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We discuss a possibility that the neutron electric dipole moment (NEDM) can be calculated in lattice
QCD simulations in the presence of the CP-violating � term. In this paper we measure the energy
difference between spin-up and spin-down states of the neutron in the presence of a uniform and static
external electric field. We first test this method in quenched QCD with the renormalization group
improved gauge action on a 163 � 32 lattice at a�1 ’ 2 GeV, employing two different lattice fermion
formulations, the domain-wall fermion and the clover fermion for quarks, at relatively heavy quark mass
�mPS=mV ’ 0:85�. We obtain nonzero values of the NEDM from calculations with both fermion
formulations. We next consider some systematic uncertainties of our method for the NEDM, using 243 �
32 lattice at the same lattice spacing only with the clover fermion. We finally investigate the quark mass
dependence of the NEDM and observe a nonvanishing behavior of the NEDM toward the chiral limit. We
interpret this behavior as a manifestation of the pathology in the quenched approximation.
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I. INTRODUCTION

Discrete symmetries, such as parity (P), charge conju-
gation (C), and time reversal (T), have played important
roles to establish the structure of the standard model. One
of the most famous examples is CP-violation which led to
three generations of quarks and leptons [1].

In the strong interaction, the most strict constraint on
violation of P and T symmetries comes from the measure-
ment of the electric dipole moment (EDM) for the neutron
(NEDM) and the proton (PEDM). The current upper bound
is given by

 jdNj< 6:3� 10�13 e � fm �90%C:L:� (1)

for the neutron from a Larmor frequency measurement
with an ultracold neutron (UCN)[2], and

 jdNj< 5:4� 10�11 e � fm (2)

for the proton [3], which is estimated indirectly from the
EDM of the mercury atom 199Hg given by datom�

199Hg�<
2:1� 10�15 e � fm �95%C:L:� [4].

On the other hand, QCD allows a gauge-invariant, re-
normalizable, and CP-odd � term,

 i
�

32�2

Z
d4x ~G���x�G���x�;

~G���x� �
1

4
�����G���x�

(3)

in Euclidean space-time with G�� which is the field
strength of the gluon. Some model estimations [5,6] yield

 jdNj � ��O�10�2 � 10�3� e � fm; (4)

which leads to a bound � � O�10�10�. Hence � must be
very small or may even vanish in QCD.

The smallness of � in the QCD sector, however, is not
protected in the presence of the electroweak sector of the
standard model, where the quark mass matrix, arising from
Yukawa couplings to the Higgs field, may be written as

 

� R
i �x�Mij 

L
j �x� 	 � Li �x�M

y
ij 

R
j �x�; (5)

where  L and  R represent left and right-handed quark
fields with flavor indices i, j. Diagonalizing the mass
matrix and making it real, the parameter � becomes

 � � �QCD 	 argdetM; (6)

where �QCD is the original � parameter in QCD. Therefore,
�QCD and argdetM contributions have to cancel out to the
precise degree that the stringent experimental upper bound
on NEDM is satisfied. In either of the two cases, it seems
necessary to explain why nature chooses such a small value
for �; this is the ‘‘strong CP problem.’’ One of the most
attractive explanations proposed so far is the Peccei-Quinn
mechanism [7]. Unfortunately, the axion, a new particle
predicted by this mechanism, has not been experimentally
observed so far.

The present theoretical estimations of NEDM vary in
magnitude among different models such as current algebra
[5], chiral perturbation theory [6,8–10], and QCD sum rule
[11,12] (see also [13]). While these crude estimations of
jdNj=� already convince the smallness of �, a theoretically
reliable and accurate estimation for NEDM will be re-
quired to determine the value of �, if a nonzero value of
NEDM is observed in future experiments. Lattice QCD
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calculations provide a first-principle method for this task.
Indeed more than 15 years ago, the first attempt was made
to estimate NEDM in a quenched lattice QCD simulation
[14]. A reliable signal of NEDM could not be obtained at
this time [15]. Since then, no lattice calculation of NEDM
has been attempted until recently. In the last year, a new
approach has been presented for this problem.
References [16–18] proposed a formulation to extract the
CP-odd electromagnetic form factor of the nucleon from
certain lattice correlation functions. NEDM can be ex-
tracted from this form factor in the zero momentum trans-
fer limit. Applying this formulation in a quenched
calculation with domain-wall quarks, a nonzero value for
the CP-odd form factor of the nucleon was obtained at one
value of nonzero momentum. Based on this formulation,
the same form factor has been calculated on gauge con-
figurations generated by Nf � 2 dynamical domain-wall
QCD at several nonzero momenta [19]. The value of
NEDM after the zero momentum extrapolation, however,
is consistent with zero within the large statistical error in
this calculation.

The results mentioned above suggest that, while it is
possible to obtain signals for the CP-odd form factor at a
fixed and small value of momentum, it is numerically
difficult to carry out a statistically controlled extrapolation
of the form factor to the zero momentum limit to extract
the value of EDM. Therefore, in this paper, we investigate
another method to calculate the value of EDM directly
without momentum extrapolation. In this method, intro-
ducing a constant uniform electric field ~E, we measure the
energy difference between spin-up and spin-down compo-
nents of the nucleon in the presence of the � term [14]. If
the electric field is small enough, the leading contribution
to the energy difference is given by dN ~S � ~E with neutron
spin ~S and electric field ~E. Therefore EDM can be directly
extracted without momentum extrapolation. The most dif-
ficult part of this calculation is to reweight the nucleon
propagator on a given gauge configuration with the factor
ei�Q, where Q is the topological charge of the configura-
tion. We may control this reweighting by taking a small
value of �. Another difficulty is that our electric field
breaks periodicity in the time direction, generating a large
field at the time boundary. We should investigate influences
of the large electric field at the boundary to EDM signals.

We check the ability of this method in the quenched
approximation at a heavy quark mass. We employ two
fermion formulations, domain-wall fermion having chiral
symmetry and clover fermion with explicitly broken chiral
symmetry, in order to investigate possible dependence of
EDM signals on the aspect of chiral symmetry of fermion
formulations. Our study has revealed that the quality of
EDM signals is not very sensitive to fermion formulations.
Therefore we have employed the clover fermion, which
requires much less computational cost than the domain-
wall fermion, to study various systematics of EDM such as

the volume dependence, the boundary effect, and the quark
mass dependence within the quenched approximation.

This paper is organized as follows. In Sec. II we explain
the definition of EDM and our method to extract EDM
from nucleon propagators. Simulation details of our lattice
calculation are summarized in Sec. III. In Sec. IV we show
numerical results with both domain-wall and clover fer-
mion at heavy quark mass on a 163 � 32 lattice. We then
investigate the finite size effect and the boundary effect on
a 243 � 32 lattice with the clover fermion. In Sec. V we
systematically study the quark mass dependence of EDM
using the larger lattice with the clover fermion. A summary
and discussion is given in the last section VI.

II. EDM WITH ELECTRIC FIELD

In our previous work [16], we defined NEDM from the
CP-odd electromagnetic form factor, F3, in the zero mo-
mentum transfer limit. In the actual calculation, however, it
is not so easy to change the momentum transfer, since the
momentum is quantized as p � n �L on a finite spatial
length of L. In the case of large p with n � 2; 3; . . . at
small L, statistical errors are large, while a smaller p with
n � 2; 3; . . . , which has a better signal, requires a larger
lattice size L. In both cases, the calculation becomes more
difficult for larger momentum at n � 2; 3; . . . than for the
smallest momentum at n � 1. In addition, the correct
distribution of the topological charge is essentially impor-
tant for the NEDM calculation. Since the width of the
distribution of topological charge increases linearly with
the volume, larger volume calculations require more sta-
tistics than the small volume ones, contrary to other
observables.

The difficulties for the extrapolation to the zero momen-
tum transfer limit mentioned above are our motivations to
consider a different method for the NEDM calculation with
which we can avoid the momentum extrapolation. In this
section we introduce our new approach for the lattice QCD
calculation of NEDM.

A. Formulation

In Ref. [14], NEDM is defined through the energy
change of the neutron state in the presence of an external
electric field, similar to the magnetic moment defined from
that in the magnetic field. If a static and uniform electric
field exists in a CP-violating system, the EDM appears in
the Hamiltonian as the interaction term between spin ~S of
the particle and electric field ~E:

 �HCP � dN��� ~S � ~E	O�� ~E�
3�; (7)

where dN��� represents the EDM. In order to extract the
EDM we consider the energy difference of nucleon states
for opposite spins in the external electric field:

 m�
~s �
~E� �m�

� ~s�
~E� � 2dN��� ~S � ~E	O�� ~E�3�; (8)
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where m�

~s�

~E� denotes the energy of the nucleon whose

spin vector is 
 ~S in the presence of the electric field ~E.
Therefore we can extract dN��� from the nucleon propa-
gators for two different spin states at zero momentum only,
avoiding difficult calculations at nonzero momenta.

For small � we can expand dN��� as

 dN��� � dN�	O��3�: (9)

We will check that higher order contributions at O��3� are
negligibly small. Hereafter we represent dN as the leading
order of the EDM.

B. Methodology on the lattice

A static and uniform electric field is represented by the
spatial gauge potential as

 Ai�x� � EEuclid
i t; (10)

where EEuclid
i is the constant electric field in Euclidean

space. A nonzero NEDM could be detected from the
oscillating behavior of the neutron propagator. Since
NEDM is expected to be small, it is numerically very
difficult to measure such a small oscillation. On the other
hand, if we employ a static and uniform electric field in
Minkovski space as

 Ai�x� � �iE
Minkov
i t; (11)

the oscillation turns into an exponential behavior, which is
easier to measure. Therefore we introduce a static and
uniform electric field in Minkovski space as an external
field into lattice QCD, by replacing the spatial link varia-
bles as

 Ui�x� ���! ~Ui�x;EMinkov
i � � eqeE

Minkov
i tUi�x�;

U�1
i �x� ���! ~U�1

i �x;EMinkov
i � � e�qeE

Minkov
i tU�1

i �x�;
(12)

where qe denotes the quark charge, 2=3 for up quark and
�1=3 for down quark. Hereafter we suppress the super-
script of the constant electric field Ei in Minkovski space
for simplicity.

An obvious problem here is that the Minkovski electric
field E breaks the periodic boundary condition in the
temporal direction:

 Ui�t	 T; ~x� � Ui�t; ~x�; (13)

 

~U i�t	 T; ~x;Ei� � eqeEiT ~Ui�t; ~x;Ei� � ~Ui�t; ~x;Ei�; (14)

where T is the size of the temporal direction. This gener-
ates an effective electric field, defined by Ei�t� �
Ai�t	1��Ai�t�1�

2 , as

 Ei�t� �
�
Ei t � 2; 3; . . . ; T � 1
�Ei

T�2
2 t � 1; T

: (15)

Therefore the electric field is no more constant near the
boundary between t � 1 and t � T. In order to avoid the

effect of this nonuniform electric field to the EDM signal,
we have to take Ei as small as possible. In any case a small
value of Ei is necessary to neglect O�� ~E�3� terms in (7).1

In our calculation gauge configurations are generated by
the usual lattice QCD action without E and �. After insert-
ing the electric field to gauge configurations we calculate
quark propagators for flavor u and d separately, in addition
to the normal one with Ei � 0, which is used to remove a
fake signal at Ei � 0 caused by statistical fluctuations. The
total number of solvers for quark propagators is three for
each configuration. From quark propagators we construct
the nucleon propagator with the � term as

 hN� �N�i�� ~E; t� � hN��t� �N��0�e
i�Qi ~E; (16)

where hOi ~E represents the vacuum expectation value of O
with ~E but without the � term. Here we use the reweighting
method with the complex weight factor ei�Q. In order to
obtain good signals, a large overlap of gauge ensembles
between � � 0 and � � 0 as well as the correct distribu-
tion of the topological charge are required. Taking a small
value of � as long as we get a signal helps for the large
overlap, while we have to simply accumulate enough
number of configurations for the correct distribution of
the topological charge.

In the presence of the uniform and static electric field,
the upper components of the nucleon propagator at zero
spatial momentum take the following form for �;� � 1; 2
[20]:

 

hN� �N�i�� ~E; t� � Z
0�
N �E

2 � ~E � ~E�
�
�1	AN��;E

2� ~	 � ~E�

� exp��m�
N�E

2�t�
dN��;E2�

2
~	 � ~Et�

�
��

	 �� � ; (17)

where the EDM dN��; E
2� and the spin-dependent ampli-

tude AN��; E2� are odd in �, while the spin-independent
energy2 m��E2� and an overall amplitude Z0�N �E

2� are even
in �. Here dots denote contributions from excited states.

To extract EDM we construct the ratio of nucleon
propagators between different spinor components. For ~E �
�0; 0; E� we consider the following ratio:

1The electric field in Euclidean space smaller than Ei � 2�=T
also breaks the periodic boundary condition.

2The energy of the proton increases as t increases since the
charged particle is accelerated in the uniform electric field. This
effect is canceled in the ratio, which will be used to extract the
signal of EDM.

NEUTRON ELECTRIC DIPOLE MOMENT WITH EXTERNAL . . . PHYSICAL REVIEW D 75, 034507 (2007)

034507-3



 Rnaive
3 �E; t; �� �

hN1
�N1i���0; 0; E�; t�

hN2
�N2i���0; 0; E�; t�

�
1	 AN��; E

2�E

1� AN��; E
2�E

exp��dN�Et

	O��3E; �E3�
; (18)

where we use Eq. (17) for the second equality. Similarly for
~E � �E; 0; 0� and �0; E; 0�, we obtain

 

Rnaive
1 �E;t;�� �

hN1
�N1i�	hN1

�N2i�	hN2
�N1i�	hN2

�N2i�
hN1

�N1i��hN1
�N2i��hN2

�N1i�	hN2
�N2i�

���E;0;0�; t�

�
1	AN��;E

2�E

1�AN��;E2�E

� exp��dN�Et	O��3E;�E3�
; (19)

 

Rnaive
2 �E;t;���

hN1
�N1i�	 ihN1

�N2i�� ihN2
�N1i�	hN2

�N2i�
hN1

�N1i�� ihN1
�N2i�	 ihN2

�N1i�	hN2
�N2i�

���0;E;0�;t�

�
1	AN��;E

2�E

1�AN��;E2�E

�exp��dN�Et	O��3E;�E3�
: (20)

We can average over the ratio in three directions to increase
statistics, if necessary.

In order to remove the spurious contribution m�
~s �0� �

m�
�~s�0�, which must vanish for infinite statistics, we con-

sider a double ratio defined by

 Ri�E; t; �� �
�
Rnaive
i �E; t; ��

Rnaive
i �0; t; ��

�
; (21)

 

ln
�

Ri�E; t; ��
Ri�E; t	 1; ��

�
� �m�

~s �Ei� �m
�
~s �0�


� �m�
�~s�Ei� �m

�
� ~s�0�
 (22)

 � dN�E	O��3E; �E3�: (23)

We can improve the EDM signal further, removing the
contribution at � � 0, which also vanishes for infinite
statistics, by a triple ratio as

 R�w=o��0�
i �E; t; �� �

Ri�E; t; ��
Ri�E; t; � � 0�

’
1	 �A1

N�E
2�E

1� �A1
N�E

2�E
exp�dN�Et
; (24)

where we used an expansion AN��; E
2� � �A1

N�E
2� 	

O��3�, and we finally subtract the spurious contribution
even in E by a quadruple ratio as

 Rcorr
i �E; t; �� �

R�w=o��0�
i �E; t; ��

R�w=o��0�
i ��E; t; ��

�
Rnaive
i �E; t; ��

Rnaive
i ��E; t; ��

Rnaive
i ��E; t; � � 0�

Rnaive
i �E; t; � � 0�

’

�
1	 �A1

N�E
2�E

1� �A1
N�E

2�E

�
2

exp�2dN�Et
; (25)

where the second equality tells us that this is indeed a triple
ratio since ~E � 0 contributions are canceled identically.
We finally extract the EDM from the exponential fit to
Rcorr
i �E; t; �� over some time range, determined by the

behavior of the effective EDM:

 2dN�E � ln
�

Rcorr
i �E; t; ��

Rcorr
i �E; t	 1; ��

�
; i � 1; 2; 3: (26)

III. SIMULATION DETAILS

A. Simulation parameters

In our study we employ gauge configurations generated
by the renormalization group (RG) improved gauge action
at � � 2:6 in the quenched approximation, which corre-
sponds to a�1 � 1:902�50� GeV from the string tension 	
assuming 	 � �440 MeV2� [21].

For the quark action, we employ the domain-wall fer-
mion on a 163 � 32 lattice with the fifth length Ns � 16
and the domain-wall height M � 1:8. These parameters
are identical to those in the previous EDM form factor
calculation. We however take a heavier quark mass, mf �

0:12, which corresponds to mNa � 1:113�2� and
mPS=mV ’ 0:88, than the one in the previous calculation,
in order to reduce the computational cost, since our main
motivation in this calculation is to see whether the EDM
signal can be obtained by this method. As shown in the
next section we have indeed obtained the EDM signal after
accumulating 1000 configurations at this heavier quark
mass.

We also investigate whether the EDM signal can be
obtained by this method with the clover fermion. The
EDM calculation with this fermion has the advantage
that the computational cost is roughly Ns times smaller
than the cost of the domain-wall fermion so that systematic
studies such as volume or quark mass dependences can be
performed more easily. Moreover we can employ theNf �
2 and 2	 1 flavor dynamical configurations already gen-
erated with the clover quark action at several sea quark
masses and lattice spacings [22–24] in future studies. We
calculate the EDM on the same 163 � 32 configurations,
using the clover fermion with cSW � 1:340, the tadpole
improved value of the clover coefficient determined from
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 cSW �
� X
x;�<�

P���x�
�
�3=4

� �1� 0:8412��1��1=4:

(27)

In order to obtain a similar nucleon mass, we use the
hopping parameter 
 � 0:1320, corresponding to mNa �
1:020�2� and mPS=mV ’ 0:85.

Since, as will be shown later, the EDM signal can be
successfully obtained with the clover fermions, we inves-
tigate the volume dependence of the EDM signal using a
243 � 32 lattice. Furthermore the quark mass dependence
of the EDM is calculated with this fermion on this larger
volume.

For the calculation of quark propagators we employ the
smeared source of the form that f�r� � Ae�Br where r �
j ~x� ~xsrcj with the source point ~xsrc � �8; 8; 8� on 163 and
(12, 12, 12) on 243 spatial lattice, after the Coulomb gauge
fixing is applied to gauge configurations. We mainly take
tsrc � 1 as the time slice of the smeared source. In order to
check the effect of the nonuniform electric field near t � 1

and T, we also calculate the EDM with tsrc � 8, using the
clover fermion on a 243 � 32 lattice. Effective mass plots
of the nucleon in various cases are given in Fig. 1. We
observe the plateau at t � 7 for the domain-wall fermion
and the clover fermion at heaviest quark mass, while the
plateau appears at t � 6 for the clover fermion at lighter
quark masses.

In our calculation we mainly take ~E � �0; 0; E� with
E � 
0:004. As exceptions, E � 
0:002 is employed
on a 163 � 32 lattice with the domain-wall fermion to
investigate the E dependence of the EDM signal, and
�E; 0; 0� and �0; E; 0� are used on a 243 � 32 lattice with
the clover fermion at heaviest quark mass to check the
consistency and to increase statistics. Although we can
easily change the value of � by reweighting, we fix � �
0:1 in our calculation, except � � 0:05 and 0:2 on a 163 �
32 lattice with the domain-wall fermion to investigate the �
dependence of the EDM signal.

Parameters of fermion actions in various cases are sum-
marized in Table I.

 

0 5 10 15
t

1.0

1.1

1.2

1.3

mf=0.12 (16
3
x32, DW)

0 5 10 15
t

0.9

1.0

1.1

1.2

κ=0.1320 (16
3
x32, clover)

0 5 10 15
t

1.02

1.04

0 5 10 15
t

0.90

0.92

0 5 10 15
t

0.78

0.80

κ=0.1320 (24
3
x32, clover)

κ=0.1330 (24
3
x32, clover)

κ=0.1340 (24
3
x32, clover)

FIG. 1. The effective mass plot for the nucleon with the domain-wall fermion at mf � 0:12 (top-left), clover fermion at 
 � 0:1320
(top-right) on a 163 � 32 lattice, and clover fermion at various quark masses (bottom) on a 243 � 32.
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B. Topological charge

The topological charge using the O�a2� improved defi-
nition [25] is measured on each configuration after 20
cooling steps.

On a 163 � 32 lattice we accumulate 1000 configura-
tions. In Fig. 2 we present the histogram of the topological
charge, which is consistent with Gaussian distribution. The
symmetry of the distribution is measured by the average of
Q, which is consistent with zero within error: hQi �
�0:002�97�. If the Gaussian distribution is assumed, its
width 	 is given by hQ2i � 9:37�44�. On this lattice size
1000 configurations seem enough to give a reasonable
distribution of the topological charge.

On a larger volume of a 243 � 32 lattice, we accumulate
nearly 2000 configurations since hQ2i, thus the width of the
distribution of Q, increases linearly in volume. In Fig. 3,

we show the histogram of Q, which looks reasonable,
namely, sufficiently symmetric and close to Gaussian.
We find hQi � 0:15�13� and hQ2i � 33:6�1:1�.

IV. EDM SIGNAL AND SYSTEMATICS

In this section, we show numerical results for the nu-
cleon EDM signals with the external electric field method.
We investigate several systematics of the EDM signal such
as dependences on the fermion action, the volume, E, �,
tsrc, and the direction of ~E.

A. Comparison between domain-wall and clover
fermions

We first consider the case of the domain-wall fermion on
a 163 � 24 lattice. In Fig. 4 we plot the double ratio

TABLE I. Table for lattice parameters. The column of �A;B� denotes the smearing source parameter in the exponent.

Fermion � L3 � T � Ns M a�1 �GeV
 mq �A; B� mPS=mV mNa

Domain wall 2.6 163 � 32� 16 1.8 1.902(50) 0.12 (1.28,0.40) 0.8781(4) 1.1130(15)

Fermion � L3 � T cSW a�1 �GeV
 
 �A; B� mPS=mV mNa
Clover 2.6 163 � 32 1.340 1.902(50) 0.1320 (1.55,0.24) 0.8508(5) 1.0202(17)
Clover 2.6 243 � 32 1.340 1.902(50) 0.1320 (1.55,0.35) 0.8494(1) 1.0186(9)

0.1330 (1.55,0.31) 0.8026(2) 0.9058(14)
0.1340 (1.55,0.27) 0.7253(2) 0.7843(16)


c � 0:1359�1�
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FIG. 2. (Top) Histogram of topological charge improved by
O�a2� after 20 cooling steps. The solid line denotes the expected
Gaussian distribution from 	 �

��������������������������
hQ2i � hQi2

p
. (Bottom) The

topological charge in each configuration.

 

-20 0 20

Q

0

50

100

150

0 500 1000 1500 2000

#configs.

-20

-10

0

10

20

Q

FIG. 3. (Top) Histogram of the topological charge in 243 � 32
lattice and (bottom) the topological charge in each configuration
as shown in Fig. 2.
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R3�E; t; �� as a function of t at �E; �� � �
4:0� 10�3; 0:1�
and �E; �� � �
4:0� 10�3; � � 0�, for both the neutron
and proton. The star symbols in Fig. 4, representing the
time dependence of R3�
E; t; � � 0�, are consistent with
unity within errors at both
E. This confirms the expected
behavior that the exponential part of R3�E; t; �� vanishes at
� � 0. For nonzero �, on the other hand, deviations of
R3�E; t; �� from unity show up beyond errors and they
increase as t increases. Moreover the sign of deviations
depends on the sign of E. All these behaviors of R3 are
consistent with the fact that nonzero value of the EDM
exists. In Fig. 5 we plot time dependence of
R�w=o��0�

3 �E; t; ��, defined in Eq. (24), for which contribu-
tions at � � 0 due to finite statistics are removed. The E
dependence of signals becomes more visible after the
removal of � � 0 contributions. In addition it is noted

that the EDM signal of the proton has an opposite sign to
that of the neutron.

Applying the same analysis as above to the case of the
clover fermion on a 163 � 32 lattice, we obtain a similar
behavior for R3 and R�w=o��0�

3 . Therefore we do not present
them here. Instead the effective mass of Rcorr

3 , defined in
Eq. (25), is plotted as a function of t in Fig. 6, for both
domain-wall and clover fermions. It is interesting to see
that the time dependences of the effective mass for the two
fermions are very similar. Moreover, for both fermions, we
observe the plateau around 6 � t � 12, whose values are
nonzero beyond errors. Clearly the EDM signal for the
proton has an opposite sign to that for the neutron, as
suggested by the behavior of R�w=o��0�

3 .
Let us conclude this subsection. Using the external

electric field method, we obtain the EDM signal for both
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neutron and proton, with both domain-wall and clover
fermions. This suggests that the chiral property of the
fermion action does not play a crucial role to obtain the
EDM signal with this method. Note however that the quark
mass employed in this investigation is rather heavy.
Therefore there is a possibility that some qualitative dif-
ference between two fermion formulations may show up at
lighter quark mass where the chiral symmetry becomes
important. In the remainder of this paper, we mainly em-
ploy the clover fermion formulation.

B. Volume dependence

We investigate the volume dependence of the EDM
signal on a 243 � 32 lattice with the clover fermion at
the heaviest quark mass. Here the physical spatial volume
is increased to 2:43 fm3 from 1:63 fm3. Our main concern

is whether the nonzero value of the EDM signal obtained in
the previous subsection persists as the volume increases.

In Fig. 7 we compare the effective mass plot of
Rcorr

3 �E; t; �� at � � 0:1, E � 0:004 in the larger volume
with that in the smaller volume. It is clear that the EDM
signal remains nonzero in the larger volume. Results in
both volumes are consistent with each other within large
errors. We can conclude that the EDM signal obtained with
this method does not vanish in both volumes.

C. Boundary effect of the electric field

The electric field in our method breaks periodicity in the
time direction, leading to a large nonuniformity near the
boundary between t � 1 and t � T. Since we put a source
at t � 1, the EDM signal may be affected by the nonuni-
form electric field. In order to investigate how the EDM
signal is affected by this boundary effect, we repeat the
EDM calculation on a 243 � 32 with the clover fermion at
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the heaviest quark mass, moving the source point to the
different time slice but keeping other conditions fixed.

In the previous calculation at tsrc � 1, we observed that
the plateau seems to exist at t � 8. Since this indicates that
the effect of the boundary may be small at t � 8, we take a
new source point at tsrc � 8. If we need a minimum plateau
length of 5 for a reliable fit, we wonder about using a
plateau at t � 15� 19 for tsrc � 8. Since the time slice t �
19 or 20 is largely separated from the boundary at t � T �
32, the boundary effect to the plateau as a whole is ex-
pected to be small. Therefore tscr � 8 is a reasonable
choice.

In Fig. 8 we compare the time dependence of
R�w=o��0�

3 �
E; �; t� for two different source points, tsrc �

1 and tsrc � 8. We clearly observe a different time depen-
dence of R�w=o��0�

3 for two sources at small time slices, t�
tsrc � 4. We think that large deviations of R�w=o��0�

3 from
unity at t� tsrc � 4 for the tsrc � 1 case is an effect of the
large nonuniform electric field near the boundary between
t � 1 and t � T. On the other hand, the deviation of
R�w=o��0�

3 from unity becomes visible around t� tsrc ’ 4
for the case of tsrc � 8. Since the plateau of the nucleon
effective mass appears around t� tsrc ’ 5� 6, contribu-
tions from excited states to R�w=o��0�

3 become small and the
nucleon state dominates around this range of t in the case
of tsrc � 8. In Fig. 9 we plot the effective mass of
Rcorr

3 �E; � � 0; t� for the tsrc � 8 case, together with that
for the tsrc � 1 case. We notice that the plateau starts
around t� tsrc � 5 for the tsrc � 8 case. For the tsrc � 1
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case, on the other hand, the values of effective mass of
Rcorr

3 �E; � � 0; t� around t� tsrc � 4� 6 seem smaller
than the plateau of the tsrc � 8 case, suggesting that the
boundary effects, observed in R�w=o��0�

3 at small t� tsrc,
still remain in the effective mass around t� tsrc � 4� 6.
Therefore, to avoid possible contaminations from the
boundary effect, we take sufficiently large separations
such that t� tsrc � 8� 11 for the fit of Rcorr

3 �E; � � 0; t�
in the case of tsrc � 1.

An important lesson here is that we should take the
starting point of the fitting range as far from the source
as possible, if the source is placed near the boundary such
as tsrc � 1. This caution should be applied to all other data
obtained with tsrc � 1.

Fitting with Rcorr
3 exponentially in 5 � t� tsrc � 9 with

tsrc � 8, we obtain

 dN �
�
�0:025�8� e � fm �Neutron�
0:024�11� e � fm �Proton�

; (28)

while for the tsrc � 1 case we have

 dN �
�
�0:030�8�e � fm �Neutron�
0:036�11�e � fm �Proton�

(29)

with t� tsrc 2 �7; 11
 as the fitting range. Two results are
consistent with each other within large statistical errors.
Similarly, on a 163 � 32 lattice, we obtain

 dN �
�
�0:021�11�e � fm �Neutron�
0:026�13�e � fm �Proton�

(30)

for the clover fermion and

 dN �
�
�0:017�8�e � fm �Neutron�
0:020�10�e � fm �Proton�

(31)

for the domain-wall fermion. The fitting range is t� tsrc 2
�6; 11
 with tsrc � 1 for both fermions. These values, sum-
marized in Table II, have the same sign and a similar order
of magnitude to the EDM form factor previously obtained
on a 163 � 32 lattice with the domain-wall fermion with
the form factor method, which is given by F3�q2 ’
0:58GeV2�=mN � �0:024�5�e � fm for the neutron and
0:021�6� e � fm for the proton [16]. These agreements of
sign and magnitude between the two methods support the
viability of this method explored in this paper.

D. E and � dependence

In Fig. 10 we plot values of the EDM as a function of E
for the neutron (upper) and proton (lower) at � � 0:1.
Observing the expected linear dependence on E for both
cases, we conclude that O�E3� contributions in (8) are
negligible. Figure 11 shows dN��� in the lattice unit as a
function of � at E � 0:004, assuming the linear E depen-
dence of the fitted EDM signal. We again confirm that the
linearity in � is good and thus O��3� contributions in (9)
are reasonably small.

TABLE II. Table for the EDM results in some lattice parameters.

Fermion mNa Lattice size Source point Fitting range dN (Neutron) dN (Proton)

Domain wall 1.1130(15) 163 � 32 tsrc � 1 t� tsrc 2 �6; 11
 �0:0170�79� 0.0196(95)
Clover 1.0202(17) 163 � 32 tsrc � 1 t� tsrc 2 �6; 11
 �0:0205�104� 0.0256(125)
Clover 1.0186(9) 243 � 32 tsrc � 1 t� tsrc 2 �7; 11
 �0:0304�78� 0.0361(111)
Clover 1.0200(9) 243 � 32 tsrc � 8 t� tsrc 2 �5; 9
 �0:0246�83� 0.0237(112)
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We concluded that our choices of �E; �� � �0:004; 0:1�
are small enough to ensure linear dependences of the EDM
signal on both E and �, which we assume in the analysis in
the rest of this paper.

E. Average over the electric field

Averaging over three directions of the electric field is not
so useful in quenched simulation. This way of increasing
statistics, however, may become important in the full QCD
case since the number of full QCD configurations is lim-
ited. In this subsection we investigate the effectiveness of
this method and the related question of the independence of
the EDM signal on the direction of the electric field.

Using Eqs. (18)–(20) for ~E � �0; 0; E�, �E; 0; 0�, and
�0; E; 0�, we obtain Ri as a function of E for each ~E on a

243 � 32 lattice with the clover fermion at heaviest quark
mass. In Fig. 12, Ri shows similar time dependences for all
i. EDM signals, given in Fig. 13, are also comparable in the
similar time range among different directions. We confirm
the consistency among extraction of the EDM signal from
three different directions using the formulae in Eqs. (18)–
(20).

We now consider the average over 3 directions. In
Fig. 14 the effective mass of the average, Rcorr�E; �; t� �P
iR

corr
i �E; �; t� is plotted as a function of t. Fitting it

exponentially at 7 � t� tsrc � 11, we obtain
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 dN �
�
�0:0276�72� e � fm �Neutron�
0:0278�87� e � fm �Proton�

: (32)

Although errors are reduced in the effective mass, the
reduction in dN is much smaller than 1=

���
3
p

. We conclude
that the error reduction by this averaging is limited, due to
the possible correlation among Ri�1;2;3�E; �; t�,

V. QUARK MASS DEPENDENCE

In this section we study the quark mass dependence of
EDM using the clover fermion on a 243 � 32 lattice.

A. Quenched effects

It is well known in full QCD that the EDM generated by
the � term must vanish in the chiral limit. This can be seen
from the fact that the CP-violation Lagrangian after an
appropriate chiral rotation [5],

 �LCP � i� �m
X

i�u;d;s

� i�5 i�x�; �m �
� X
i�u;d;s

m�1
i

�
�1
;

(33)

vanishes in the massless limit of any quarks. (See [19] for
more detailed argument on this property.)

In quenched QCD, however, this argument fails since
the � parameter cannot be translated to the above form in
the absence of the chiral anomaly, which requires the quark
determinant. Therefore CP-violating observables gener-
ated by the � term may remain nonzero in the zero quark
mass limit. Indeed, as discussed in [19], zero modes of the
quark Dirac operator can generate CP-odd contributions
even in the massless limit. It is not so easy, however, to
determine the explicit quark mass dependence of the EDM
from the general argument in quenched QCD.

 

0 5 10 15
t

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0

0.0001

ln
[R

ico
rr
(E

,t-
1;

θ)
/R

ico
rr
(E

,t;
θ)

] av. of i=1,2,3

Neutron

0 5 10 15
t

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

ln
[R

ico
rr
(E

,t-
1;

θ)
/R

ico
rr
(E

,t;
θ)

]

av. of i=1,2,3

Proton
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 � 0:1320. (Top) the neutron case,
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Recently, from the numerical simulation of the instanton
liquid model [26], the 1=m2

q dependence for the NEDM has
been reported near the chiral limit of quenched QCD. The
partially quenched chiral perturbation theory [27], on the
other hand, has suggested the 1=m3

� behavior in the finite
volume of L3 at fixed sea quark mass msea such that

 dP:Q:ChPT
N ��

e�msea

m3
�L3 f�; (34)

from the leading contribution of one-loop graphs.

B. Quark mass dependence of the EDM

We calculate the EDM at three different quark masses
with the clover fermion on a 243 � 32 lattice. In Figs. 15
and 16 we plot the effective mass of Rcorr�E; �; t� �P3
i�1 R

corr
i �E; �; t� as a function of t at two lighter quark

masses with tsrc � 1. Signals become a little noisier and

less stable as the quark mass decreases. Fitting data at t�
tsrc 2 �7; 10
 for the three quark masses, we obtain the
quark mass dependence of the EDM for the neutron and
proton as shown in Fig. 17 and Table III. Compared with
the current algebra result, �0:0036 e � fm [5,6] also
shown in the top of Fig. 17, our quenched NEDM are
about 10 times larger. Moreover our results suggest that
the EDM does not vanish in the chiral limit for both the
neutron and proton. We consider that the larger value of the
NEDM we focus is partly due to the quenched effect.
Because of large statistical errors, we cannot distinguish
the functional form of the mass dependence of the EDM,
whether it stays constant or diverges in the chiral limit.

C. Quark mass dependence of the CP-odd phase factor

In addition to the EDM, using the clover fermion, we
calculate a simpler quantity f1

N , the CP-odd phase factor of
the nucleon propagator, defined in Ref. [16] as
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FIG. 16 (color online). The same figure as Fig. 14 with 
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0:1340. (Top) the neutron case, (bottom) the proton case.
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FIG. 15 (color online). The same figure as Fig. 14 with 
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0:1330. (Top) the neutron case, (bottom) the proton case.
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 hN� ~p; t� �N� ~p; 0�Qi � jZNj
2e�ENt

f1
NmN

2EN
�5: (35)

Since the CP-odd phase factor arises from CP-violation

effects of the � term, f1
N would vanish in the chiral limit of

full QCD. In quenched QCD, however, this quantity also
may remain nonzero in chiral limit because of the same
reason as the EDM.

In Fig. 18, we show the time dependence of the nucleon
propagator at the next leading in �,
�tr�hN�~0; t� �N�~0; 0�Qi �5

2 
 (left), and effective masses of

the leading nucleon propagator in �, tr�hN�~0; t� �N�~0; 0�i�
1	�4

2 
, as well as the next leading one (right) at three quark
masses. Since effective mass plots show the agreement of
masses between two propagators around t � 10, we extract
f1
N by fitting tr�hN�~0; t� �N�~0; 0�Qi �5

2 
 at 9 � t � 12 in the
form of (35), where jZNj2 andmN have been fixed from the
leading propagator.

The quark mass dependence of f1
N is given in Fig. 19 and

Table III. It is noted that errors of f1
N are much smaller than

those of the EDM. The top of Fig. 19 shows that f1
N does

not vanish in chiral limit and moreover it seems to diverge
as 1=mq in this limit. To see this behavior more clearly, we
plot f1

N multiplied by the quark massmq � �

�1 � 
�1

c �=2
as a function of mq in the bottom of Fig. 19. The fact that
f1
Nmq seems almost constant at this range of the quark

mass suggests that f1
N may diverge as 1=mq in the chiral

limit. It may be interesting to confirm this behavior of f1
N

by some theoretical considerations.

VI. SUMMARY AND DISCUSSION

In this paper, we have investigated the viability of an old
idea for calculating the nucleon EDM by introducing a
uniform and static electric field. In this setup the nucleon
EDM appears directly in the energy difference between
spin-up and spin-down states of the nucleon. To introduce
the complex � term into lattice QCD calculations, we used
the reweighting technique with the factor ei�Q. We have
demonstrated that this reweighting method indeed works
as long as � is small enough, by calculating the nucleon
EDM in quenched QCD on a 163 � 32 lattice at a relatively
heavy quark mass. We found that the quality of signals is
not very sensitive to lattice fermion formulations em-
ployed, domain-wall fermion and clover fermion in our
study. Using the clover fermion on a 243 � 32 lattice, we
investigated the effect of nonuniformity of our electric field
induced at the boundary in time direction. Even if the
source point of the nucleon is placed near the boundary,

TABLE III. The mass dependence of the EDM factor from the exponential fit in the range 8 � t � 12 for Rcorr�E; �; t� which is the
average over indices i � 1; 2; 3 and CP-odd phase factor in the next leading term of the nucleon propagator.

Neutron Proton f1
N f1

Nmq


 fit dN�e � fm
 fit dN�e � fm


0.1320 �0:000 212�48� �0:0276�72� 0.000 214(67) 0.0278(87) �0:1075�80� �0:0117�8�
0.1330 �0:000 276�67� �0:0359�87� 0.000 271(95) 0.0353(123) �0:1653�111� �0:0133�9�
0.1340 �0:000 300�97� �0:0391�125� 0.000 300(143) 0.0390(187) �0:2738�152� �0:0143�8�
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FIG. 17 (color online). The mass dependence of the EDM
factor with clover fermion. In the top figure the star symbol
shows the prediction from the current algebra in [5]. (Top) the
neutron case, (bottom) the proton case.

E. SHINTANI et al. PHYSICAL REVIEW D 75, 034507 (2007)

034507-14



the effect to the nucleon EDM disappears for large enough
t, while the effect becomes smaller even at small t if the
source is placed away from the boundary. We also found
that the finite size effect to the EDM is not so large: results
between �1:6 fm�3 and �2:4 fm�3 boxes agree within errors.

We investigated the quark mass dependence of the nu-
cleon EDM and the CP-odd phase factor f1

N in quenched
approximation on a larger volume with the clover fermion.
Both quantities do not seem to vanish in the chiral limit, in
contrast to full QCD where effects of the � term disappear
for a massless quark. Therefore nonvanishing behaviors of
the EDM and f1

N are purely quenching effects. In particu-
lar, f1

N seems to diverge as O�1=mq� in the chiral limit. It is,
however, difficult to determine precise quark mass depen-
dences of these quantities in quenched QCD, due to larger
statistical errors.

This work shows that the external electric field method
is simple and straightforward for the determination of the
EDM in lattice QCD. In particular, the success with clover
fermion in this method is significant for applications to full
QCD simulations. We are currently carrying out the EDM

calculation using Nf � 2 dynamical clover configurations
generated by the CP-PACS collaboration [18].
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APPENDIX A: ELECTRIC POLARIZABILITY OF
THE NEUTRON

In this appendix we discuss the electric polarizability of
the neutron. This observable can also be obtained by the
external field method employed in our calculation, as has
been done in Refs. [28,29]. We compare our results with
theirs.
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FIG. 18. In the left figure we show that the time dependence of the nucleon propagator in the next leading order of � at each quark
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comparison with the exponent of the nucleon propagator between the leading (open circles) and the next to leading order (solid
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1. Definition

The electric polarizability �N is defined as the coeffi-
cient of the ~E2 term in the expansion of the ~E dependent
nucleon mass mN� ~E�:

 �mN� ~E� � mN� ~E� �mN�0� � �
1
2�4��N��e

�1a�2 ~E�2;

(A1)

which is measured by Compton scattering experiments.
Note that the electric field ~E here is dimensionless. A
recent Compton scattering experiment gives

 �exp
N � �1:16
 0:15� � 10�3 fm3 (A2)

for the neutron [30]. In the lattice calculation the effective

mass shift is calculated by

 rN� ~E; t� �
hN �Ni� ~E; t�

hN �Ni�~0; t�
; (A3)

 �mN� ~E� � ln
�

rN� ~E; t�

rN� ~E; t	 1�

�
; (A4)

where hN �Ni� ~E; t� denotes the nucleon propagator in the
presence of the constant electric field ~E without reweight-
ing ei�Q. In order to remove spurious contributions odd in
~E from the effective mass shift, we take an average over ~E
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FIG. 19 (color online). The mass dependence of the CP-odd
phase factor with clover fermion. The top figure presents f1
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FIG. 20. (Top) The effective mass shift plot as Fig. 25 in the
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mass shift of the above results from exponentially fitting rN in
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and � ~E, by replacing

 rN� ~E� !
1
2�rN�

~E; t� 	 rN�� ~E; t�� (A5)

in Eq. (A4).

2. Numerical results on a 163 � 32 lattice

Our lattice setup for the calculation of the electric polar-
izability is the same as the one employed for the NEDM
calculation in Sec. IVA. In particular, the real electric field
~E � �0; 0; E� in Minkovski space is introduced by the

replacement of Eq. (12). Although the periodicity in time
direction is broken by this electric field, the boundary
conditions for the fermion are periodic in both time and
spatial directions on a 163 � 32 lattice. We employ the
domain-wall fermion at E � 4� 10�3 and E � 2� 10�3.
As a comparison we also employ the clover fermion at E �
4� 10�3.

In the top of Fig. 20 we show the effective mass plot of
rN in Eq. (A4) for domain-wall and clover fermions on the
same configurations. We observe the plateau starting
around t � 7 for the clover fermion and around t � 10
for the domain-wall fermion. From the exponential fit of
rN�t� at 9 � t � 14, we obtain �mN , whose values are
given in Table IV.

In the bottom of Fig. 20 we present the E dependence of
the mass shift 2�mN for the domain-wall fermion. By
fitting data with�4��N�e2a4��1E2, we obtain the electric
polarizability for the neutron:

 �N � 1:32�2� � 10�4 fm3 (A6)

in the unit of e2�4���1a3 ’ 0:73� 10�5 fm3 with the fine-
structure constant � � e2=�4�� � 1=137.

This value, obtained in quenched QCD at a ’ 0:1 fm
and mPS=mV ’ 0:88 is 1=10 times smaller than the experi-
mental value �exp

N � 1:16�15� � 10�3 fm3, but the sign of
�N agrees.

3. Results on 243 � 32 with two different source points

We also calculate the electric polarizability of the neu-
tron on a larger volume, 243 � 32, using the clover fermion
at 
 � 0:1320. As in Sec. IV C, we employ two different
source points, tsrc � 1 and tsrc � 8, to investigate the effect
of the gap in E at the boundary to the electric polarizability.

In Fig. 21 we present the effective mass shift, �mNa, for
both tsrc � 1 and tsrc � 8. Compared with the results on the
smaller volume in Sec. A 2, plateaus seem to appear at very
large t for both sources or even �mNa may not reach the
plateau at t � 16. Even though an identification of plateaus
is less reliable on the larger volume, we fit data exponen-
tially in t at 13 � t � 16 and give values of �mNa in
Table IV. As seen in the table, the magnitude of fitted
values is larger than the value on the smaller volume. We
think that this discrepancy is mainly caused by contami-

TABLE IV. Summary of the fitting results of the mass shift of the neutron with a different boundary condition and fermions.

Gauge action Mass Lattice size B.C. tsrc E �mNa

Domain-wall fermion
RG Iwasaki � � 2:6 mf � 0:12 163 � 32 Periodic tsrc � 1 Real, 0.002 �0:000 037 5�44�

Real, 0.004 �0:000 157�18�

Clover fermion
RG Iwasaki � � 2:6 
 � 0:1320 163 � 32 Periodic tsrc � 1 Real, 0.004 �0:000 155�20�

243 � 32 Periodic tsrc � 1 Real, 0.004 �0:000 265�22�
tsrc � 8 Real, 0.004 �0:000 356�50�

Wilson fermion
Plaquette � � 6:0 
 � 0:1515 243 � 24 Dirichlet tsrc � 1 Imag, 0.001 08 �0:000 069�2�

Imag, 0.004 32 �0:001 07�18�
Imag, 0.008 64 �0:004 35�65�
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FIG. 21 (color online). This figure shows the comparison with
a different source point tsrc. We plot the effective mass shift as
Fig. 25 in the periodic boundary condition with clover fermion at

 � 0:1320 and E � 4:0� 10�3 in large lattice size 243 � 32.
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nations from excited states on the larger volume. We need
larger time separations to extract the ground state contri-
bution unambiguously. We also observe large differences
in the effective mass at small t between tsrc � 1 and tsrc �
8. This indicates that the electric polarizability is quite
sensitive to the boundary effect.

In Fig. 22 we plot the effective mass shift at a different
quark mass after the taken average over three directions of
the electric field with tsrc � 1 on 243 � 32. We observe
that the time behavior is not so different from each other,
and therefore its value will not depend on the quark mass
strongly. Figure 23 and Table V show the converted results
to electric polarizability using fitting data of �mN in each

. In these heavier masses, the results seem to be constant
for the square of pion mass, though statistic errors are still
large. Therefore more statistics are probably needed to give
a precise value of the neutron electric polarizability in the
chiral limit.

4. Comparison with previous calculations

As a test of our method, we use the same lattice parame-
ters as in previous calculations [28,29]: Accumulating 40
quenched configurations generated by the plaquette action
at � � 6:0 (a ’ 0:1 fm) on a 244 lattice, we calculate the

electric polarizability by the Wilson fermion action at 
 �
0:1515, which is the heaviest quark mass in [29]. With the
periodic boundary condition in spatial directions but the
Dirichlet boundary condition in the time direction, the
nucleon propagator is calculated for a point source at t �
1 and a point sink at t.

The electric field is introduced into all spatial link
variables in the expanded form:

 U3�x� ! eiqEtU3�x� ’ �1	 iqEt�U3�x�; (A7)

where we use an electric field in Euclidean space, which
corresponds to the imaginary value in Minkovski space.
Therefore the E dependence of the mass shift �mN is given
by

 �mN�i ~E� � �
1
2�4��N��ie

�1a�2 ~E�2

� 1
2�4��N�e

�2a�4 ~E2 (A8)

with the electric polarizability �N . As in [29], we employ
E � 
1:08� 10�3, 
4:32� 10�3, 
8:64� 10�3 in the
actual calculation. Note that the periodicity of spatial link
variables in the time direction is explicitly violated partly
due to the fact that E � 2�=L and partly due to the
expansion (A7).

TABLE V. Summary of the fitting results of polarizability of the neutron with clover fermion action at three different quark masses
after the average over three directions of the electric field.

Gauge action Lattice size B.C. Mass tsrc E �N�fm
�3�

RG Iwasaki � � 2:6 243 � 32 Periodic 
 � 0:1320 tsrc � 1 Real, 0.004 0.000 227(14)

 � 0:1330 tsrc � 1 Real, 0.004 0.000 226(26)

 � 0:1340 tsrc � 1 Real, 0.004 0.000 228(63)
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FIG. 22 (color online). We plot the effective mass shift as
Fig. 21 with several quark masses.
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FIG. 23 (color online). This figure shows the mass dependence
of electric polarizability of the neutron with the same parameter
as Fig. 22.
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Figure 24 shows the effective mass shift for the neutron
in Eq. (A4) at jEj � 1:08� 10�3. Our data in Fig. 24
roughly agree with filled circle symbols in Fig. 6 of [29].
Unfortunately a candidate for a possible plateau appears
only at 15 � t � 19. Assuming that this is indeed a real
plateau, we fit �mN exponentially in t at 15 � t � 19 and
give values at each E in Table IV.

In Fig. 25 we plot the E dependence of mass shift �mN .
By fitting data with 1

2 �4��N�e
�2a�3E2, we obtain a coef-

ficient �N , the value of electric polarizability:

 ��N
Dirichlet � �8:5�8� � 10�4 fm3: (A9)

This value agrees with the value in [29], ��N
Dirichlet �
�7:9�5� � 10�4 fm3, within about one-sigma error.
Surprisingly the sign of this result is opposite to the result
(A6) obtained by the real electric field in Minkovski space

and to the experimental value in Eq. (A2).3 In addition we
confirm that the negative value of�N is obtained even if we
use the real electric field in Minkovski space in the
Dirichlet boundary condition. Therefore the wrong sign
of �N in this case is not caused by the way of introducing
the electric field (Euclid or Minkovski) but is related to the
boundary condition in the time direction. We think that
T � 24 is too short to suppress contributions from excited
states to �N . In order to obtain a reliable estimate for �N ,
one should investigate dependences of results on the lattice
setup such as the boundary conditions, the source point, or
the way of introducing the electric field. We leave these
studies for future investigations.
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