan found, for example, that for a capture
of a 10M� black hole by a 106M� central object, assuming
2 years of inspiral data with SNR of 100, LISA could
measure Q=M3 to within �5	 10�1, M to within a frac-
tional error of �3	 10�4, S=M2 to within �10�2, and �

to within �10�3. (Ryan [7] further showed how these
accuracies get degraded as additional multipole moments,
besides Q � M2, get treated as independent quantities in
the signal model.)

In essence, our paper improves on Ryan’s 1997 analysis
[7] by considering the case of generic (i.e., noncircular,
nonequatorial) orbits, and by employing a much more
realistic treatment of LISA’s instrumental response, includ-
ing the Doppler modulation due to the constellation’s
center-of-mass motion and the additional modulations
due to the rotational motion of the individual satellites
with respect to that center of mass. Our analysis is based
on our previously introduced family of ‘‘analytic kludge’’
(basically PN) waveforms [5], representing practically the
full parameter space of capture sources (though neglecting
the spin of the CO, for reasons described below). We
extend this parameter space to include, in an approximate
manner, an arbitrary deviation in the value of the central
object’s quadrupole moment, and we then construct the
Fisher information matrix for the extended parameter
space. By inverting the Fisher matrix, we estimate how
accurately the central object’s quadrupole moment Q can
be determined, independently of its mass and spin.

A priori, it would seem difficult to predict how our more
realistic treatment should affect Ryan’s results. On the one
hand, our more realistic and complicated waveforms
clearly encode more information. On the other hand, our
waveform depends on all 15 physical parameters (includ-
ing Q), while Ryan’s more simplistic signal model was
based on only 7 parameters [11]; of course, one’s ability to
extract any given source parameter (such as Q) is diluted
when more parameters are added to the source description.
What we find, in the end, is that Q=M3 can be measured to
�10�4–10�2 (based on the last year of data and assuming
SNR � 100). Thus EMRIs provide an even better test of
Kerr-ness than Ryan estimated.

Again, the idea of the Kerr-ness test explored here is to
treat M, S, and Q as three independent quantities, and then
see whether the LISA data confirms the Kerr relation: Q �
�S2=M. This test is similar in spirit to the well-known
tests of general relativity made with the binary pulsar
PSR1913� 16 (see, e.g., [12]). The binary’s Keplerian
parameters (like its period and eccentricity) and its post-
Keplerian parameters (e.g., the precession rate _!, Einstein
delay �, and period derivative _Pb) are all fit for indepen-
dently. Within general relativity these are redundant, since
all parameters excluding _Pb lead to a unique physical
description of the binary. The test is then to see whether
the measured _Pb is indeed the value that GR predicts. Our
EMRI test treats Q in an analogous way to _Pb for
PSR1913� 16. Of course, testing that the spacetime’s
quadrupole moment coincides with the Kerr value is only
one possible test of Kerr-ness, and not necessarily the best
one. But absent a compelling alternative to the ‘‘null
hypothesis’’ that the MBH is a Kerr BH, tests of this sort
are perhaps the best one can do.
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We briefly mention some recent related work. In [13],
Collins and Hughes began a research program aimed at
extending Ryan’s work, beginning with the construction of
exact spacetime solutions corresponding to ‘‘bumpy’’
black holes. Also recently, Glampedakis and Babak [14]
analyzed geodesic orbits in both Kerr and slightly non-Kerr
spacetimes, and concluded that any effects due to non-Kerr
multipole moments would be difficult to detect, since they
would be mimicked by small, compensating offsets in the
geodesic’s initial conditions. Glampedakis and Babak [14]
did not consider the effects of radiation reaction—i.e., they
effectively considered only short stretches of actual wave-
forms—so the implications of their work for actual, in-
spiralling trajectories remained unclear. (Work to include
radiation reaction in this model is now in progress [15]).
Finally, Kesden, Gair, and Kamionkowski [16] have inves-
tigated the question of whether EMRI waveforms can be
used to distinguish between a central black hole and a
massive boson star. They argue persuasively that one could
easily distinguish between these two types of a central
object, since in the Kerr case the waveform ‘‘shuts off’’
shortly after the CO reaches the last stable orbit (LSO),
while in the boson star case the inspiral continues until the
CO comes to rest at the center of the boson star.

II. ‘‘ANALYTIC KLUDGE’’ EMRI WAVEFORMS

A. Overview

Since highly accurate inspiral waveforms for EMRIs are
not yet available (due to the difficulty of solving the
radiation reaction problem for generic orbits in Kerr
[17]), approximate, or ‘‘kludged,’’ families of waveforms
have been developed for use in EMRI investigations until
more exact versions are available. One such family is the
‘‘numerical kludge’’ waveforms developed by Gair,
Glampedakis, and collaborators [18–20], and another is
the ‘‘analytic kludge’’ waveforms developed by Barack
and Cutler (hereinafter BC [5]). Our analytic kludge wave-
forms are less accurate than the numerical kludge ones, but
they are simpler to compute and more tractable for the
purpose of accurately calculating partial derivatives (with
respect to source parameters) numerically, as required for
producing the Fisher matrix. The BC waveforms were used
for just this purpose in Ref. [5], where it was estimated that
LISA could measure the masses of both bodies and the spin
magnitude of the massive black hole to fractional accuracy
�10�5 � 10�4 (for SNR � 100). In this paper we modify
the analytic kludge evolution equations to include the
influence of possible deviations in the quadrupole moment
of the MBH. We now summarize this ‘‘Q-enhanced’’
version of our waveform family; we refer the reader to
Ref. [5] for more details.

In the analytic kludge approach, we approximate the
CO-MBH system as being, at any instant, a Newtonian-
orbit binary emitting a Peters-Matthews [21] (i.e., lowest-
order, quadrupolar) waveform. We then use PN equations

to secularly evolve the parameters of the orbit. In particu-
lar, we include orbital decay from radiation reaction, peri-
center precession, and Lense-Thirring precession of the
orbital plane. The motion of the LISA detector introduces
additional modulations; for these we adopt the low-
frequency approximation developed by Cutler [22].
Cutler’s treatment is not very accurate for frequencies f *

30 mHz (where the gravitational-wave period is longer
than the round-trip travel time for light up and down the
LISA arms), but it is adequate for our EMRI analysis, since
most of the EMRI SNR accumulates in the range
�1–10 mHz. Since the main physical effects are all in-
cluded, and their dependence on the source parameters are
given correctly to (at least) the lowest nontrivial post-
Newtonian order, we expect that parameter estimation
accuracies for our kludge waveforms are a reasonable
guide to the accuracies we can expect (i.e., are probably
correct to within an order of magnitude), once the true,
general relativistic waveforms are in hand. We test this
expectation to some degree in Sec. III C, where we simply
remove (by hand) some P1N terms from our kludged
evolution equations, and find that this modifies the deduced
measurement error in Q=M3 by a factor of less than 3.

B. Parameter Space

Assuming the MBH is a Kerr back hole, the two-body
system is completely described by 17 parameters.
However, the spin of the CO is at most marginally relevant
[5], so, as in BC, we shall neglect it in our analysis [23].
That leaves 14 parameters, assuming a massive Kerr BH.
We now include one additional parameter, describing the
quadrupole moment of the geometry. More precisely, we
choose as our additional parameter the dimensionless
quantity

 

~Q � Q=M3:

Including ~Q, we therefore have a 15-dimensional pa-
rameter space. For completeness, we list the full parameter
set here. This list is identical to the one in BC, except for
the inclusion of ~Q (and a redefinition of t0 —see below),

 �a � ��0; . . . ; �14�

� 
t0�	1 mHz�; ln�; lnM; ~S; eLSO; ~�0;�0; �S

� cos�S;�S; cos�;�0; �K � cos�K;�K; ln��=D�; ~Q�:

(3)

Here, t0 specifies the instant of time where the CO reaches
the LSO, and the inspiral transits to a plunge. � and M are
the masses of the CO and MBH, respectively, and ~S �
S=M2, where S is the magnitude of the MBH’s spin angular
momentum. The parameters eLSO, ~�0, and �0 describe,
respectively, the eccentricity, the direction of the pericenter
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within the orbital plane, and the mean anomaly—all at
time t0 (time of plunge). More specifically, we take �0 to
be the mean anomaly with respect to pericenter passage,
and ~�0 to be the angle (in the plane of the orbit) from L̂	 Ŝ

to pericenter (where L̂ is a unit vector in the direction of the
orbital angular momentum). The parameter �0 � ��t �
t0� describes the direction of L̂ around Ŝ at time t0. [See
Eq. (18) of BC for the precise definition of ��t�.] The
angles ��S;�S� describe the direction to the source, in
ecliptic-based coordinates; ��K;�K� represent the direc-
tion Ŝ of the MBH’s spin (approximated as constant) in
ecliptic-based coordinates; and � is the angle between L̂
and Ŝ (also approximated as constant). Finally, D is the
distance to the source, and, again, ~Q � Q=M3 is space-
time’s dimensionless quadrupole moment. The various
parameters and their meaning are summarized in Table I.
Figure 1 of BC illustrates the various angles involved in our
parametrization.

Note that for simplicity we are treating the background
spacetime as Minkowski space, not Robertson-Walker. To
correct this, for a source at redshift z, it requires only the
simple translation: M ! M�1� z�, �! ��1� z�, S!
S�1� z�2, D! DL, where DL is the ‘‘luminosity dis-
tance’’ [24].

C. Orbital evolution with arbitrary quadrupole
moment

The inspiralling orbit is determined by the evolution
equations for ��t�, ��t�, ~��t�, e�t�, ��t�. (The 2 masses,
the MBH spin vector ~S, the angle �, and of course the
source’s sky position are all taken to be constants.) The PN
evolution equations we adopt are:

 

d�

dt
� 2��; (4)

TABLE I. Summary of physical parameters and their meaning. For further details, see Fig. 1 of BC and the description in the text.

�0 t0�	1 mHz� Time when CO reaches LSO
�1 ln� ( ln of) CO’s mass
�2 lnM ( ln of) MBH’s mass
�3 ~S � S=M2 Dimensionless magnitude of (specific) spin angular momentum of MBH
�4 eLSO Eccentricity at t0 (i.e., final eccentricity)
�5 ~�0 ~��t0�, where ~��t� is the angle (in orbital plane) betweenL̂ � Ŝ and pericenter
�6 �0 ��t0�, where ��t� is the mean anomaly
�7 �S � cos�S (Cosine of) the source direction’s polar angle
�8 �S Azimuthal direction to source
�9 cos� L̂ � Ŝ�� const�
�10 �0 ��t0�, where ��t� is the azimuthal direction of L̂ (in the orbital plane)
�11 �K � cos�K (Cosine of) the polar angle of MBH’s spin
�12 �K Azimuthal direction of MBH’s spin
�13 ln��=D� ( ln of) CO’s mass divided by distance to source
�14 ~Q � Q=M3 Dimensionless quadrupole moment of MBH

 

−3.6 −3.4 −3.2 −3 −2.8 −2.6
0

5

10

15

20

25

30

log
10

∆(Q/M3)

# 
of

 o
cc

ur
re

nc
es

M=10 6 M
sun

 
n= 108 points 

mean[log
10

∆ (Q/M3)] = −2.964 (SVD)

                                  = −2.932 (Gauss)

STD[log
10

∆ (Q/M3)] = 0.130 (SVD)

                                = 0.124 (Gauss)

median[log
10

∆ (Q/M3)] = −2.927 (SVD)

                                    = −2.900 (Gauss)

FIG. 1 (color online). Distribution of � ~Q for a selection of
��S; �S; �K;�K; �� values, and fixed values of ��;M; eLSO� �
�10M�; 106M�; 0:15�. The mean, standard deviation (STD),
and median of the distribution are calculated twice, for com-
parison, based on data from two different matrix-inversion
methods: singular-value decomposition (SVD) and Gauss-
Jordan elimination (see discussion in the text). We find that
the choice ��S;�S; �K;�K; �� � �

2�
3 ;

5�
3 ;

�
2 ; 0;

�
3� yields � ~Q very

close to the median value. The median values for the masses
M � 105:5 and 106:5M� were obtained in a similar manner, and
are given in Eq. (24). The standard deviations in log10� ~Q were
found to be �0:13 and �0:17 for M � 105:5 and 106:5M�,
respectively.
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d�
dt

�
�

96

10�
��=M3��2�M��11=3�1� e2��9=2f
1� �73=24�e2 � �37=96�e4��1� e2�

� �2�M��2=3
�1273=336� � �2561=224�e2 � �3885=128�e4 � �13147=5376�e6�

� �2�M��~S cos��1� e2��1=2
�73=12� � �1211=24�e2 � �3143=96�e4 � �65=64�e6�

� �2�M��4=3 ~Q�1� e2��1
�33=16� � �359=32�e2 � �527=96�sin2��g; (5)

 

�
d~�
dt

�
� 6���2��M�2=3�1� e2��1
1� 1

4�2��M�
2=3�1� e2��1�26� 15e2�� � 12�� cos�~S�2�M���1� e2��3=2

� 3
2��

~Q�2�M��4=3�1� e2��2�5 cos�� 1�; (6)

 �
de
dt

�
� �

e
15
��=M2��1� e2��7=2�2�M��8=3

�
�304� 121e2��1� e2��1� 12�2�M��2=3�

�
1

56
�2�M��2=3��8��16705� � �12��9082�e2 � 25211e4�

�

� e��=M2�~S cos��2�M��11=3�1� e2��4
�1364=5� � �5032=15�e2 � �263=10�e4�; (7)

 

�
d�
dt

�
� 4��~S�2�M���1� e2��3=2 � 3�� ~Q�2�M��4=3�1� e2��2 cos�: (8)

These are the same evolution equations as used in BC,
except that the lowest-order terms / ~Q have been added to
the right-hand side of Eqs. (5), (6), and (8). For the two
precession rates, d~�=dt and d�=dt, these extra terms
represent essentially Newtonian effects: the Newtonian
precession rates for orbits around oblate bodies. The term
/ ~Q in our Eq. (6) is taken from Eq. (3) of Lai et al. [25],
using the identifications 	! ~�, I1 � I3 ! Q, and �! �,
and the approximation �  �c for �=M� 1. The term
/ ~Q in Eq. (8) is taken from Eq. (4) of Lai et al. [25]. To
obtain the term / ~Q in Eq. (5) for _�, we start with the
Newtonian relation

 � �
1

2�M
��2E=��3=2: (9)

This relation is not modified by Q, through first order
[cf. Eq. (2.26) of Gergely et al. [26] or Eqs. (A.11)–
(A.12) of Ashby [27]]. Therefore we can write, through
first order in Q and to lowest nontrivial order in a PN
expansion:

 _�Q �
d�
dE

_EQ � �
3

�
��2�M���2=3 _EQ; (10)

where the subscript Q here means ‘‘the piece linear in Q.’’
For _EQ, we adopt the approximate formula given in
Eq. (44) of Gair and Glampedakis [19]. [As those authors
note, their Eq. (44) is unfortunately ‘‘missing’’ a piece
proportional to e2sin2�, since the coefficient of that term
has not yet been derived.] Using the identifications that
their q2 corresponds to our � ~Q and their 
 to our �, and
then plugging _EQ into Eq. (10), we obtain the term / ~Q in
Eq. (5).

For consistency, our Eq. (7) should also contain a term
/ ~Q; however it would be nontrivial to derive this term
from the existing literature, and its influence on astrophysi-
cally realistic waveforms is probably substantially less
than the terms / ~Q that we have included, since e2 & 0:1
for typical inspirals. It is a feature of our kludged wave-
forms that we attempt to include the most important terms
but do not worry about consistently including all terms out
to some fixed order; in this spirit, we simply neglect the
Q-correction to _e.

To construct the orbit, we start by choosing some final
eccentricity eLSO. In practice we consider moderate final
eccentricities: those in the range 0 � eLSO � 0:3. We then
set the final radial frequency as

 �LSO � 0:0415	 �2�M��1; (11)

which reproduces the correct gravitational-wave frequency
at the LSO through Eq. (14) (explained further below).
This LSO value of the frequency applies to circular orbits
in Schwarzschild (S � e � 0), but for simplicity we shall
use it here for any of the moderate eccentricities consid-
ered, and for any spin. We then integrate the evolution
equations, Eqs. (4)–(8), backwards in time, starting from
the LSO. Given the solution of these ordinary differential
equations, it is straightforward to construct both polariza-
tions of the emitted waveform using Eqs. (7)–(10) in BC:

 h�;	�t� �
X
n


A�;	n;s sin �n�t� � A
�;	
n;c cos �n�t��; (12)

where the subscript ‘‘n’’ labels the different harmonics of
the orbital frequency, and the subscripts ‘‘s’’ and ‘‘c’’ just
refer to the two quadratures, sine and cosine. In practice,
we find it sufficient, given the range of LSO eccentricities
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considered in this work, to include in the above sum only
the first 20 harmonics. Explicit formulae for the A�;	n;s and
A�;	n;c are trivially obtained from Eqs. (7), (8), and (10) of
BC, and the phase of the nth harmonic, �n�t�, is given by

 �n�t� � n�0 � 2�
Z t

t0
fn�t

0�dt0 � 2�fn�t�n̂ � ~R�t�: (13)

Here fn�t0� is the instantaneous frequency of the nth har-
monic, and the second term in Eq. (13) is the Doppler
delay, where n̂ is the direction to the source and ~R�t� is the
position of LISA’s center with respect to the solar system
barycenter [28]. For our kludge waveforms, we approxi-
mate fn�t0� by simply

 fn�t
0� � n��t0� � _~��t0�=�; (14)

the motivation for which is explained in the last paragraph
of Sec. 4 of BC.

To explain our choice for �LSO [Eq. (11) above],
recall that, for circular orbits around a Schwarzschild
black hole, the (azimuthal) orbital frequency at the
LSO is precisely �LSO � 6�3=2�2�M��1, with a corre-
sponding gravitational-wave frequency of fGW �

2	 6�3=2�2�M��1 (since the radiation in this case is
dominated by the n � 2 harmonic). To be able to repro-
duce this value of fGW at the LSO through Eq. (14), we
must require 2�LSO � _~�LSO=� � 2	 6�3=2�2�M��1,
where _~�LSO is obtained from Eq. (6) by replacing �!
�LSO and neglecting the terms proportional to e2, ~S, and ~Q.
Solving this condition for �LSO gives Eq. (11) above.

In the frequency range of interest, we can regard LISA’s
output as equivalent to two independent data streams, sI�t�
and sII�t�. We idealize each of these as being the sum of
(stationary, Gaussian) noise nI;II�t� and a gravitational-
wave signal, hI;II�t�:

 sI�t� � nI�t� � hI�t�; sII�t� � nII�t� � hII�t�: (15)

The gravitational-wave signals in the two channels, hI�t�
and hII�t�, are related to the two incoming polarizations
h�;	�t� by time-varying transfer functions, F�;	I �t� and
F�;	II �t�. Thus we have

 hI�t� �
��
3
p

2 
F
�
I �t�h��t� � F

	
I �t�h	�t��; (16)

and similarly for hII�t�. The equations used to construct
these transfer functions are given explicitly in BC. (The
factor

���
3
p
=2 is just the sine of 60�, the angle between the

LISA arms; it could have been included in the definition of
the transfer functions, but it was left as a separate factor so
that the F’s would coincide with LIGO transfer functions.)

We emphasize that in our analytic kludge scheme, the
value of the quadrupole moment affects the inspiral trajec-
tory (i.e., it modifies the sequence of Keplerian ellipses that
the orbit osculates through), but ~Q does not enter into the
algorithm for constructing the gravitational waveform
from that trajectory; i.e., we continue to use the quadrupole

formula to construct the waveform from the inspiral tra-
jectory. Since the quadrupole formula does a surprisingly
good job of reproducing waveforms for Kerr [20], we
expect this also to be the case for spacetimes that are
slightly off-Kerr.

Finally, we briefly review the signal analysis formalism
necessary for calculating � ~Q (the measurement accuracy
in ~Q) in order to make clear our approximations; we refer
to BC for more details. The (sky-averaged) noise spectral
density Sh�f� for each of the two channels, I and II,
determines a natural inner product on the space of LISA
data streams, as follows. Let p�t� � 
pI�t�; pII�t�� and
q�t� � 
qI�t�; qII�t�� be two different LISA data sets.
Their inner product is [29]:

 �pjq� � 2
XII
��I

Z 1
0

~p���f�~q��f�

� ~p��f�~q
�
��f��=

�
3

20
Sh�f�

�
df: (17)

[The factor 3
20 is due to the ‘‘sky-averaging’’ convention

adopted here in the definition of Sh�f�.] This inner product
has the property that the matched-filtering SNR for any
imbedded gravitational waveform h�t� � 
hI�t�; hII�t�� is
just its norm:

 SNR 
h� � �hjh�1=2: (18)

The Fisher information matrix �ab is defined by

 �ab �
�
@h
@�a

�������� @h
@�b

�
; (19)

where a; b; . . . are parameter-space indices. To lowest or-
der in an expansion in SNR�1, the variance-covariance
matrix for the errors is just the inverse of the Fisher matrix:

 h��a��bi � ���1�ab
1�O�SNR�1��; (20)

where ‘‘h� � �i’’ means ‘‘expectation value.’’ Hence the
measurement error in the various parameters is given by

 ��a � h��a��ai1=2  
���1�aa�1=2: (21)

The actual inner product, Eq. (17), is formulated
in the frequency domain. For a white noise [i.e.,
Sh�f� � constant], the inner product is equivalent to
2S�1

h

PII
��I

R
1
�1 p��t�q��t�dt, by Parseval’s theorem.

Motivated by this formula, we shall adopt the following
approximate version of the inner product in calculating the
Fisher matrix: First, we define the ‘‘noise-weighted’’ wave-
form

 ĥ ��t� �
X
n

h�;n�t�=S
1=2
h �fn�t��; (22)

where (again) we take fn�t� � n��t� � _~��t�=�. Then we
approximate the covariance matrix, Eq. (19), as
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 �ab � 2
�

3

20

� XII
��I

Z T

0
@aĥ��t�@bĥ��t�dt: (23)

That is, we simply reweight each harmonic by the square
root of the inverse spectral density of the noise, and there-
after treat the noise as if it were white.

Finally, we must specify the (sky-averaged) noise spec-
tral density Sh�f� that we use in constructing the inner
product. For this, we use the noise model given in Eq. (30)
of [30]. This model treats the noise as the sum of instru-
mental noise and confusion noise from galactic and extra-
galactic white dwarf binaries. All low-frequency binaries
contribute additively to the confusion noise, but the effect
of the high-frequency galactic binaries (which can all be
detected and fitted out of the data) is to effectively reduce
the bandwidth for observing other sources (like EMRIs) by
some factor, or equivalently to increase the effective noise
density Sh�f� by that same factor; see [30] for more details.

III. RESULTS

In this section we present our results for � ~Q, the accu-
racy with which LISA can determine the MBH’s (dimen-
sionless) quadrupole moment ~Q � Q=M3, for a range of
physical parameters. This paper does not aim at a full,
Monte Carlo-type exploration of � ~Q over the entire 15-
dimensional parameter space. Rather, we regard this paper
as an initial exploration, aimed at determining the order of
magnitude of � ~Q for a few ‘‘typical’’ cases. Based on this
goal, our survey strategy was as follows. We first attempted
to find values of the angular parameters ��S;�S; �K;�K; ��
that led to median results for � ~Q. We then fixed these
angles and explored the rest of the parameter space. We
always evaluated the Fisher matrix at the value of ~Q
corresponding to pure Kerr geometry, i.e., ~Q �
��S=M2�2; thus, in effect, we explored how accurately
small deviations from the Kerr value could be measured.
In Sec. III A we describe how we obtained ‘‘representa-
tive’’ values for the angular parameters. In Sec. III B we
present our results for � ~Q, for a variety of values of M, �,
S, and eLSO. Finally in Sec. III C we present checks on the
accuracy and robustness of our numerical results.

A. Choice of representative angles

Here we describe our method for choosing one set of
representative angles. As we show below, � ~Q depends
strongly on M, and more weakly on �, eLSO, and S. We
therefore fixed � � 10M�, eLSO � 0:15, and ~S � 0:5, and
for each of the MBH masses M � 105:5M�, 106M�, and
106:5M� explored all 108 different values of
��S;�S; �K;�K; �� from within �S 2 �

1
6�;

1
2�;

2
3��, �S 2

�0; 2
3�;

5
3��, �K 2 �

1
20�;

1
2�;

3
4��, �K 2 �0;

1
2�;��, and

� 2 � 1
10 ;

1
3�;

2
3��. We calculated � ~Q for each of these

points and found the median values of � ~Q for each ofM �

105:5; 106; 106:5M�. The results for M � 106M� are histo-
grammed in Fig. 1. The following choice of angles turns
out to yield a value of � ~Q close to its median:
 

��S;�S; �K;�K; ��

�

8>><
>>:
��2 ;

5�
3 ;

�
2 ; 0;

�
3�; for M � 105:5M�;

�2�3 ;
5�
3 ;

�
2 ; 0;

�
3�; for M � 106M�;

��6 ;
2�
3 ;

3�
4 ; �;

�
3�; for M � 106:5M�:

(24)

We adopted these as our representative angles in surveying
the ��; S; eLSO� space (for each of the different MBH
values explored).

B. LISA’s measurement accuracy for ~Q

In this subsection we present our results for � ~Q, ob-
tained by calculating the Fisher matrix and using the
leading-order estimate �� ~Q�2 � ���1�

~Q ~Q. All results are
based on analyzing exactly 1 yr of data, which we take to
be the last year of inspiral, and all are normalized to a total
SNR of 100. Our reason for normalizing to SNR � 100 is
that the best tests of Kerr-ness will naturally come from the
strongest (generally closest) EMRI sources. The detection
threshold for EMRIs, as limited by computational power, is
estimated to be SNR� 30–35 [4]. Assuming * 100
EMRIs are detected above this threshold, an estimated *

4 EMRIs will be detected with SNR * 100. Thus SNR �
100 corresponds to a relatively strong source, but we do
expect to detect a few sources that strong. Of course, � ~Q
roughly scales like SNR�1, so even for marginally detect-
able sources with SNR� 30–35, � ~Q will only be a factor
�3 larger.

Figure 2 presents our results for � ~Q for two fiducial CO
masses (10M� BH and 0:6M� white dwarf), three fiducial
MBH masses (105:5, 106:0, and 106:5M�), three fiducial
values of eLSO (0, 0.15, and 0.3), and five fiducial values
of ~S (0, 0.25, 0.5, 0.75, and 1). Again, all results in these
figures are for the sets of representative angles specified in
Eq. (24). We have not included results for ��;m; eLSO� �
�10M�; 105:5M�; 0:3� [and also missed out the point
��;m; eLSO; ~S� � �10M�; 105:5M�; 0:3; 0�] as for these pa-
rameter values the initial eccentricity becomes too high
(e * 0:7), and our evolution model fails to yield reliable
results. (The failure of our kludge model at very high
eccentricities is discussed in Appendix B of BC.)

The following general conclusions are evident from the
above figures. For captured 10M� BHs it should be pos-
sible to extract ~Q to within an accuracy � ~Q� 10�4 –10�2.
The value of � ~Q varies strongly withM, being�100 times
larger for M � 106:5M� than for M � 105:5M�. As �
decreases from 10 to 0:6M� (with SNR assumed fixed),
� ~Q increases by a factor �10. These patterns can be
understood qualitatively as follows. At fixed SNR, one
expects � ~Q, ��lnM�, ��ln��, and �~S to all decrease
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with an increasing number of cycles, and the latter scales
roughly as �LSO (for a fixed observation time), or equiv-
alently as M�1. One also expects � ~Q, ��lnM�, ��ln��,
and �~S to all decrease with an increasing ratio of
f2;LSO=f2;yr, where f2;yr is the frequency of the n � 2
harmonic 1 yr prior to plunge, and f2;LSO is that harmonic’s
frequency just prior to plunge. That is because a larger ratio
of final to initial frequencies provides more ‘‘leverage’’ for
separating out post-Newtonian effects that enter at differ-
ent orders of the PN expansion parameter, ��Mf2�

1=3. We
can obtain an approximate expression for f2;LSO=f2;yr by
simplifying to the case of e � 0 orbits in Schwarzschild, so
f2;LSO � �6

3=2�M��1, and by approximating df2=dt using
the lowest (nontrivial) order PN expression:

 

96

5
�8=3�M2=3

Z 1 yr

0
dt �

Z f2;LSO

f2;yr

f�11=3df; (25)

which yields

 

�
f2;LSO

f2;yr

�
8=3
� 1� 2:53

�
10M�

�
106M�
M

�
2
: (26)

Therefore, for the � � 10M� case, as M increases from
105:5 to 106:5M�, f2;LSO=f2;yr decreases from 3.4 to 1.09.
Similarly, forM � 106M�, f2;LSO=f2;yr decreases from 1.6
to 1.05 as � decreases from 10 to 0:6M�.

When one adds ~Q to the list of parameters that must be
extracted, the accuracy with which all other parameters can
be extracted must decrease. The magnitude of this effect, in
our case, is illustrated in Table II, where we list ��ln��,
��lnM�, and �~S for our three fiducial M values and � �

10M�. The bold-faced entries are the error magnitudes for
the 15-dimensional parameter set including ~Q, while the
plain-faced entries are for the 14-dimensional set that
excludes ~Q. As expected, the errors when ~Q is included
are always larger, by factors that range from 1.13 to 54.
Including ~Q has the greatest impact on �~S. This is also to
be expected, since the terms / ~Q and those / ~S in Eqs. (5),
(6), and (8) have a very similar scaling with frequency: the
former are multiplied by �2�M��4=3 and the latter by
�2�M��; thus one expects errors in the two quantities to
be strongly correlated, and so also for ~Q to have the
strongest effect on ~S. The effect of the extra parameter ~Q
on the size of �~S is largest for highM, since the smaller the

TABLE II. Bold-face data in this table show the measurement
accuracy of ln�, lnM, and ~S when ~Q is included as a search
parameter. (Here we have taken � � 10M�, eLSO � 0:15, S �
M2, and a few values of M, which correspond to three of the data
points in Fig. 2 above.) For comparison, plain-face data show the
measurement accuracy of these parameters for the same points in
parameter space, but without searching over ~Q, i.e., assuming a
Kerr black hole: ~Q � ��S=M2�2.

M ��ln�� ��lnM� �~S

105:5M� 2:9	 10�6 6:9	 10�7 8:3	 10�5

1:8	 10�6 4:7	 10�7 1:7	 10�6

106M� 5:2	 10�5 1:6	 10�6 1:6	 10�4

2:5	 10�5 1:1	 10�6 3:6	 10�6

106:5M� 8:8	 10�4 2:6	 10�6 2:6	 10�3

5:9	 10�4 2:3	 10�6 4:8	 10�5
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FIG. 2 (color online). Results for � ~Q—the measurement accuracy in ~Q � Q=M3 —for a selection of values of M, eLSO, and ~S �
S=M2. Left and right panels display � ~Q for 10M� and 0:6M� COs, respectively. Both plots are for 1 yr of data (the last year of
inspiral), and are normalized to SNR � 100. [In the left panel we have discarded a few of the data points, corresponding to low MBH
mass with high LSO eccentricity: For these points the initial eccentricity exceeds 0.7, and our PN evolution model cannot be trusted
(see discussion in the text).]
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ratio f2;LSO=f2;yr, the more degenerate these parameters
become.

C. Inversion checks and test of robustness

The Fisher matrices we compute typically have a very
large condition number (the ratio of the largest to smallest
eigenvalues). For the numerical computation of a matrix
inverse to be reliable, using double precision arithmetic, it
is generally sufficient (but not necessary) that the matrix’s
condition number be & 1014 [31,32]. Some of the Fisher
matrices we calculate have condition numbers as large as
�1022. This is cause for some concern when we numeri-
cally invert the Fisher matrices to find � ~Q; specifically,
one might worry that small errors in the Fisher matrix
elements (e.g., due to round off) could lead to large errors
in the matrix inverse. Therefore we have performed several
checks that our results are reliable.

First, we have used several different matrix-inversion
routines, and checked that the results from different rou-
tines are always fairly close together. This is illustrated in
Fig. 3, where for the 108 matrix inversions used to generate
Fig. 1, we plot the values of � ~Q derived from two different
methods: (i) Gauss-Jordan elimination and (ii) singular-
value decomposition [31]. The results from the two differ-
ent inversion routines agree to within less than�20% in all
cases. Additional evidence that our numerical inverses are
numerically stable come from the plots in Fig. 2, which
show that � ~Q depends in a rather smooth and consistent

way on changes in ~S and eLSO; i.e., the matrix inverse is
clearly not wildly sensitive to changes in source parame-
ters. Third, if we recondition our matrices by essentially
rescaling all the variables, so that diagonal elements of the
new Fisher matrix are all unity, then a matrix with an
original condition number of �1022 typically has a new
condition number as low as �1012.

It should be pointed out that the error in some of the
orbital phases (those associated with the smallest singular
values) are strongly dependent on the inversion method,
and our code does not produce reliable answers for these
(apart from telling us that these parameters are strongly
degenerate). Fortunately, the parameter ~Q is among those
for which the inversion gives robust answers.

A related worry is that our results for � ~Q might depend
strongly on the exact signal model, so that � ~Q might be
very different for our analytic kludge waveforms than for
true, general relativistic waveforms. We now present evi-
dence that, to the contrary, our general conclusions seem
rather robust. Roughly speaking, our analytic kludge wave-
forms differ from the true ones due mainly to all the higher-
order PN terms that are missing from the former. (Our
treatment of the LISA response is also approximate, but
our low-frequency approximation here seems much less
likely to significantly bias the final results.) We can get
some sense of the importance of these missing terms for
the final conclusion, by comparing our results with a
‘‘lower-order’’ or ‘‘dumbed-down’’ version of the analytic
kludge. Specifically, the dumbed-down version just ne-
glects all the correction terms proportional to �2�M��2=3

in Eqs. (5)–(8) . That is, we simply drop the second line in
Eq. (5), the second term in square brackets in the first line
of Eq. (6), and the second line of Eq. (7). The remaining
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FIG. 4 (color online). � ~Q for BH inspirals, for a lower-order
version of our kludge evolution equations (given explicitly in the
text). Comparison of this figure with the left panel of Fig. 2
provides a check on the robustness of our results.
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FIG. 3 (color online). Comparison of the values of � ~Q ob-
tained using two different matrix-inversion methods. The 108
sample points are the same ones displayed in Fig. 1; i.e., they
correspond to 108 different values for ��S;�S; �K;�K; ��, and
fixed values of ��;M; eLSO; ~Q�. Circles are results using
singular-value decomposition, while pluses correspond to inver-
sion of the same matrices using Gauss-Jordan elimination.
Generally the two results lie close together, with deviations
smaller than �20% in all cases. This is sufficient agreement
for our purpose.
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equations still have the property that the major qualitative
features of the orbits (perihelion precession, Lense-
Thirring precession, and inspiral) are all present, and that
at least the lowest-order PN term corresponding to each
effect is included.

Our results for � ~Q, using this dumbed-down version of
the analytic kludge evolution equations, are demonstrated
in Fig. 4 for the case� � 10M�. The values of � ~Q remain
the same to within a factor �2 (compared with the left
panel of Fig. 2). We take these results as an indication that
our estimates for � ~Q are accurate to better than an order
magnitude—perhaps even to within a factor �3.

IV. CONCLUSIONS AND DISCUSSION

Our main conclusion is that, for reasonably strong EMRI
sources (SNR� 100), it should be possible to extract the
quadrupole moment Q of the central massive object, in
addition to its mass and spin, typically to within � ~Q�
10�4 � 10�2. Thus for each detected EMRI, LISA will
have the opportunity to perform a rather precise and non-
trivial check of the Kerr-ness of the central massive object.
For fixed SNR, smaller values of M will provide much
more accurate measurements of the MBH’s quadrupole
moment. While the particular source orientation and sky
direction can cause � ~Q to vary by up to a factor 4, � ~Q
seems to depend rather weakly on eLSO and on the value of
the spin S.

An obvious caveat is that the values of � ~Q derived here
represent the magnitude of the error due to noise alone; any
errors in the construction of theoretical waveforms for
given parameter values would lead to additional, system-
atic errors in Q. Another caveat is that even if the best-fit
values of Q were substantially off-Kerr in a few sources,
this could just mean that those sources were not sufficiently
‘‘clean’’ two-body systems, e.g., because of the influence
of an accretion disk or because of interactions with a third
body.

Finally, it might be interesting to extend our analysis to
consider independent estimates of the first N multipole
moments (for N � 3; 4; 5; . . . ). Indeed this is what Ryan
[7] did, within his highly simplified model. However we
have not yet attempted this.
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