
New physics and CP violation in singly Cabibbo suppressedD decays

Yuval Grossman*
Department of Physics, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel

Alexander L. Kagan†

Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

Yosef Nir‡

Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
(Received 31 October 2006; published 28 February 2007)

We analyze various theoretical aspects of CP violation in singly Cabibbo suppressed (SCS) D meson
decays, such as D! KK;��. In particular, we explore the possibility that CP asymmetries will be
measured close to the present level of experimental sensitivity of O�10�2�. Such measurements would
signal new physics. We make the following points: (i) The mechanism at work in neutral D decays could
be indirect or direct CP violation (or both). (ii) One can experimentally distinguish between these
possibilities. (iii) If the dominant CP violation is indirect, then there are clear predictions for other modes.
(iv) Tree-level direct CP violation in various known models is constrained to be much smaller than 10�2.
(v) SCS decays, unlike Cabibbo favored or doubly Cabibbo suppressed decays, are sensitive to new
contributions from QCD penguin operators and especially from chromomagnetic dipole operators. This
point is illustrated with supersymmetric gluino-squark loops, which can yield direct CP violating effects
of O�10�2�.
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I. INTRODUCTION

CP violation (CPV) in D meson decays provides a
unique probe of new physics. First, the standard model
(SM) predicts very small effects, smaller than O�10�3�, so
that a signal at the present level of experimental sensitivity
[1–7], O�10�2�, would clearly signal new physics. Second,
the neutral D system is the only one where the external up-
sector quarks are involved. Thus it probes models in which
the up sector plays a special role, such as supersymmetric
models with alignment [8,9] and, more generally, models
in which Cabibbo-Kobayashi-Maskawa (CKM) mixing is
generated in the up sector. Third, singly Cabibbo sup-
pressed (SCS) decays are sensitive to new physics contri-
butions to penguin and dipole operators.

Let us elaborate on the first point, that is, the smallness
of CP violation within the SM. The basic argument is that
the physics of both D0 � �D0 mixing and SCS D decays
involves, to an excellent approximation, only the first two
quark generations and is therefore CP conserving [10]. In
other words, SM CP violation in these decays is CKM
suppressed. As concerns the D0 � �D0 mixing amplitude,
SMCP violation enters at O�j�VcbVub�=�VcsVus�j� � 10�3.
Furthermore, this suppression is relative to the short dis-
tance contribution, which is known to lie well below the
present experimental sensitivity. (The SM contribution

could saturate the present bounds on y [11] and x [12],
but this would necessarily be due to the long distance
contribution.) The CP violation contribution to the c!
u �ss and c! u �dd decays is both CKM- and loop-
suppressed and, therefore, entirely negligible. We conclude
that CP violation in SCS D decays at the percent level
signals new physics [13–15].

As concerns the third point, among all hadronic D
decays, the SCS decays are uniquely sensitive to CP
violation in c! u �qq transitions and, consequently, to
new contributions to the �C � 1 QCD penguin and chro-
momagnetic dipole operators. In particular, such contribu-
tions can affect neither the Cabibbo favored (c! s �du) nor
the doubly Cabibbo suppressed (c! d �su) decays.

In Secs. II and III we present the formalism of CP
violation in SCS D decays. For final CP eigenstates,
indirect CP violation is universal. Thus, for example, equal
time-integrated CP asymmetries in D! K�K� and D!
���� would be a signal for indirect CP violation. By
combining time-dependent and time-integrated measure-
ments it is possible to separate out the universal indirect
and generally nonuniversal direct CP asymmetry contri-
butions. In the case of final non-CP eigenstates, such as
�	�
 or K�	K
, a Dalitz plot analysis allows one to
further separate out the indirect CP asymmetries originat-
ing from CP violation in mixing and from CP violation in
the interference of decays with and without mixing, and to
separately determine the neutral D-meson mass and life-
time differences, up to discrete ambiguities.
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In Secs. IV and V we discuss direct CP violation. In
Sec. IV, we survey models which give rise to direct CP
violation in SCS decays via tree-level decay amplitudes,
e.g., flavor-changing Z or Z0 couplings or supersymmetric
R-parity violating couplings. We find that typically these
contributions are constrained to lie well below the present
experimental sensitivity.

In Sec. V we discuss loop-induced effects. Here the
situation is different, as direct CP violation at the level
of 10�2 is often allowed and, for specific models, even
expected. Two specific supersymmetric examples employ-
ing up-squark/gluino loops are discussed: contributions to
the dipole operators due to flavor-changing ‘‘left-right’’
(LR) squark mixing, and contributions to the QCD penguin
and dipole operators due to flavor-changing ‘‘left-left’’
(LL) squark mixing. Remarkably, we find that LR squark
mixing can yield direct CP violation at the current level of
sensitivity, while indirect CP violation remains negligible.
The key factor is a strong enhancement of the requisite
quark chirality flip in the dipole operators by a factor
m~g=mc which is absent in the mixing amplitude. For LL
squark mixing, annihilation leads to an order-of-magnitude
uncertainty in the QCD penguin operator matrix elements,
so that direct CP asymmetries of O�10�2� cannot be ruled
out. In this case, however, indirect CP violation is also
non-negligible. Implications for CP violation in supersym-
metric flavor models with alignment, which predict the
orders of magnitude of the LR and LL squark mixings,
are discussed.

In this analysis, some hadronic subtleties are involved.
We employ naive factorization to evaluate the impact of
new contributions to the QCD penguin operators, and QCD
factorization [16] to estimate the contributions of chromo-
magnetic dipole operators. We argue that there is a large
theoretical uncertainty related to annihilation in both (SM)
tree and (new physics) penguin contributions: Experi-
mental information as well as hadronic models lead us to
think that annihilation could play a prominent role and, in
particular, strongly enhance the latter. Details are provided
in the appendix. Finally, isospin invariance and, to a lesser
extent, U-spin invariance of the gluonic transitions predict
patterns of direct CP violation among various SCS decay
modes. These can be used to test for new contributions to
the QCD penguin and dipole operators.

We conclude in Sec. VI with a summary of our results
and a brief discussion of additional decay modes which
will be useful for learning about the possible intervention
of new physics in SCS D meson decays.

II. FORMALISM

The SCS decays, c! u�ss and c! u �dd, lead to final
states that are common to D0 and �D0. These could be CP
eigenstates (such as K�K�, ����, ��0, and �0�0), or
non-CP eigenstates (such as ����, K��K�, and K�0KS).

We use the following standard notations:

 

� � �Dt; �D �
�DH
� �DL

2
;

Af � A�D0 ! f�; �Af � A� �D0 ! f�;

A �f � A�D0 ! �f�; �A �f � A� �D0 ! �f�;

x �
�mD

�D
�
mDH

�mDL

�D
; y �

��D
2�D

�
�DH
� �DL

2�D
;

�f �
q
p

�Af
Af
; Rm �

��������qp
��������; Rf �

�������� �Af
Af

��������: (1)

Here DH and DL stand for the heavy and light mass
eigenstates, and q and p are defined via jDH;Li � pjD0i 

qj �D0i.

The time-dependent decay rates into a final state f can
be written as follows (see, for example, [17]):

 

��D0�t� ! f� � 1
2e
��jAfj

2f�1� j�fj
2� cosh�y��

� �1� j�fj
2� cos�x�� � 2Re��f�

 sinh�y�� � 2Im��f� sin�x��g; (2)

 

�� �D0�t� ! f� � 1
2e
��j �Afj2f�1� j��1

f j
2� cosh�y��

� �1� j��1
f j

2� cos�x�� � 2Re���1
f �

 sinh�y�� � 2Im���1
f � sin�x��g: (3)

The time-integrated rates are given by

 

��D0 ! f� �
Z 1

0
��D0�t� ! f�dt �

1

2
jAfj2

�
�1� j�fj2�

1

1� y2 � �1� j�fj
2�

1

1� x2

� 2Re��f�
y

1� y2 � 2Im��f�
x

1� x2

�
; (4)

 

�� �D0 ! f� �
Z 1

0
�� �D0�t� ! f�dt �

1

2
j �Afj2

�
�1� j��1

f j
2�

1

1� y2 � �1� j�
�1
f j

2�
1

1� x2 � 2Re���1
f �

y

1� y2

� 2Im���1
f �

x

1� x2

�
: (5)
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The corresponding expressions for decays into �f follow via
the substitutions f ! �f in the above expressions.

In general the four decay amplitudes can be written as

 Af � ATfe
�i�T

f �1� rfe
i��f��f��;

A �f � AT�fe
i��f��T

�f
�
�1� r �fe

i�� �f�� �f��;

�A �f � ATfe
�i�T

f �1� rfe
i��f��f��;

�Af � AT�fe
i��f��T

�f
�
�1� r �fe

i�� �f�� �f��;

(6)

where ATfe
	i�T

f is the SM tree-level contribution. The
phases�T

f ,�T
�f
,�f, and� �f are weak, CP violating phases,

while �f and �f are strong, CP conserving phases.
Neglecting terms of order j�VubVcb�=�VusVcs�j � 10�3,
�T
f � �T

�f
is the same for all final states.

A. CP eigenstates

We consider final states that are CP eigenstates. (Note
that this analysis also applies to Cabibbo favored (CF) CP
eigenstates, like KS�0.) For a similar analysis see [18]. For
CP even (odd) eigenstates, �f � 0 (�). We can then write
 

Af � ATfe
�i�T

f �1� rfei��f��f��;

�CPf �Af � ATfe
�i�T

f �1� rfei��f��f��;
(7)

where �CPf � ���� for CP even (odd) states. Neglecting
rf in Eq. (7), �f is universal and we can define

 �f � ��
CP
f Rmei�; (8)

where Rm � jq=pj and � is the relative weak phase be-
tween the mixing amplitude and the decay amplitude. The
time-integrated CP asymmetry for a final CP eigenstate f
is defined as follows:

 af �
��D0 ! f� � �� �D0 ! f�

��D0 ! f� � �� �D0 ! f�
: (9)

Given experimental constraints, we take x; y; rf � 1
and expand to leading order in these parameters. Then,
we can separate the contributions to af to three parts,

 af � adf � a
m
f � a

i
f; (10)

with the following underlying mechanisms:
(i) adf signals CP violation in decay:

 adf � 2rf sin�f sin�f: (11)

(ii) amf signals CP violation in mixing. With our ap-
proximations, it is universal:

 am � ��CPf
y
2
�Rm � R�1

m � cos�: (12)

(iii) aif signals CP violation in the interference of de-
cays with and without mixing. With our approxi-
mations, it is universal:

 ai � �CPf
x
2
�Rm � R�1

m � sin�: (13)

Consider the time-dependent decay rates in Eqs. (2) and
(3). The mixing processes modify the time dependence
from a pure exponential. However, given the small values
of x and y, the time dependences can be recast, to a good
approximation, into purely exponential forms,

 ��D0�t� ! f� / exp���̂D0!ft�;

�� �D0�t� ! f� / exp���̂ �D0!ft�;
(14)

with modified decay rate parameters [15]:

 

�̂D0!f � �D�1� �
CP
f Rm�y cos�� x sin���;

�̂ �D0!f � �D�1� �CP
f R

�1
m �y cos�� x sin���:

(15)

One can define the following CP violating combination of
these two observables:

 �Yf �
�̂ �D0!f � �̂D0!f

2�D
� am � ai: (16)

Note that am and ai contribute to af of Eq. (9) and to
�Yf of Eq. (16) in the same way, but adf contributes only to
the former. In particular, �Yf is universal while af, in
general, is not.

The experimental results from BABAR [1], �Y �
��0:8	 0:6	 0:2�  10�2, and from Belle [2], �Y �
��0:20	 0:63	 0:30�  10�2, give the following world
average:

 �Y � ��0:35	 0:47�  10�2: (17)

B. Non-CP eigenstates

Here we consider final states that are not CP eigenstates.
For each pair of CP conjugate states f and �f, there are four
relevant amplitudes, Eq. (6). Neglecting rf and r �f we have

 �f �
q
p

�Af
Af
� �RmRfei����f�;

� �f �
q
p

�A �f

A �f
� �RmR

�1
f ei����f�:

(18)

Here Rm and � are the same as in Eq. (8), Rf � j �Af=Afj,
and �f is a strong (CP-conserving) phase. There are two
time-integrated CP asymmetries to consider:
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 af �
��D0 ! f� � �� �D0 ! �f�

��D0 ! f� � �� �D0 ! �f�
;

a �f �
��D0 ! �f� � �� �D0 ! f�

��D0 ! �f� � �� �D0 ! f�
:

(19)

Again, we take x; y; rf; r �f � 1 and expand to leading order
in these parameters. Then

 af � adf � a
m
f � a

i
f; a �f � ad�f � a

m
�f
� ai�f; (20)

where
 

adf � 2rf sin�f sin�f;

amf � �Rf
y0f
2
�Rm � R

�1
m � cos�;

aif � Rf
x0f
2
�Rm � R�1

m � sin�;

(21)

(for a �f the result is the same with the replacement f ! �f)
and

 x0f � x cos�f � y sin�f; y0f � y cos�f � x sin�f;

x0�f � x cos�f � y sin�f; y0�f � y cos�f � x sin�f:

(22)

Since in SCS decays we expect, in general, that Rf �
O�1�, the decays into final non-CP eigenstates should
exhibit CP asymmetries of the same order of magnitude
as for CP eigenstates.

Several points are in order:
(1) One can, again, look for CP violation using the time

dependence of the decay, see Eq. (14). The result is
similar to Eq. (16):

 �Yf �
�̂ �D0! �f � �̂D0!f

2�D
� amf � a

i
f;

�Y �f �
�̂ �D0!f � �̂D0!f

2�D
� am�f � a

i
�f
;

(23)

where amf and aif are given in Eq. (21).
(2) A final state that is a CP eigenstate is a special case

of the non-CP final state, with Rf � 1 and �f � 0
(�) for CP even (odd) final state. Then, Eqs. (21)
reduce to Eqs. (11)–(13).

(3) In analyses of CF and doubly Cabibbo suppressed
(DCS) decays, such as D! K�, one usually finds
expressions that depend on x0f and y0f, but not on x0�f
and y0�f (see e.g. [19]). The reason is not that the CP

asymmetries are independent of x0�f and y0�f, but rather

that these contributions are relatively suppressed by
tan4�c.

C. Dalitz plot analysis for D0 ! VP

In practice, all final non-CP eigenstates are resonances.
Thus, we can perform a Dalitz plot analysis and sum up
several resonances. Such an analysis has several advan-
tages. First, the statistics is increased. Second, information
about the strong phases can be obtained. A simple case is to
concentrate on a single resonance in the Dalitz plot, for
example, KK�. Then, from the interference region of
K�K�� with K�K�� the strong phase �KK� can be deter-
mined [20].

The knowledge of the strong phase can be used to
determine x and y, and not only x0f and y0f. (Note that in
the standard analysis of DCS decays, only the latter can be
determined.) This can be seen by comparing the terms
linear in � to the constant ones. We see from Eqs. (2) and
(3) that we can measure the following four quantities:

 yRm cos��� �f�; yR�1
m cos����f�;

xRm sin����f�; xR�1
m sin��� �f�:

(24)

Once these four quantities are measured, generally, one can
separately determine x, y, Rm, and � (up to discrete
ambiguities), and thus separately measure the two types
of indirect CP violation, am and ai. This cannot be done
with a CP eigenstate.

III. DIRECT VS INDIRECT CP VIOLATION

New CP violation could affect af through either a con-
tribution to the mixing amplitude M12, that is indirect CP
violation, or a contribution to the decay amplitudes Af, that
is direct CP violation, or both. Indirect CP violation gen-
erates amf and aif, while direct CP violation generates adf.
(Contributions to the decay amplitudes affect �12 but this
effect is always very small and can be safely neglected.)

The SM contribution to the mixing is suppressed by
three factors: double Cabibbo suppression, flavor SU(3)
suppression (which, in the short distance language, is the
Glashow-Iliopoulos-Maiani (GIM) suppression) and weak-
interaction loop suppression. The long distance contribu-
tion avoids the loop factor and can have a much milder
SU(3)-breaking suppression. Consequently, it is estimated
that the SM gives x; y � O�10�3�, but with very large
uncertainties. In particular, it cannot be excluded that the
SM gives values as high as x; y � O�10�2� [11,12,21].

New physics can avoid some or all of the three suppres-
sion factors. Indeed, it is well known that there are many
models that can accommodate or even predict x close to the
current experimental limit (for a review see [22,23]). The
best known example is that of supersymmetric models with
quark-squark alignment [8,9,24]. Here, box diagrams with
intermediate squarks and gluinos have a double Cabibbo
suppression, but neither SU(3) nor 	2

w-suppression (but
only 	2

s factor). Furthermore, the gluino couplings carry
new CP violating phases. These, and other models, dem-
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onstrate that it is quite possible that indirect CP violation
could account for af of O�10�2�.

Note that new short distance contributions can enhance x
but not y. If the SM value of y is small, y & 10�3, then amf
is negligible (in the case of a CP-eigenstate final state). If y
is large, y� 10�2, then new physics in the mixing ampli-
tude would result in similar contributions from aif and amf .

The SM contribution to the decay is through tree-level
W-mediated diagrams. Thus, the amplitude depends on
GF sin�c. New physics cannot give competing contribu-
tions but, to generate adf � 10�2, it is only required that

 I m�GN� � 10�2 sin�cGF; (25)

where GN denotes the effective four-Fermi coupling from
new physics. If, for example, the scale of new physics is
�NP * 1 TeV then the scale suppression of GN is
O�m2

W=�2
NP� & 10�2. Thus, quite generically, Eq. (25)

can only be realized with �NP & 1 TeV and (at least)
one of the following conditions satisfied:

(1) There is neither flavor suppression stronger than
sin�c nor loop suppression;

(2) There are enhancement factors related to hadronic
factors or chiral enhancement;

(3) �NP is actually much closer to mW .

As we show later, there exist well-motivated models where
indeed such conditions apply and consequently (25) can be
satisfied. It is thus quite possible that an O�10�2� effect is
generated solely or dominantly from direct CP violation.

In the absence of direct CP violation from new
physics, the CP asymmetries in SCS decays into final
CP eigenstates would be universal, i.e. independent of
the final state. (The SM would give tiny nonuniversal
corrections, i.e. �aKK � a���=�aKK � a��� �
Ofarg��V�cdVud�=�V

�
csVus��g � 10�3.) We note that this uni-

versality would extend to CF decays to final CP eigen-
states, e.g.,D! Ks�0. Let us define the universal, indirect
contribution to CP violation as follows:

 aind � am � ai: (26)

As mentioned above, aind is the only possible source of �Y
defined in Eq. (16). Thus, Eq. (17) implies

 aind � ��0:35	 0:47�  10�2: (27)

We note that, if the time-integrated measurements yield a
nonzero asymmetry while the time-dependent measure-
ments show no signal then only direct CP violation must
be playing a role. More generally, if a difference between
the two classes of measurements is experimentally estab-
lished, and both are nonzero, then both direct and indirect
CP violation are present, and can be cleanly separated.
Such a scenario is quite possible. In fact, supersymmetric
models with quark-squark alignment [8,9] provide such an
example, as we shall see.

We note that it is also possible to cleanly separate direct
and indirect CP violation in SCS decays only with time-
integrated CP asymmetry measurements. Assuming negli-
gible new CP violation effects in CF and DCS decays (it is
difficult to construct a model in which this is not the case
[25]), the time-integrated CP asymmetry for a CF decay to
a final CP eigenstate would give the universal indirect CP
asymmetry. Subtracting this from the time-integrated CP
asymmetry for a SCS decay to a final CP eigenstate would
give the nonuniversal direct CP asymmetry for the latter.
For example,

 adP�P� � aP�P� � aKs�0 ; P � K;�: (28)

Finally we mention that charged D decays are sensitive
only to direct CP violation. If a nonvanishing CP asym-
metry is experimentally established in charged D decay,
that would signal direct CP violation. If experiments es-
tablish time-integrated CP asymmetries in neutral D de-
cays but not in charged D decays, that would be suggestive
of indirect CP violation, but would not prove it. It is
possible that the new physics could be such that it induces
direct CP violation only in neutral decays.

IV. DIRECT CP VIOLATION AT TREE LEVEL

In this section we examine whether various specific
models can generate adf * 10�2 via tree-level contribu-
tions. For concreteness we focus on f � K�K� and
����. The main purpose is to find, for each model, an
upper bound on the rf factor of Eq. (7). We assume that the
weak phase �f is of O�1�. The strong phase �f suffers
from hadronic uncertainties, but we point out cases where
it is formally suppressed by 1=Nc. In practice, however, the
strong phase could be of O�1� even if it is color suppressed.

A. Extra quarks in SM vectorlike representations

In models with nonsequential (‘‘exotic’’) quarks, the
Z-boson has flavor-changing couplings, leading to
Z-mediated contributions to the SCS decays. (For a review
see, for example, [26].) In models with additional up
quarks in the vectorlike representation �3; 1;�2=3� �
��3; 1;�2=3�, the flavor-changing Z couplings have the
form

 �LZ �
gUu

ij

2 cos�W
�uLi
�uLjZ

� � H:c: ���! GZ
N � GFU

u
cu:

(29)

The flavor-changing coupling is constrained by �mD [25]:

 jUu
cuj & 5 10�4 ���! rf & 10�3: (30)

A somewhat stronger bound (from �mK) applies for the
case of vectorlike quark doublets, �3; 2;�1=6� �
��3; 2;�1=6�.

We learn that a significant contribution to D0 !
K�K�; ���� from Z-mediated flavor-changing interac-
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tions is ruled out. In fact, this lesson applies to a much
broader class of models, that is, all models with a tree-level
contribution mediated by a neutral heavy boson. In all of
these models, the combination Ycu=M (with Ycu the flavor-
changing coupling and M the mass of the heavy boson) is
constrained by �mD. The contribution to the decay has an
extra factor of Yqq=M (q � s or d) that is maximized for
large Yqq and lightM. Thus, the model discussed here, with
Yqq � g=�2 cos�W� and M � mZ, gives a contribution
that is near maximal among all models with Yqq & 1 and
M * mZ.

B. Supersymmetry without R-parity

We consider supersymmetry without R-parity models
(for a description of the framework, see, for example,
[27]). The lepton number violating terms in the super-
potential �0ijkLiQjd

c
k give a slepton-mediated tree-level

contribution with an effective coupling

 G0f �
�0i2k�

0�
i1k

4
���
2
p
M2�~‘�Li�

with k �
�

2 f � K�K�;
1 f � ����:

(31)

The same combinations of couplings contribute to the
K� ! ��� �� decay. That provides the following bound
(see e.g. [27]):
 

j�0i2k�
0
i1kj 

�
100 GeV

M�~dck�

�
2

& 2 10�5 ���!
rf & 1:5 10�4; (32)

where we take all sfermion masses to be of the same order.
The baryon number violating terms �00ijku

c
i d

c
jd

c
k give a

squark-mediated tree-level contribution with an effective
coupling
 

G00f �
�002jk�

00�
1jk

4
���
2
p
M2�~dck�

with
� j � 2; k � 1; 3 f � K�K�;

j � 1; k � 2; 3 f � ����:

(33)

Strong bounds are often quoted from n� �n oscillations
(see e.g. [27]):

 j�0011kj & 10�7 �for M�~dck� � 100 GeV�: (34)

(This would rule out any significant contribution to G00��,
and a significant contribution to G00KK from k � 1.)
However, it was shown in [28] that important suppression
factors were missed in obtaining these bounds, and that the
strongest individual bound on these couplings comes from
double nucleon decay,

 j�00112j< 10�15

�m~gm
4
~q

�h

�
5=2
; (35)

where �h is some hadronic mass scale. This leaves only the
k � 3 contributions to G�� and GKK as potentially signifi-
cant (the revised bound from n� �n oscillations in [28],

�00113 < 0:002�0:1� for m~q � 200�600� GeV, allows r�� �
10�2). However, the K0 � K0 system yields the bounds
[27,29]
 

Im��00123�
00�
113�< 10�5;

Re��00213�
00�
223�< 3 10�4;

Im��00213�
00�
223�< 3 10�6;

(36)

from 0=, �mK, and K, respectively, for 100 GeV squark
masses. Note that each coupling appearing in these bounds
also appears in either G�� or GKK, and vice versa. From
this we conclude that it is not possible to simultaneously
obtain r�� � 10�2 and rKK � 10�2 for k � 3, as this
would require a tuning among the �00 couplings of at least
1 part in 103. (Also note that �00ijk * 10�7 would, in gen-
eral, wash out a baryon asymmetry generated before the
electroweak phase transition (EWPT).)

In order to obtain a nonvanishing direct CP asymmetry
inD! K�K�, a relative strong phase is required between
the SM and NP amplitudes. At the weak scale, the SM
Hamiltonian mediating, e.g., D! K�K�, is of the form
� �uisi�V�A� �sjcj�V�A (i; j are color indices), while in the case
of R-parity violation, the relevant Hamiltonian is of the
form

 � �uisi�V�A��sjcj�V�A � � �uisj�V�A� �sjci�V�A: (37)

Since the strong interactions conserve parity, the first term
gives the same strong phase as the SM. The second term,
however, has a different color structure and thus it can
generate a different strong phase. The contribution of the
second term, however, is suppressed compared to the first
one by 1=Nc. Thus, the resulting strong phase relative to
the SM amplitude is color suppressed. As mentioned ear-
lier, while this may mean that the direct CP violation is
further suppressed, an O�1� relative strong phase cannot be
ruled out. The same argument applies to the D! ����

amplitude.

C. Two Higgs doublet models (2HDM)

We consider multi Higgs doublet models with natural
flavor conservation (for a review see, for example, [30]). In
these models a charged Higgs (H	) mediates a tree-level
contribution. In the 2HDM the relevant couplings are
 

�LH	 �
ig���
2
p
mW

�ui�mui cot�PL �mdj tan�PR�VijdjH�

� H:c: (38)

It follows that the charged Higgs mediated contribution is
also singly Cabibbo suppressed. Then, for large tan�, the
suppression with respect to the SM contribution is given by

 rKK ’
m2
s tan2�

m2
H	

: (39)
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To obtain the upper bound, we consider the constraint on
R� � B�B! ���=BSM�B! ��� [31]:

 R� ’
�

1�
�
mB

mH	

�
2
tan2�

	
2
� 0:7	 0:3: (40)

We can write

 rKK ’
m2
s

m2
b

�1�
������
R�

p
� & 4 10�4: (41)

The bound on rH
	

�� is stronger by a factor of m2
d=m

2
s . For

tan�� 1 the bound is even stronger, rKK ’ msmc=m2
H	 &

5 10�5 (we use [32] mH	 � 80 GeV). We learn that the
charged Higgs contributions to the direct CP violation are
negligible.

The situation is somewhat different in models with more
than two Higgs doublets. In particular, when two different
doublets couple to the down and charged lepton sectors, the
bound from B! �� does not apply to the SCS D decays.
One can still obtain a bound from charm counting in B
decays. Using ncharm � 1:22	 0:04, we conclude that in
this case rKK & 10�2 and r�� & 10�4. Thus, direct CP
violation from a charged Higgs contribution in 3HDM can
marginally account for aKK � O�10�2� but is negligible
for a��.

V. DIRECT CP VIOLATION AT ONE LOOP

In the previous section we saw that, in models in which
new decay amplitudes are generated at the tree level, the
direct CP asymmetries in SCS decays are typically con-
strained to lie well below the 1% level. In this section we
examine whether one-loop effects due to new contributions
to the �C � 1 QCD penguin and chromomagnetic dipole
operators can generate adf � 10�2. Again, we consider KK
and �� final states, focus on rf, and assume that the new
weak phase �f in Eq. (7) is of O�1�.

A. QCD penguin and dipole operators:
General considerations

The �C � 1 effective Hamiltonian that is relevant to
SCS decays is given by
 

H�C�1
eff �

GF���
2
p

� X
p�d;s

�p�C1Q
p
1 � C2Q

p
2 � �

X6

i�3

Ci���Qi���

� C8gQ8g

	
� H:c:; (42)

where �p � V�cpVup with p � d; s are CKM factors, and
�d � �s � �b � 0 due to the unitarity of the CKM matrix.
The operators are given in the appendix in Eq. (A3)). Q1;2

are the current-current operators, Q3;...;6 are the QCD pen-
guin operators, and Q8g is the QCD dipole operator. The
dominant contribution to the tree-level coefficients C1 and
C2 is from the SM. New physics amplitudes contribute to

C3;...;6; C8g. The standard model contributions to these op-
erators can be neglected, as they enter at O�VcbVub� (lead-
ing to adf � �VcbVub=VcsVus�	s=�� 10�4). We have
therefore opted to omit the CKM factor in front of the
penguin and dipole operators in Eq. (42). We emphasize
that for CF decays, as well as DCS decays, only the tree
operators contribute. Penguin operators only contribute to
SCS decays.

There are also opposite chirality operators ~Qi which are
obtained from the Qi’s via the substitutions L$ R. In
general their effects are of the same order of magnitude
as the operators that we discuss. In particular cases, like in
left-right symmetric models, there could be cancellations
between the opposite chirality contributions. Here we con-
sider only the general case where such cancellations are not
present. Furthermore, for simplicity we do not write down
explicitly the contributions of the opposite chirality
operators.

In many models the strongest bounds arise from D0 �
�D0 mixing. The relevant �C � 2 effective Hamiltonian is

given by [33]

 H�C�2
eff �

X5

i�1

ciOi: (43)

Again, we do not write explicitly the opposite chirality
operators explicitly. The operators Oi are given in Eq. (B2)
and their matrix elements are estimated in Eq. (B5).
Experimental data yield bounds on the relevant operators.
In particular, we use [34]

 jMD
12j< 6:2 10�11 MeV: (44)

In order to obtain rough estimates of the D! KK and
D! �� amplitudes we use the QCD factorization frame-
work [16]. We adapt the original B decay discussion of [16]
to the case ofD decays. We work primarily at leading order
in 1=mc, using naive factorization for Q1;...;6, and QCD
factorization for Q8g. We identify, however, possibly large
power corrections associated with the annihilation topol-
ogy for the current-current and penguin operators, which
formally enter at O�1=mc�.

Clearly, the 1=mc expansion is not expected to work very
well for hadronic D decays. Thus, our analysis only pro-
vides order-of-magnitude estimates for the full decay am-
plitudes, which suffice for our purposes. It should also be
noted that the QCD factorization approach is useful for
organizing the matrix elements of the various operators in
order of importance.

In Appendix A we give the details of our analysis and
quantitative estimates. Our conclusions with regard to
annihilation amplitudes can however be simply stated:

(i) For the SM operators, the spectator and the annihi-
lation amplitudes are roughly of the same order (see
Eq. (A26) for details).

NEW PHYSICS AND CP VIOLATION IN SINGLY . . . PHYSICAL REVIEW D 75, 036008 (2007)

036008-7



(ii) For the penguin operators, the annihilation ampli-
tudes are likely to give the dominant contribution
(see Eq. (A27) for details).

B. Implications of isospin and SU�3�F
Model independently there are no significant bounds on

the relevant operators, so we can get adf � 10�2. There are,
however, several general results that can be obtained based
on symmetries, in particular, isospin and U-spin.

Very generally isospin predicts
 

A�D0 ! �0�0� �
���
2
p
A�D� ! ���0� � A�D0 ! �����

� 0: (45)

As for the new penguin amplitudes, the isospin predictions
follow from the fact that the c! ug operator is �I � 1=2.
Thus, it cannot generate an I � 2 final state. In particular, it
cannot contribute to D� ! ���0. Thus, we expect no
direct CPV in this mode, a���0 � 0. In contrast, we can
get direct CPV in D0 decays as well as in D� ! K�KS.
Other isospin-based predictions would need further as-
sumptions. For example, neglecting annihilation diagrams,
isospin predicts that adK�K� � adK�KS . As we just argued,

neglecting annihilation cannot be justified. In principle, it
could flip the sign between the two asymmetries.
U-spin predicts that adK�K� � �a

d
���� for new c! ug

transitions. (This is in contrast to the indirect CP violation
which gives the same sign, aind

K�K� � aind
���� .) U-spin

predicts that the SM amplitudes for the two processes
have opposite signs (O��4� effects coming from
�VcsV

�
us�=�VcdV

�
ud� � 1 are negligible), whereas penguin

amplitudes have the same sign. Further study of U-spin
violation, especially in annihilation, is needed in order to
check the resulting prediction of opposite signs for adK�K�
and ad���� .

Another U-spin prediction is that in the SM A�D!
K0 �K0� vanishes. This is a pure annihilation process
with two contributing diagrams: One where c �u! d �d
( / VcdV�ud) and the s�s pair pops out of the vacuum, and
a second one where c �u! s�s ( / VcsV�us) and the d �d pair
pops out of the vacuum. Again, due to the sign difference
between the two CKM combinations, the total amplitude is
proportional to d �d� s�swhich vanishes in theU-spin limit.
Thus, the data (A23) shows not only that annihilation is
large but also thatU-spin breaking is large for annihilation.

C. QCD penguin and dipole operators:
Examples from SUSY

We study contributions to the QCD penguin and dipole
operator Wilson coefficients arising from up-squark-gluino
loops. For simplicity, we work in the squark mass-insertion
approximation. The common squark mass is denoted by ~m.
We consider the contributions of the up-squark mass in-
sertions

 �LL �
� ~m2u

LL�12

~m2 ; �LR �
� ~m2u

LR�12

~m2 : (46)

(The opposite chirality mass insertions �RR and �RL are
obtained via the substitutions L$ R above.) The Wilson
coefficients are given by

 Ci � Ei�x��LL; i � 3; . . . ; 6;

C8g � F�x��LL �G�x�
m~g

mc
�LR;

(47)

where x � m2
~g= ~m2. Ei�x�, F�x�, and G�x� contain loop

functions, and can be read from Eq. (B1). We learn that
�LL contributes to all of the penguin operators, while �LR

only contributes to C8g. Note that the contribution from
�LR is enhanced by a large factor of m~g=mc. In addition,
the loop function G�x� that accompanies �LR gives a
further enhancement, which is numerically of order five
in the relevant parameter space, relative to F�x�.

The most severe bounds arise from D0 � �D0 mixing.
Note, in particular, that the bounds that arise fromK0 � �K0

mixing do not apply to �LL of Eq. (46). In the interaction
basis we have ~m2u

LL � ~m2d
LL. However, such an equality does

not apply in the super-CKM basis (where the up- and
down-quark mass matrices are diagonal) that we use. The
rotation from the first to the latter basis involves the
respective diagonalizing matrices, VuL and VdL. For ex-
ample, in alignment models, VdL � 1 while VuL � VCKM,
leading to sizable ~m2u

LL, close to the �mD bound, and
negligible ~m2d

LL, well below the �mK bound.
The full expressions for the Wilson coefficients are

given in Eq. (B3). What we find is that all of the mass
insertions enter the expressions with similar coefficients. In
particular, there is no enhancement for the chirality chang-
ing insertions.

We begin with a discussion of the effects of the left-right
squark mass insertion, �LR. It generates new contributions
to D meson decays via the dipole operator Q8g, and to
D0 � �D0 mixing via the operators O2, O3. The crucial
point is that the contribution to the decay (but not to the
mixing) is enhanced by a large factor, m~g=mc, and there-
fore the D0 � �D0 mixing bounds are not restrictive.
Consequently, O�10�2� contributions to the D!
KK;�� amplitudes are not excluded.

The situation is illustrated in Fig. 1. The contours in
these plots correspond to a fixed ratio, rf � 10�2. This
ratio is calculated using QCD factorization at leading-
power for the dipole operator amplitude and naive factori-
zation for the standard model amplitude, see Eqs. (A9) and
(A11). In Fig. 1(a) we plot the values of �LR that yield rf �
10�2 as a function of the gluino mass, m~g, for several
values of ~m. �LR is plotted in units of �cmc��susy�= ~m.
(For simplicity, we take �susy � mt and neglect the small
running of mc between mt and the squark mass scale,
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which yields mc��susy� � 0:85 GeV for mc�mc� �

1:64 GeV.) This is useful for later comparison to the
magnitudes expected for �LR in various supersymmetric
models of flavor. In Fig. 1(b) we plot the corresponding
contributions to jMD

12j, normalized to the upper bound of
6:2 10�11 MeV, see Eq. (46). We learn that it is possible
to obtain O�10�2� contributions to the decay amplitudes,
accompanied by new contributions to jMD

12j lying one to 2
orders of magnitude below the experimental bound. In the
standard model the annihilation amplitude could be of the
same order as the leading-power tree amplitude with large
relative strong phase (this is probably also true for the
annihilation vs leading-power dipole operator amplitudes).
Therefore, if arg��LR� is large, then adf � O�10�2� could

be realized with negligible aind
f . A striking feature of this

result is the sensitivity of current CP asymmetry searches
to very small values of Im��LR� * 2 10�3.

Next, we discuss the effects of the left-left squark mass
insertion, �LL. New contributions to the D decay ampli-
tudes are generated via the QCD penguin and dipole op-
erators Q3;...;6, Q8g. Their magnitudes are restricted by
requiring that the supersymmetric contribution to jMD

12j is
smaller than the bound in Eq. (44). Here, unlike in the case
of �LR, there is nom~g=mc enhancement of the contribution
to the decay and, consequently, the bound from the mixing
is significant. In Fig. 2(a) the resulting upper bound on �LL

is plotted as a function of m~g for several values of ~m. The
corresponding upper bounds on rf (f � K�K�; ����)
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LL (the upper bound on �LL fromD0 � �D0 mixing) vsm~g; (b) and (c) rf (f � K�K�, ����) corresponding to �max

LL vs
m~g (b) in naive factorization or (c) with annihilation power corrections included in ANP (see text). The various lines correspond to
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are plotted in Fig. 2(b). (Again, the hadronic matrix ele-
ments of the four-quark operators and the dipole operator
are estimated in naive factorization and in QCD factoriza-
tion, respectively.) The supersymmetric contribution to
MD

12 in Eq. (B3) vanishes at m~g � 1:56 ~m leading to the
peaked structures in Fig. 2, also see [24]. In the absence of
special tuning of m~g vs ~m, we observe that at leading-
power rf & 10�3. (We note that the validity of the squark
mass-insertion approximation is marginal for �LL * 1=4,
but it is sufficient for our purposes given the much larger
hadronic theoretical uncertainties [35]).

It may well be the case, however, that the 1=mc expan-
sion fails badly in the evaluation of the QCD penguin
contributions. In particular, as argued in Appendix A, an-
nihilation amplitudes could give an order-of-magnitude
enhancement. To show how the situation changes if such
enhancement is indeed realized, we repeat the calculation
with QCD penguin annihilation matrix elements included
according to Eqs. (A19), (A20), and (A22). As discussed in
Appendix A, we estimate these matrix elements in the one-
gluon exchange model of [16,36]. The results are presented
in Fig. 2(c). Our conclusion is that, if annihilation enhances
the QCD penguin operator contributions, then it is possible
that supersymmetric �LL insertions give adf � 10�2 with-
out violating the bounds from mixing. In other words, due
to hadronic uncertainties, we cannot rule out the possibility
of such large direct CP violation from �LL. In this case,
however, we also expect the indirect CP violation to be of
the same order.

D. Flavor-changing neutral-currents (FCNCs) in
supersymmetric flavor models

Supersymmetric models with minimal flavor violation,
such as gauge or anomaly mediation, give no observable
CP violating effects in SCS D decays. We thus consider
supersymmetric models where the SUSY breaking media-
tion is not flavor blind. In such models there are two main
strategies for suppressing FCNCs: (a) quark-squark align-
ment [8,9,24], (b) squark mass degeneracy, see e.g., [37–
44]. Models in each category make specific predictions for
the pattern of squark mixing, or for the squark mass-
insertions �NM, (N;M � L;R). In the following, we com-
pare these predictions with the sensitivity of current direct
and indirect CP asymmetry searches.

The various models are based on approximate horizontal
symmetries, and often make predictions in terms of a small
symmetry breaking parameter. For concreteness, we use
�� sin�c � 0:2 as the small parameter.

In models of alignment, Abelian flavor symmetries are
responsible for the observed quark mass and mixing hier-
archies and lead to a high degree of alignment between the
down-quark and down-squark mass eigenstates. Thus,
supersymmetric FCNCs in the down sector are highly
suppressed. CKM mixing is generated in the up sector,
and the up squarks are nondegenerate. The models make

the following order-of-magnitude predictions [24]:

 

�LR �
�mc

~m
; �LL � �;

�RR & �2; �RL &
�2mc

~m
:

(48)

In addition, O�1� CP violating phases are expected.
Comparing the predicted range for �LR, Eq. (48), with

the values required to generate rf � 0:01, Fig. 1(a), one
may naively conclude that alignment gives values of rf that
are a factor of 3–30 too small. It should be kept in mind,
however, that the dipole operator matrix elements suffer
from large theoretical uncertainties. In particular, we have
not taken into account power corrections due to the anni-
hilation topology. Therefore, an enhancement of rf by a
factor of a few cannot be ruled out. We conclude that for
squark and gluino masses at the lower part of the range that
we consider, �LR could lead to adf � 10�2. According to
Fig. 1(b), the contribution of �LR to indirect CP violation is
bounded to be small.

Comparing the predicted range for �LL, Eq. (48), with
the values required to generate rf � 0:01, Figs. 2(b) and
2(c), we learn that �LL could also lead to adf & 10�2,
provided that annihilation strongly enhances the penguin
operator matrix elements. Finally, Fig. 2(a) confirms that
the predicted range for �LL could easily lead to aif � 10�2

and, if y� 10�2, also to amf � 10�2. We conclude that
models of alignment predict aind � 10�2 and could also
accommodate ad & 10�2.

In models of squark degeneracy, the first two families of
quarks constitute a doublet, and the third family a singlet,
of a non-Abelian horizontal symmetry. This leads to a high
degree of degeneracy between the first and second family
squark masses which evades the bounds from �mK, and
implies �LL; �RR � 1. Thus, the contributions of �LL and
�RR to adf and aind

f are negligible. The non-Abelian hori-
zontal symmetry is not sufficient for reproducing all fea-
tures of the quark mass and mixing hierarchies without a
large Yukawa coupling hierarchy, and may not lead to a
sufficiently high degree of degeneracy between the down
and strange squark masses to evade the bounds from K.
Thus, an Abelian flavor symmetry is introduced (it could
be a subgroup of a larger non-Abelian symmetry). The
resulting predictions for �LR and �RL are model dependent.
For example, U�2� based models, with vanishing (1,1)
entries in the quark mass matrices [39–41,43,44], predict

 �LR � �RL �
������������
mumc
p

~m
�
�2mc

~m
: (51)

Therefore, in such models the contributions of �LR and
�RL to adf are well below 10�2. The effect can be larger
in models with a discrete non-Abelian S3

3 horizontal
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symmetry [42], which predicts �LR � �mc= ~m and �RL �
�3mc= ~m, quite similar to models of alignment. Therefore,
adf � 10�2 may again be possible via the dipole operator.

We conclude that adf � 10�2 is not generic but could
arise in specific models of squark degeneracy via the dipole
operator with negligible mixing effects. In models of align-
ment, adf � 10�2 can arise via the dipole operator as well as
the penguin operators, the latter being correlated with a
large mixing contribution that is likely to yield aind

f �

10�2. In both examples a significant dipole operator con-
tribution to adf is linked to a large contribution to �c from
the up-quark sector.

It is interesting to compare the sensitivity of CP viola-
tion in SCS D decays and in B decays to models of flavor.
The two sectors provide complementary information. The
combination of measurements ofD, Bd, B�, and Bs decays
can be used to discriminate between different models of
flavor. The details of the comparison are left for a future
publication.

VI. DISCUSSIONS AND CONCLUSIONS

It is well known that CP violation in D decays is a clean
way to probe new physics. In this paper we study CP
asymmetries in singly Cabibbo suppressed D decays, fo-
cusing, in particular, on the finalCP eigenstatesK�K� and
����. The possibility to probe new CP violation is,
however, not limited to these modes. Pseudo-two body
CP eigenstates, such as ��0 or �KS, as well as non-CP
eigenstates, for example KK� and ��, are also worth
studying. In particular, we have seen that the formalism
for time-integrated CP asymmetries in decays to non-CP
eigenstates allows a separation of indirect CP violation due
to mixing and due to interference of decays with and
without mixing. Decays with four (or more) final-state
particles, like �0�0, offer new ways to probe CP violation
via triple product correlations. It is likely that models that
lead to large direct CP asymmetries in two body decays
also generate large CP violating triple products.

To summarize, our main results are as follows:
(i) The SM cannot account for asymmetries that are

significantly larger than O�10�4�. Thus, CP viola-
tion from new physics must be playing a role if an
asymmetry is observed with the present experimen-
tal sensitivities [O�0:01�].

(ii) The underlying mechanism of CP violation can be
any of the three types: in decay (ad), in mixing (am),
and in the interference of decays with and without
mixing (ai).

(iii) In the case of indirect CP violation (aind � am �
ai) and final CP eigenstates, the time-integrated
CP asymmetries af and the time-dependent asym-
metries �Yf are universal (and equal to each other).

(iv) In contrast, for direct CP violation, the time-
integrated asymmetries af are not expected to be

universal, while the time-dependent asymmetries
�Yf vanish.

(v) The pattern of CP violation can be used to test
supersymmetric flavor models. Minimal flavor vio-
lation models predict tiny, unobservable, effects.
Alignment models predict large aind and possibly
also large adf. Models with squark degeneracy pre-
dict small aind but, depending on the model, can
accommodate observable adf.

(vi) If direct CP violation is at the 1% level, its likely
source is new physics that contributes to the decay
via loop diagrams rather than via tree diagrams.
The reason is that the experimental bounds onD0 �
�D0 mixing are much more effective in constraining

models of the latter type.
(vii) In this regard, SCS D decays are unique, as they

are the only ones that probe gluonic penguin op-
erators. In other words, while we find that direct
CP violation can have observable effects in SCS
decays, it is very unlikely to affect CF and DCS
decays.
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APPENDIX A: THE D! KK=�� AMPLITUDES

We use the QCD factorization framework [16] to obtain
order-of-magnitude estimates for the D! KK=�� ampli-
tudes in the presence of new contributions to the QCD
penguin and dipole operators. Clearly, the 1=mc expansion
is not expected to work very well for hadronic D decays.
We can therefore ignore O�	s� corrections to the matrix
elements, as they are negligible compared to the overall
theoretical uncertainties. We work primarily at leading
order in �QCD=mc, using naive factorization for Q1;...;6

and QCD factorization for Q8g. However, we discuss the
importance of power corrections, especially annihilation,
in the standard model and estimate a large source of

NEW PHYSICS AND CP VIOLATION IN SINGLY . . . PHYSICAL REVIEW D 75, 036008 (2007)

036008-11



theoretical uncertainty in the QCD penguin operator matrix
elements due to annihilation.

Our convention for the flavor wave functions is
 

�0 � 1��
2
p � �uu� �dd�; �� � �ud�� � �du; K0 � �ds;

K0 � �sd; K� � �us; K� � �su: (A1)

1. Leading power

The effective �C � 1 Hamiltonian is given in Eq. (42)
 

H�C�1
eff �

GF���
2
p �

X
p�d;s

�p�C1Q
p
1 � C2Q

p
2 � �

X6

i�3

Ci���Qi���

� C8gQ8g� � H:c: (A2)

The operators are given by:
 

Qp
1 � � �pc�V�A� �up�V�A;

Qp
2 � � �p	c��V�A� �u�p	�V�A;

Q3 � � �uc�V�A
X
q

� �qq�V�A;

Q4 � � �u	c��V�A
X
q

� �q�q	�V�A;

Q5 � � �uc�V�A
X
q

� �qq�V�A;

Q6 � � �u	c��V�A
X
q

� �q�q	�V�A;

Q8g � �
gs

8�2 mc �u����1� 
5�G
��c;

(A3)

where 	, � are color indices and q � u; d; s. The matrix
elements for D! KK;�� decay can be written in the
form [16,36]

 hP1P2jH effjDi � hP1P2jT A �T BjDi; (A4)

where T A is the transition operator for amplitudes in
which the D spectator quark appears in the final state and
T B is the transition operator for annihilation amplitudes
which are discussed in subsection A 2. We write T A as

 

T A �
X
p�d;s

�p�a
P
1 � �pc�V�A � � �up�V�A � a

P
2 � �uc�V�A

� � �pp�V�A� � a
P
3

X
q

� �uc�V�A � � �qq�V�A

� aP4
X
q

� �qc�V�A � � �uq�V�A � a
P
5

X
q

� �uc�V�A

� � �qq�V�A � aP6 ��2�
X
q

� �qc�S�P � � �uq�S�P; (A5)

where P � K, � for D! KK, �� decays, respectively, a
summation over q � u; d; s is implied and �p � V�cpVup.
Fierzing of Q5, Q6 gives rise to the �S� P��S� P� term.
The second pair of quarks in each term produces a final-
state meson (P2), and the outgoing quark in the first pair
combines with the spectator quark to form a final-state
meson (P1). The � indicates that the matrix element of
the corresponding operator in T A is to be evaluated in the
factorized form:

 hP1P2jj1 � j2jDi � hP1jj1j �DihP2jj2j0i �
�
�icAP; for j1 � j2 � �V � A� � �V 
 A�;
�icr�AP; for j1 � j2 � �2�S� P� � �S� P�:

(A6)

The c coefficients are products of factors of 	1, 	1=
���
2
p

,
which depend on the flavor structures of the mesons, and

 A P � i
GF���

2
p �m2

D �m
2
P�F

D!P
0 �m2

P�fP; (A7)

where FD!P0 is the D! P transition form factor and fP is
the decay constant. The factor r� appearing in the scalar
matrix elements is given by

 r� �
�P

mc
; �P �

2m2
K

ms �mq
�

2m2
�

mu �md
;

mq �
mu �md

2
:

(A8)

The aPi coefficients in general contain the contributions
from naive factorization, penguin contractions, vertex cor-
rections, and hard spectator interactions. We only consider
explicitly the naive factorization contributions for Q1;...;6,
and the penguin contraction for Q8g [16]. We therefore

obtain (Nc � 3 and P � K;�)
 

aP1 � C1 �
C2

Nc
; aP2 � C2 �

C1

Nc
;

aP3 � C3 �
C4

Nc
; aP5 � C5 �

C6

Nc
;

aP4 � C4 �
C3

Nc
�
CF	s
2�Nc

C8g

Z 1

0

�P�x�
x

dx;

aP6 � C6 �
C5

Nc
�
CF	s
2�Nc

C8g;

(A9)

where CF � �N2
c � 1�=�2Nc�. �P�x� is the leading-twist

light-cone meson distribution amplitude for meson P. For
simplicity we consider asymptotic distribution amplitudes,
in which case

 aKi � a�i � ai;
Z 1

0

�P�x�
x

dx � 3: (A10)

In that case the only sources of SU�3�F breaking are the
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form factors and decay constants. ANF, the naive factoriza-
tion amplitudes for D! KK=�� are then given by

 

ANF�D! K0 �K0� � 0;

ANF�D
0 ! K�K�� � ANF�D

� ! K�K0�

� ��sa1 � a4 � r�a6�AK;

ANF�D
0 ! ����� � ��da1 � a4 � r�a6�A�;

�
���
2
p
ANF�D� ! ���0� � �d�a1 � a2�A�;

ANF�D0 ! �0�0� � ���da2 � a4 � r�a6�A�:

(A11)

The decay D! K0 �K0 only proceeds via annihilation and
thus vanishes in (A11). The standard model amplitudes are
given in terms of a1;2, and the new physics amplitudes are
given in terms of a3;...;6.

Note that there are no strong-phase differences at this
point between the SM and NP amplitudes. However, large
power corrections (or final-state interactions) could gener-
ate them. As we argue below, the measured decay widths
point to a large role for such infrared dominated physics,
especially annihilation. Thus, the large strong-phase dif-
ferences that would be necessary to obtain adf � rf are well
motivated.

In our numerical estimates we take mc�mc� � 1:64 GeV
and ms � 110 MeV, mu �md � 9 MeV at � � 2 GeV.
The scale at which the Wilson coefficients and r� are
evaluated is varied within the range � � 1–2 GeV. At
� � mc we obtain r� � 2:5, a1 � 1:05, and a2 � 0:05
at next-to-leading order. (For simplicity we ignore the mb
quark mass threshold, taking nf � 5 and �QCD �

225 MeV). With regards to the form factors, the BES
collaboration has measured [45]

 F��0�
D!K � 0:78	 0:04	 0:03;

F��0�D!� � 0:73	 0:14	 0:06:
(A12)

(A recent lattice determination obtains F��0�
D!K �

0:73	 0:03	 0:07 [46].) The values of FD!K;�0 �0� enter-
ing AK;� follow from the kinematical constraint F0�0� �
F��0�. Small shifts in F0�q

2� due to q2 & m2
K are negli-

gible. Our estimates are obtained by varying the measured
values of FD!K;�0 �0� in their 	1� ranges quoted in (A12).

The decay rates are given by

 

��D! PP� �
jA�D! PP�j2

16�mD

������������������
1�

4m2
P

m2
D

s
;

A � ANF � Aann:
(A13)

Taking Aann � 0 we get the following naive factorization
decay widths within the SM,

 

��D0 ! K�K�� � ��D� ! K� �K0�

� �4:6� 6:5�  10�6 eV;

��D0 ! ����� � �2:6� 6:5�  10�6 eV;

��D0 ! �0�0� � �0:1� 0:3�  10�6 eV;

��D� ! ���0� � �1:3� 3:5�  10�6 eV:

(A14)

2. Annihilation

Adapting [36] to D! PP decays, the annihilation ma-
trix elements can be organized in terms of flavor operators
of the form B�� �qP1

qP1
�� �qP2

qP2
�� �qsc��, where qs denotes the

spectator antiquark in the D meson. The matrix element of
a B operator is defined as

 hP1P2jB��::��::��::��jDi � cBP with BP � i
GF���

2
p fDf2

P

(A15)

whenever the quark flavors of the three brackets match the
three mesons, respectively. The notations are as in
Eq. (A6). The transition operator for the annihilation con-
tributions ofQ1;...;6,Q8g in Eq. (A4) can be parametrized in
full generality as

 

T B �
X
p�d;s

�p

�X
q0
bP1q0B�� �pq

0�� �q0p�� �uc��

� �pd
X
q0
bP2q0B�� �uq

0�� �q0d�� �dc��
�

�
X
q;q0
bP3q0B�� �uq

0� �q0q�� �qc��

�
X
q;q0
bP4q0B�� �qq

0� �q0q�� �uc��; (A16)

where q; q0 � u; d; s. Here q0 denotes the flavor of the
‘‘popped’’ quark-antiquark pair from gluon splitting, g!
�q0q0. Isospin symmetry implies b�iu � b�id � b�i , bKiu � bKid,
andU-spin symmetry would further imply bKis � bKid � b�i .
bP1;2 receive contributions from the SM current-current
operators, and bP3;4 from NP via the QCD penguin and
dipole operators.

Using isospin all of the bi coefficients can be expressed
in terms of D! P�P�, K� �K0 effective operator annihi-
lation matrix elements. For the SM operators we have

 B PbP1q0 � C1hP�P�j� �p	p��V�A �A � �u�c	�V�AjD0i

� C2hP
�P�j� �pp�V�A �

A � �uc�V�AjD
0i;

BKbK2s � C1hK�K
0j� �ud�V�A �A � �dc�V�AjD�i

� C2hK
�K0j� �u	d��V�A �

A � �d�c	�V�AjD
�i:

(A17)
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For the NP operators we have

 

BPb
P
3q0 � C3hP

�P�j� �u	u��V�A �
A � �u�c	�V�AjD

0i

� C4hP
�P�j� �uu�V�A �

A � �uc�V�AjD
0i

� C5hP
�P�j � 2� �u	u��S�P �

A � �u�c	�S�PjD
0i

� C6hP
�P�j � 2� �uu�S�P �

A � �uc�S�PjD
0i;

BPb
P
4q0 � C3hP

�P�j� �qq�V�A �
A � �uc�V�AjD

0i

� C4hP�P�j� �q	q��V�A �A � �u�c	�V�AjD0i

� C5hP�P�j� �qq�V�A �A � �uc�V�AjD0i

� C6hP�P�j� �q	q��V�A �A � �u�c	�V�AjD0i:

(A18)

The annihilation product j1 �
A j2 means that j2 destroys

theDmeson, and j1 creates a quark and an antiquark which
end up in different mesons. The choices of p and q among
�d; s� and �u; d; s�, respectively, are fixed by the
values taken by P and q0. In bP4q0 the hj1V�A �

A j2V�Ai

and hj1V�A �
A j2V�Ai matrix elements are equal

because parity implies hP�P�j� �qq�V�Ajg1 . . . gni �
hP�P�j� �qq�V�Ajg1 . . . gni. Finally, we point out that Q8g

also contributes to bP3q0 and bP4q0 . A discussion of the
theoretical uncertainty for dipole operator amplitudes due
to the annihilation topology is left for future work.

Assuming isospin, the annihilation amplitudes are given
by

 

Aann�D! ����� � B���db�1 � b
�
3 � 2b�4 �;

Aann�D! K�K�� � BK��sbK1u � b
K
3s � b

K
4s � b

K
4u�;

Aann�D! �0�0� � Aann�D! �����;

Aann�D! K0 �K0� � BK��s�bK1d � b
K
1s� � b

K
4d � b

K
4s�;

Aann�D! ���0� � 0;

Aann�D! K� �K0� � BK��sbK2s � b
K
3s�: (A19)

Note that in the U-spin limit Aann�K
�K�� � Aann��

����
and, neglecting the penguin operators, Aann�K0 �K0� � 0.

In order to estimate the bi’s we make use of the tree-
level one-gluon exchange approximation [16,36]. In gen-
eral, factorizable contributions to hj1 �

A j2i, of the form
hP1P2jj1j0ih0jj2jDi, vanish for the �V 	 A� �A �V � A�
matrix elements by the equations of motion. Therefore,
many of the matrix elements in Eq. (A17) vanish in the
one-gluon approximation. We further simplify our discus-
sion by taking asymptotic meson light-cone distribution
amplitudes. Then, the number of independent building
blocks appearing in Eq. (A17) reduces to two [16,36],

 Ai1 � hP
�P�j� �q	q��V
A �

A � �u�c	�V�AjDi=BP

�
CF
N2 �	s

�
18
�
X� 4�

�3

3

�
� 2r2

�X2

	
;

Af3 � hP
�P�j � 2� �qq�S�P �

A � �uc�S�PjD
0i=BP

�
CF
N

12�	sr��2X
2 � X�:

(A20)

The superscripts i�f� denote a gluon exchanged from the
initial (final-state) quarks in the four-quark operator. X
represents an incalculable infrared logarithmically diver-
gent quantity which signals a breakdown in short/long
distance factorization. It is a necessary model-dependent
input in the one-gluon approximation. For simplicity, we
take X to be universal. Adopting the model of [16], X is
parametrized as

 X � log�mD=�h��1� �e
i��: (A21)

�h � 500 MeV is a hadronic mass scale corresponding to
some physical infrared cutoff, � allows for the presence of
an arbitrary strong phase from soft rescattering, and �
parametrizes our ignorance of the magnitudes of these
amplitudes. With our assumptions, we get

 bP1q0 � C1A
i
1; bP3q0 � C3A

i
1 �

�
C6 �

C5

Nc

�
Af3 ;

bK2s � C2Ai1; bP4q0 � �C4 � C6�Ai1:
(A22)

The strong color-suppression bK2s � bK1q0 may be an artifact
of the one-gluon approximation, as beyond it the contribu-
tion of the matrix element of Q1 to bK2s does not vanish.

In our numerical evaluation we use 	s and r� in
Eq. (A20) at a scale �h � 0:7 GeV, corresponding to
	s � 1 (reflecting the infrared dominance of these matrix
elements). The Wilson coefficients are evaluated at a scale
� � mc�mc�. For fD we take the central value of the
CLEO-c measurement, fD � 223	 17	 3 MeV [47].

3. Comparison with data

In order to estimate the value of the model parameters
we compare the prediction with the measured widths [32]
 

��D0 ! K�K�� � �6:16	 0:16�  10�6 eV;

��D0 ! ����� � �2:19	 0:05�  10�6 eV;

��D0 ! K0 �K0� � �1:19	 0:22�  10�6 eV;

��D0 ! �0�0� � �1:27	 0:13�  10�6 eV;

��D� ! K� �K0� � �3:75	 0:24�  10�6 eV;

��D� ! ���0� � �0:81	 0:04�  10�6 eV:

(A23)

We always assume that the NP amplitudes are small, so the
above measured rates are given by the SM.

To leading order in 1=mc, only spectator diagrams con-
tribute to the various decay amplitudes. Comparing the
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naive factorization predictions, Eq. (A14), with the mea-
sured values we see that they are in disagreement. In
particular, ��D0 ! K0 �K0� and ��D0 ! �0�0� are consid-
erably larger than the naive factorization predictions. The
predicted rates for the K�K�, K� �K0, ����, and ���0

modes are of the correct order of magnitude. However,
rather than being equal as expected at leading power,
��K�K�� is approximately twice ��K�K0�.

The disagreement points to a substantial role for anni-
hilation. The magnitudes of the observed amplitudes imply
that

 jA�K0 �K0�j � 1
2jA�K

�K��j: (A24)

A�K�K�� has contributions from both naive factorization
and annihilation amplitudes. A�K0K0� on the other hand is
pure annihilation and it vanishes in the SM in the U-spin
limit. We therefore expect that

 jAann�K0 �K0�j & jAann�K�K��j: (A25)

Since naive factorization predicts the right orders of mag-
nitude for the P�P� widths, we expect that the annihila-
tion and naive factorization amplitudes are of the same
order for K�K�. The same should be true for ���� based
on any reasonable pattern for SU�3�F breaking. We there-
fore write schematically

 

ASM
ann

ASM
NF

�
hP�P�j� �p	p��V�A �A � �u�c	�V�AjD0i

hP�P�j� �pc�V�A � � �up�V�AjD
0i

� 1:

(A26)

Next we try to estimate the size of the NP annihilation
amplitudes. We use the one-gluon exchange model dis-
cussed above. We see that Eq. (A26) is reproduced with
X� 5 in Eq. (A20).1 Using X� 5 in Eq. (A20) for Af3 we
can estimate the size of the NP annihilation amplitude. We
find that the chirally enhanced QCD penguin annihilation
amplitude is much larger than the corresponding spectator
amplitude. They also tend to dominate the total penguin
annihilation and total penguin spectator amplitudes, re-
spectively, in NP models. Schematically, we write this as

 

ANP
ann

ANP
NF

�
hP�P�j� �uu�S�P �A � �uc�S�PjD0i

hP�P�j� �qc�S�P � � �uq�S�PjD0i
� 5: (A27)

The large ratio implies that new QCD penguin amplitudes
in D! PP decays could receive an order-of-magnitude
enhancement from annihilation. This is demonstrated in
the numerical example of Fig. 2(c), where the annihilation
matrix elements are included as above with X � 5 (� � 3,
� � 0).

Given the crude nature of the one-gluon exchange ap-
proximation this should only be taken as an indication of
the theoretical uncertainty due to QCD penguin operator
annihilation. A similar analysis of the theoretical uncer-
tainty for the dipole operator matrix element due to the
annihilation topology is left for future work.

APPENDIX B: QCD PENGUIN AND DIPOLE
OPERATORS IN SUSY

We study contributions to the QCD penguin and dipole
operator Wilson coefficients arising from up-squark-gluino
loops. For simplicity, we work in the squark mass-insertion
approximation where to first approximation the squark
masses are degenerate with mass ~m. In particular, we
consider the contributions of the up-squark mass insertions
�LL and �LR to C3;...;6, C8g. (Since in our case �LR � 1 and
�LL & 1, the mass-insertion approximation works very
well for �LR and only provides rough estimates for �LL.)
The expressions for the SUSY Wilson coefficients are
given at the scale ��mSUSY by [49]

 

C3 � �
	2
s

2
���
2
p
GF ~m2

�
�

1

9
B1�x� �

5

9
B2�x� �

1

18
P1�x�

�
1

2
P2�x�

�
�LL;

C4 � �
	2
s

2
���
2
p
GF ~m2

�
�

7

3
B1�x� �

1

3
B2�x� �

1

6
P1�x�

�
3

2
P2�x�

�
�LL;

C5 � �
	2
s

2
���
2
p
GF ~m2

�
10

9
B1�x� �

1

18
B2�x� �

1

18
P1�x�

�
1

2
P2�x�

�
�LL;

C6 � �
	2
s

2
���
2
p
GF ~m2

�
�

2

3
B1�x� �

7

6
B2�x� �

1

6
P1�x�

�
3

2
P2�x�

�
�LL;

C8g � �
2�	s���
2
p
GF ~m2

�
�LL

�
3

2
M3�x� �

1

6
M4�x�

�

� �LR

�m~g

mc

�
1

6
�4B1�x� � 9x�1B2�x��

	
; (B1)

where x � �m~g= ~m�2, and the loop functions can be found
in Ref. [49]. (The mass insertions �RR and �RL generate the
opposite chirality operators ~Qi). For simplicity, we evalu-
ate the above Wilson coefficients at � � mt, and evolve
them to � � mc at LO.

The �C � 2 effective Hamiltonian, H�C�2
eff , for super-

symmetric up-squark-gluino box graph contributions to
D� �D mixing is given in Eqs. (43), with

1X � 5 arises, e.g., for �� 3 and �� 0 in Eq. (A21). It is
worth mentioning that similar values of � are required in order to
account for the e�e� ! P�P� cross sections at

���
s
p
� 3:7 GeV

[48].
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 O1 � �u	L
�c
	
L �u�L


�c�L ; O2 � �u	Rc
	
L �u�Rc

�
L ;

O3 � �u	Rc
�
L �u�Rc

	
L ; O4 � �u	Rc

	
L �u�Lc

�
R ;

O5 � �u	Rc
�
L �u�Lc

	
R:

(B2)

The D� �D mixing amplitude is given by MD
12 �

hDjH�C�2
eff j �Di=2mD, where �mD � 2MD

12 � x�D. In the
squark mass-insertion approximation the SUSY Wilson
coefficients for the operators Oi are given by [33],
 

c1 � �
	2
s

216 ~m2 �24xf6�x� � 66~f6�x����
d
13�

2
LL;

c2 � �
	2
s

216 ~m2 204xf6�x��
2
RL;

c3 �
	2
s

216 ~m2 36xf6�x��2
RL;

c4 � �
	2
s

216 ~m2 ��504xf6�x� � 72~f6�x���LL�RR

� 132~f6�x��LR�RL�;

c5 � �
	2
s

216 ~m2 ��24xf6�x� � 120~f6�x���LL�RR

� 180~f6�x��LR�RL�:

(B3)

The other Wilson coefficients ~ci�1;2;3 are obtained from

ci�1;2;3 by exchange of L$ R. The loop functions are
given by

 f6�x� �
6�1� 3x� lnx� x3 � 9x2 � 9x� 17

6�x� 1�5
;

~f6�x� �
6x�1� x� lnx� x3 � 9x2 � 9x� 1

3�x� 1�5
:

(B4)

Again, the Wilson coefficients are evaluated at� � mt and
evolved down to� � mc at LO [50]. For simplicity, we use
the vacuum insertion approximation for the operator ma-
trix elements,

 hDjO1j �Di �
2

3
m2
Df

2
D;

hDjO2j �Di � �
5

12

�
mD

mc �mu

�
2
m2
Df

2
D;

hDjO3j �Di �
1

12

�
mD

mc �mu

�
2
m2
Df

2
D;

hDjO4j �Di �
1

2

�
mD

mc �mu

�
2
m2
Df

2
D;

hDjO3j �Di �
1

6

�
mD

mc �mu

�
2
m2
Df

2
D:

(B5)
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