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I. INTRODUCTION

Quark models endowed with effective quark current-
current microscopic interactions, consistent with the re-
quirements of chiral symmetry, have provided, through the
years, an invaluably useful tool towards the construction of
an effective low-energy theory for the strong interactions
[1–5]. Besides regularizing the ultraviolet divergences of
the theory, these effective theories bring in the necessary
interaction scale needed to make contact with the hadronic
phenomenology. An important feature of this class of
models is the essential convergence of results and conclu-
sions across a variety of possible forms for the confining
kernel. They fulfill the well-known low-energy theorems of
Gell-Mann, Oakes, and Renner [2], Goldberger and
Treiman [3], the Weinberg theorem [6], and so on. Using
this formalism it is also possible to give, for this class of
models, an analytic proof of the low-energy theorems in
the light-quark sector [7]. It turns out that the chiral
angle—the solution to the mass-gap equation—remains
the only nontrivial characteristic of such a class of models
and it defines the latter completely.

In the present paper, we derive the generalized
Goldberger-Treiman (GT) relation for the heavy-light sys-
tems. The heavy-light mesons have received a lot of atten-
tion in the past few years due to the discovery of new
narrow states in the c�s family [8]. Nowak et al. [9] and
Bardeen and Hill [10] have postulated that the spectrum of
such states should reflect the pattern of dynamical chiral
symmetry breaking. Namely in the heavy-quark limit, the
mass spectrum is expected to be determined by the light
quark and, were chiral symmetry to be exact, the heavy-
light states of opposite parity would have become degen-
erate. It then follows that physical splitting between parity
doublers could be related to the scale of spontaneous
breaking of chiral symmetry, that is the quark condensate
or, phenomenologically, to the constituent quark mass. As
more states in the open charm sector have been reported,
alternative pictures have been examined, making this sec-

tor a good testing ground for phenomenological models
[11]. Recently, for example, a canonical, quark model
description has been investigated and it was argued that
the new Ds states can in fact be described as quark model
states [12]. Notwithstanding the phenomenological suc-
cesses of the naive quark model, it suffers from the serious
shortcoming of being unable to account for the physics of
chiral symmetry breaking. It therefore fails, among other
issues basically related to pion physics, to constrain the
treatment of strong decays by the underlying bound-state
dynamics. This failure results, for example, in predictions
for couplings to the ground-state pseudoscalars which do
not satisfy PCAC or the Goldberger-Treiman relations
[13]. Roughly speaking, quark models consistent with
chiral symmetry can be thought of being evolutions of
the naive quark model supplemented by the constraint of
the mass-gap equation, and therefore they should provide
the correct framework to study such strong decays. Here
we shall show that such type of models leads indeed to the
GT relation for the pion coupling between the opposite-
parity states. This is a nontrivial result, which can only
follow from the simultaneous use of a chiral invariant
interaction together with a consistent treatment of the
pion and heavy-light meson dynamics.

The paper is organized as follows. In the following
section we recapitulate the chiral quark models and discuss
the application to the ground-state pseudoscalar and heavy-
quark sectors. In Sec. III, we present the proof of the
Goldberger-Treiman relation for the heavy-light mesons.
Summary and a brief discussion are given in Sec. IV.
Throughout the paper we concentrate on the JP � 0�

heavy-light states, but the results can easily be generalized
to higher spins.

II. CHIRAL QUARK MODELS

In this chapter, we give a short introduction to the chiral
quark model. The model is described by the Hamiltonian
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H �
Z
d3x y�x���i� � 5 �m�� �x�

�
1

2

Z
d3xd3yJa��x�Kab

���x� y�Jb��y�; (1)

with the quark current-current (Ja��x� � � �x��� �a
2  �x�)

interaction parameterized by the instantaneous confining
kernel Kab

���x� y�. An important feature of the models of
the class (1) is the remarkable robustness of their predic-
tions with respect to variations of the quark kernel.
Although quantitative results may vary for different ker-
nels, the qualitative picture described remains essentially
the same. This is specially true for those relations enforced
by the mechanism of chiral symmetry breaking that should
be independent of the spatial details of the confining kernel
provided it brings a natural confinement scale (hereafter
called K0). The only requirement is that it should be
chirally symmetric. We illustrate this nice feature by deriv-
ing the Goldberger-Treiman relation connecting the pion
coupling to heavy-light mesons to the mass splitting be-
tween chiral doublets, for the simplest Lorentz structure of
the interquark interaction in the Hamiltonian (1) compat-
ible with the requirements of chiral symmetry and confine-
ment Kab

���x� y� � �abg�0g�0V�jx� yj� [1,3,5,14], for
an arbitrary confining kernel V�r�. We also note that analo-
gous Hamiltonian with linearly rising potential considered
in one time and one spatial dimension reproduces the ’t
Hooft model for 2D QCD [15] in the Coulomb (axial)
gauge (see, for example, the original paper [16] or the
review paper [17] and references therein).

A standard way of proceeding with the investigation of
the model (1) is to consider the self-interaction of quarks
separately, thus introducing the notion of the dressed
quarks:

  �x� �
X
��";#

Z d3p

�2��3
eipx�b� �p�u� �p� � d�� ��p�v� ��p�	;

(2)

where the quark amplitudes

 u�p� �
1���
2
p �

��������������
1� sp

q
� �� � p̂�

��������������
1� sp

q
	u0�p�;

v��p� �
1���
2
p �

��������������
1� sp

q
� �� � p̂�

��������������
1� sp

q
	v0��p�

(3)

are parameterized with the help of the chiral angle ’p [1–
3], sp � sin’p, cp � cos’p. It is convenient to define the
chiral angle varying in the range��=2<’p 
 �=2, with
the appropriate boundary conditions ’�0� � �

2 , ’�p!
1� ! 0 for the physical vacuum. The equation which
defines the profile of the chiral angle—the mass-gap equa-
tion—follows from the requirement that the quadratic part
of the normally ordered Hamiltonian (1) should be diago-
nal in terms of the dressed quark creation and annihilation
operators [3]. The mass-gap equation then takes the form:

 mcp � psp �
CF
2

Z d3k

�2��3
V�p� k��skcp � xcksp	; (4)

where x � �p̂ � k̂�. In Fig. 1, we give a typical profile of the
chiral angle.

The dressed quark dispersive law can be evaluated then
as

 Ep � msp � pcp �
CF
2

Z d3k

�2��3
V�p� k��spsk

� xcpck	: (5)

We turn now to bound states of dressed quarks—to the
quark-antiquark mesons. Each mesonic state in this model
is described with a two-component wave function, and the
bound-state equation acquires the form of a system of two
coupled equations. The details can be found in the works
[2,3], where the Bethe-Salpeter equation formalism was
developed or in Ref. [18], where a second Bogoliubov-like
transformation is performed over the Hamiltonian (1) in
order to define explicitly the compound mesons creation
and annihilation operators. For the purpose of the present
research, it is sufficient to consider two particular cases of
this general mesonic bound-state equation.

A. The case of the chiral pion

In the chiral limit, the bound-state equation for the pion
at rest is known to be given by the mass-gap Eq. (4) with
m � 0 [3,18]. In the random phase approximation (RPA)
both components of the pionic wave function coincide and
are simply sin’p [2,3,18]. Beyond the chiral limit, the pion
state is given by �p� � 0�:
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FIG. 1. A typical profile of the chiral angle—solution to the
mass-gap equation. Momentum p is measured in the units of the
potential strength K0.
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 j�ii �
Z d3k

�2��3

�
by�k�

	i������
Nf

p Ic�������
NC
p

Is���
2
p dy��k�X�k�

� d��k�
	i������
Nf

p Ic�������
NC
p

Is���
2
p b�k�Y�k�

�
j0i; (6)

with j0i being the broken BCS vacuum. Nf and NC are,
respectively, the number of flavors and colors.

The normalized wave functions are given by

 X�k� �
�������
NC
p ������

Ns
p ������

Nf
p

2if�
�sk �m��k	;

Y�k� �
�������
NC
p ������

Ns
p ������

Nf
p

2if�
�sk �m��k	;

(7)

with �k satisfying

 2Ek�k � sk � CF
Z d3q

�2��3
V�k� q��sksq � xckcq	�q:

(8)

B. The case of a heavy-light meson

The case of a heavy-light meson, with one quark being
infinitely heavy, leads to considerable simplifications of the
bound-state equation in view of the fact that the negative
energy-spin component of the meson wave function, re-
sponsible for the time-backward motion of the quark-
antiquark pair, which is non-negligible for the light-light
system, goes to zero with the bare mass increase of just one
quark of the pair (heavy-light systems), vanishing in the
infinite mass limit of that quark. The resulting equation
takes the form of a Schrödinger-like equation [19]
 

Ep�̂�p� �
Z d3k

�2��3
V�p� k��CpCk

� �� � p̂��� � k̂�SpSk	�̂�k� � E�̂�p�; (9)

with

 Cp �
1���
2
p �

��������������
1� cp

q
�

��������������
1� cp

q
	;

Sp �
1���
2
p �

��������������
1� cp

q
�

��������������
1� cp

q
	:

(10)

Here the wave function is written as a product of the
orbital part and the spin part, �̂�k� � I=

���
2
p
���k� for the

JP � 0� and �̂0�k� � �� � k̂�=
���
2
p
��0�k� for the JP � 0�

heavy-light meson, respectively. The conventional normal-
ization of the wave function (consistent with the relativistic
normalization) is

 2M �
Z d3k

�2��3
j��k�j2 �

Z d3k

�2��3
j�0�k�j2; (11)

where, in the heavy-quark limit, M approximates the mass

of the heavy quark, and the mass of the heavy-light meson
is given by M� E.

III. GOLDBERGER-TREIMAN RELATION FOR
HEAVY-LIGHT MESONS

In this chapter, we focus on the details of the pion
interaction with heavy-light mesons. Consider the hadronic
process which involves the chiral pion and the two heavy-
light mesons for which, for the sake of transparency, we
consider the �D�JP � 0�� and the �D0�JP � 0�� mesons
with the wave functions �̂�k� and �̂0�k�, respectively.

A. The macroscopic derivation of the Goldberger-
Treiman relation in QCD

Let us consider the transition �D! �D0�. Then, using the
relation

 h0jAa��0�j�b�q�i � if�q��ab; (12)

we introduce the nn0� coupling gnn0� through the relation

 hn0jAa�jni � hn0jAa�jninonpion �
2Mq�f�gnn0�
q2 �m2

� � i

D0y	aD;

(13)

where the subscript ‘‘nonpion’’ denotes the contribution
free of the pion pole. Here D0, D are unit isospin doublets
representing the flavor of the heavy-light n0 and n state,
respectively.

On the other hand, the full matrix element of the axial
current, corresponding to the l.h.s. of Eq. (13) can be
written as:
 

hn0jAa�jni � ��P0� � P��GA�q2�

� �P0� � P��GS�q
2�	D0

	a

2
D; (14)

with P0 � pn0 , P � pn q � P0 � P. To leading order in the
heavy mass, conservation of the axial current in the chiral
limit then demands

 2M�E0 � E�GA � q
2GS � 0: (15)

Therefore, from Eq. (13) one can see that as q2 ! 0 it is
possible to have GA�0� � 0, if GS is identified with the
pion pole contribution,

 lim
q2!0

GS�q
2� !

4Mf�gnn0�
q2 ; (16)

andGA remains finite in the limit q2 ! 0. The relation (15)
then reads:

 

1

2
�E0 � E�GA � f�gnn0� (17)

and is the sought Goldberger-Treiman relation for the pion
coupled to heavy-light mesons.
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B. The microscopic derivation of the Goldberger-
Treiman relation in the chiral quark model

We now turn to the main subject of this paper and
demonstrate how the Goldberger-Treiman relation (17)
emerges microscopically in the chiral quark model.

We are interested in matrix elements of the type hn0jOjni
where, in particular, O is the isovector axial current opera-
tor Aa��0� � � �0���

	a
2 �5 �0�, whereas jni and jn0i are the

true eigenstates of the QCD Hamiltonian HQCD which,
after integrating out gluon degrees of freedom, we approxi-
mate by the Hamiltonian of the chiral quark model (1).
Formally, the Hamiltonian (1) is represented in the Fock
space of single hadrons built on top of the RPA vacuum. It
is convenient to split the Hamiltonian in two parts,

 HQCD � �HQCD � V� � V � ~H � V � H; (18)

where V describes interactions with pions and ~H is as-
sumed to produce the bare spectrum of hadronic states
except for mass shifts. The bare part ~H is then identified
with those parts of the Hamiltonian (1), which, in the
dressed quark basis (2), do not create (or annihilate) single
light quark-antiquark pairs. The latter are put into V and
lead to nonvanishing matrix elements Vnn0� between the
opposite-parity meson states with one additional pion.
Bearing in mind the low-energy limit, we thus assume
that the spectrum can be well approximated by the bare
spectrum (in the large-NC limit) and the only relevant
residual interactions are those with pions. In the interaction
picture, the matrix elements of interest can be written as

 hn0jOjni � h~n0jU��1; 0�OU�0;�1�j~ni; (19)

where the states on the r.h.s. marked with tildes are eigen-
states of the bare, pion coupling free, Hamiltonian, ~H and
U is the evolution operator,

 U�tf; ti� � T exp
�
�i

Z tf

ti
dt�ei ~HtVe�jtj
e�i ~Ht�

�
: (20)

To leading order in the pion emission/absorption (that is, in
V) we obtain

 hn0jOjni � h~n0jOj~ni �
X
m

h~n0jOj ~mih ~mjVj~ni
En � Em � i


�
X
m

h~n0jVj ~mih ~mjOj~ni
En0 � Em � i


: (21)

The intermediate states always contain an extra pion.
Now, because we are interested in the caseO � Aa��0�, that
is, in matrix elements of the type h0jAa��0�j�b�k�i, we can,
for the case of the heavy-light n! n0� transitions, saturateP
mj ~mih ~mj as follows, (N � n, or n0)

 

X
m

j ~mih ~mj ! j ~Nih ~Nj
X
a

Z d3k

2!�k��2��3
j�a�k�ih�a�k�j:

(22)

For the pion interacting with heavy-light mesons, the
coupling constant gnn0� can be introduced then as

 h �D0�ajVj �Di � 2Mignn0�D
0y	aD�2��3��3��P0 � p� � P�;

(23)

and therefore, in order to derive the Goldberger-Treiman
relation, we are to evaluate microscopically the matrix
element on the l.h.s. of Eq. (23).

Obviously, the interaction potential V, when written in
the quark basis, is given by the four diagrams shown in
Fig. 2. In these diagrams �c stands for the charm antiquark.
The black dots correspond to the appropriate spinor verti-
ces—see Ref. [3]. As an example, we depict in diagram A
one such vertex: uy�p�u�k� � 1

2 �
��������������
1� sp

p ��������������
1� sk
p

� �� �

p̂��� � k̂�
��������������
1� sp

p ��������������
1� sk
p

	. As it was discussed before,
the pion Salpeter amplitude has two components: the posi-
tive energy-spin component X and the negative energy-
spin component Y. The four diagrams of Fig. 2 can be
readily evaluated using the rules of Ref. [3]. For the chiral
pion at rest, the diagrams A and B can be shown explicitly
to cancel against each other so that one is left only with the
diagrams C and D. This should not come as a surprise,
once, in the chiral limit, pions at rest decouple from quarks.
We use the notations CX and DY for the amplitudes corre-
sponding to the matrix elements of V shown in Fig. 2
(diagrams C and D) with the interaction attached to the
heavy quark. Thus we have

 h �D0�ajVj �Di � 2M�CaX �D
a
Y	�2��

3��3��P0 � p� � P�
(24)

with the amplitudes CX and DY calculated explicitly to be

 

FIG. 2. The four diagrams contributing to h �D0�jVj �Di.
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CaX �
D0	aD

2
���
2
p
M

1������
Nf

p 1�������
NC
p

CF
2

Z d3k

�2��3
d3q

�2��3


�0�q�V�q� k�X�k���k��
��������������
1� sq

q ��������������
1� sk

p
� x

��������������
1� sq

q ��������������
1� sk

p
	;

Da
Y �

D0	aD

2
���
2
p
M

1������
Nf

p 1�������
NC
p

CF
2

Z d3k

�2��3
d3q

�2��3


�0�q�V�q� k�Y�q���k��
��������������
1� sq

q ��������������
1� sk

p
� x

��������������
1� sq

q ��������������
1� sk

p
	: (25)

The high momentum (UV) behavior of integrals is deter-
mined by the short distance behavior of the kernel and
wave functions. For purely confining kernels wave func-
tions are soft and integrals are converging without need for
renormalization. The short distance behavior of the kernel
depends on integrating out gluons. In the approximation
that keeps transverse gluons out from the Fock space the
self-consistent solution the Dyson equation for the kernel
leads to UV Coulomb potential with a running coupling
softer then �1= log�q2� and leads to finite UV integrals.
This is discussed, for example, in [5,20]. In the IR all
integrals are finite for long range confining potentials for
color singlet matrix elements as discussed, for example, in
[1–3]. Adding the two amplitudes together and using the
definition of g �D �D0�, to leading order in m�, we get:

 f�g �D �D0� �
CF
2

1

2M

Z d3k

�2��3
d3q

�2��3
�0�q�V�q� k�



sk � sq

2
��k��

��������������
1� sq

q ��������������
1� sk

p

� x
��������������
1� sq

q ��������������
1� sk

p
	: (26)

The nonpion contribution to the axial charge is com-
puted from the expectation value of the time component of
the axial current between the heavy-light meson states:

 GA �
1

2M

Z d3k

�2��3
�0�k�ck��k�: (27)

Finally, integrating the Schrödinger-like (9) for ��k�
with �0�k�ck and, consequently, a similar equation for
�0�k� with ��k�ck, we find:
 

1

2
�E0 � E�GA �

CF
4

1

2M

Z d3k

�2��3
d3q

�2��3
�0�q�V�q� k�


 �cq�
��������������
1� sq

q ��������������
1� sk

p
� x

��������������
1� sq

q ��������������
1� sk

p
� (28)

 � ck�x
��������������
1� sq

q ��������������
1� sk

p
�

��������������
1� sk

p ��������������
1� sq

q
�	��k� (29)

or, after simple algebraic transformations:
 

1

2
�E0 � E�GA �

CF
2

1

2M

Z d3k

�2��3
d3q

�2��3
�0�q�V�q� k�



sk � sq

2
��k��

��������������
1� sq

q ��������������
1� sk

p

� x
��������������
1� sq

q ��������������
1� sk

p
	: (30)

Comparing Eqs. (26) and (30) we arrive immediately at
the Goldberger-Treiman relation (17).

IV. DISCUSSION

In this paper, we proved the validity of the Goldberger-
Treiman relation (17) in the chiral quark model. We as-
sumed that the model Hamiltonian represents the fourth
component of a four-vector in a particular frame, the one in
which the heavy mesons are at rest and can verify relations
between matrix elements involving the fourth component
of vectors. Several important conclusions should be drawn
from the presented consideration. First of all, it should be
noted that had we dropped the Y piece of the pion wave
function (as in naive quark models) we would have been
not only violating the Goldberger-Treiman relation by 50%
as should be expected, but also the two diagrams, A and B
(with the interaction coupled solely to the light quarks),
would have now survived to give a result incompatible with
the GA contribution. This is yet another manifestation of
the Goldstone nature of the chiral pion which finds its
natural implication in the chiral model used in this work.
Secondly, the Goldberger-Treiman relation can only be
realized by the Salpeter solutions � and �0 of Ref. [19],
which in turn contain the physics of progressive effective
restoration of chiral symmetry for higher and higher ex-
citations. Moreover, with the Goldberger-Treiman relation
(17), we are in a position to go even further and to conclude
that the pion coupling to excited mesons decreases as the
excitation number of the heavy-light mesons increases—
according to the Goldberger-Treiman relation (17) with
�M � M0 �M!n!10 and GA!n!11. This gives an ex-
plicit pattern of the Goldstone boson decoupling from
excited hadrons. Such a scenario was discussed in a recent
paper [21], where the decrease of the pion coupling to
excited hadrons was anticipated as a consequence of the
chiral pion decoupling from dressed quarks. In the present
work, this result comes out naturally in the microscopic
derivation of the Goldberger-Treiman relation and, at the
same time, an explicit expression for the �D �D0� coupling
constant is found.
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