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We study the finite temperature transition in QCD with three flavors of equal masses using the R and
RHMC algorithms on lattices with temporal extent N� � 4 and 6. For the transition temperature in the
continuum limit we find r0Tc � 0:429�8� for the light pseudoscalar mass corresponding to the endpoint of
the 1st order transition region. When comparing the results obtained with the R and RHMC algorithms for
p4fat3 action we see no significant step-size errors down to a lightest pseudoscalar mass of mpsr0 � 0:4.
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I. INTRODUCTION

Lattice QCD has established the existence of a transition
from hadron gas to a new state of strongly interacting
matter where quarks and gluons are no longer confined
inside hadrons and which is usually called the quark-gluon
plasma [1,2]. The nature of this transition depends on the
quark content and quark masses. For infinite or very large
quark masses the transition is a 1st order deconfining
transition. In the opposite case of zero quark masses one
may have a 2nd order chiral phase transition for 2 flavors or
a 1st order chiral phase transition for 3 flavors. For inter-
mediate masses the transition is just a rapid crossover,
meaning that thermodynamic quantities change very rap-
idly in a narrow temperature interval. The boundary of the
1st order transition region of 3 flavor QCD as a function of
mass has been studied using improved (p4) [3] and stan-
dard staggered actions [4,5]. There is a significant discrep-
ancy regarding the value of the quark masses, or
equivalently the value of the pseudoscalar meson masses
where the transition changes from crossover to 1st order.
With an improved action it was found that the 1st order
transition ends for a pseudoscalar meson mass of about
70 MeV, while with the standard action it ends for pseu-
doscalar meson masses of about 300 MeV [4,6] or larger
[5].

It has been observed that the pressure and energy density
normalized by its ideal gas value shows almost the same
behavior as a function of T=Tc for SU(3) pure gauge
theory, 2 flavor, 2� 1 flavor and 3 flavor QCD [1]. Thus
flavor and quark mass dependence of these quantities in the
first approximation, is determined by flavor and quark mass
dependence of transition temperature Tc. Therefore it is
very instructive to study the flavor dependence of the
transition temperature. Such a study has been performed
in Ref. [7] on lattices with temporal extent N� � 4 using
the improved staggered p4 action.

In the past most simulations with 2 and 3 flavors of
staggered fermions have been done using the hybrid mo-
lecular dynamics R (HMDR) algorithm [8], often called
simply the R-algorithm. It has finite step-size errors of
O�dt2� where a step-size dt is used in the molecular
dynamics evolution. Recently the rational hybrid
Monte Carlo (RHMC) algorithm has been invented which
allows simulations of theories with fractional powers of the
fermion determinant, for example, 2 and 3 flavors of
staggered fermions, without finite step-size errors [9].
Therefore the most recent thermodynamics studies use
the RHMC algorithm [10–13]. It has been observed in
Ref. [11] that the use of the exact RHMC algorithm re-
duces the value of the critical quark mass where the tran-
sition turns to 1st order by 25% in the case of the standard
staggered action.

The purpose of this paper is twofold. First we would like
to study the transition in 3 flavor QCD, extending the
previous studies to smaller quark masses and smaller lat-
tice spacings using the improved p4 staggered fermion
action. Second we would like to compare the R-algorithm
with the new RHMC algorithm. The rest of the paper is
organized as follows. In Sec. II we discuss the calculational
setup. In Sec. III we show our results for finite temperature
calculations. Section IV discusses the zero temperature
simulations needed to set the scale and the transition
temperature in physical units. In Sec. V we present a
comparison of the R and RHMC algorithms. Finally,
Sec. VI contains our conclusions. A technical discussion
of different fat link actions is given in Appendix A. In
Appendix B we discuss the eigenvalues and eigenvectors
of the p4 action in the free-field limit.

II. LATTICE FORMULATION AND SETUP

Most of the simulations discussed in this paper were
done using the p4fat3 action, which is also simply called
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the p4 action [7]. To improve the rotational symmetry,
which is violated on the lattice, bent 3-link terms are added
to the 1-link term of the standard staggered action [14].
Properly chosen coefficients of the 1-link and the 3-link
terms can eliminate, at tree level, the O�a2� errors in the
dispersion relation for staggered fermions [14]. The viola-
tion of flavor symmetry which is present in the staggered
fermion formulation can be significantly reduced by re-
placing the normal link in the 1-link term by a fat link
which is a sum a of normal link and 3-link staples [15].
This 3-link fattening is the origin of the name p4fat3.
Though this type of fat link action is a big improvement
over the standard staggered fermion action, further im-
provement of the flavor symmetry can be obtained by
adding 5- and 7-link staples [16]. In fact one can eliminate
the effect of flavor symmetry breaking at order O�g2a2�
using a suitable combination of 3-, 5- and 7- link staples
leading to what is called the fat7 action [16]. We have also
done calculations with the p4 action with fat7 fat links.
Unfortunately it turns out that on the coarse lattices used in
our study of 3 flavor QCD thermodynamics, this action has
some undesirable features. It leads to the occurrence of a
bulk transition, which we will discuss in more detail in
Appendix A.

To study staggered fermions with less than four flavors,
we use the rooting procedure, i.e. each fermion flavor is
represented by �detM�1=4, where M is the staggered
fermion Dirac operator. For a recent discussion of this
procedure see Ref. [17]. Most of our simulations have
been done using the standard R-algorithm [8]. As in
Ref. [7] the step-size of the molecular dynamics evolution
was set to dt � m=2:5 for the staggered quark mass m.

We also performed calculations with the RHMC algo-
rithm. In this algorithm an optimal rational approximation
is used to evaluate the fractional power of the determinant
[9]. More precisely one finds the optimal approximation
for �MyM�� where M � 2m�D is the usual staggered
fermion matrix and for the three flavors � � 3=8. Using
sufficiently high order polynomials the rational approxi-
mation can be made arbitrarily precise for the given spec-
tral range of the fermion operator. For the standard
staggered fermion action the spectral range of MyM is
well known, the smallest eigenvalue of this matrix is 4m2.
The largest eigenvalue can be estimated in the free-field
limit to be �2

max � 16� 4m2. For the case of the p4 stag-
gered action the smallest eigenvalue is the same, while the
largest eigenvalue in the free case is �2

max � 50=9� 4m2.
In Appendix B we give the derivation of this result. It turns
out that in all our simulations the largest eigenvalue was
smaller than 5.0, so we choose �2

max � 5:0 as the upper
limit on it. For the range of the quark masses studied by us,
which include quark masses as light as 1=20th of the
strange quark mass, it is sufficient to use polynomials of
degree 12 to achieve machine precision with the rational
approximation. Therefore in the Metropolis accept/reject

step we used polynomials of degree 12. In the molecular
dynamics evolution we used a less stringent approximation
of the determinant since any errors in the evolution, in-
cluding the dt2 step-size errors, are eliminated by the
accept/reject step. It has been found that in most cases it
is sufficient to use polynomials of degree 5–6 without
compromising the acceptance rate. Furthermore, the stop-
ping criteria for the conjugate gradient inversions can be
relaxed to 10�5 in the molecular dynamics evolution with-
out significant effect on the acceptance rate. In the Monte-
Carlo accept/reject step we typically use 10�12 for the
conjugate gradient stopping criteria. The length of the
trajectory was �MD � 0:5 in units of molecular dynamics
time.

The gauge fields and quarks contribute different
amounts to the force in the molecular dynamics evolution.
The contribution of the gauge fields is larger than that of
quarks. On the other hand the cost of the evaluation of the
force coming from the gauge fields is small. The opposite
is true for the part of the force coming from the fermions.
Therefore it is reasonable to integrate the gauge force on
finer molecular dynamics time scale than the fermion force
[18]. In our simulations we typically used 10 gauge field
updates per fermion update. The 3 flavors of staggered
fermions are simulated as 1� 1� 1, i.e. we used a factor
�detMyM�1=8 for each fermion flavor. Although this in-
creases the number of inversions, the reduced force allows
for a larger step-size dt for the same acceptance rate. The
step-size dtwas chosen such that the acceptance was about
70%. To achieve this, the step size was typically of the
order of the strange quark mass used in our 2� 1 flavor
study [13].

III. FINITE TEMPERATURE SIMULATIONS

Our studies of the QCD transition at finite temperature
have been performed on lattices of size N3

� � N�. The
lattice spacing, a, relates the spatial (N�) and temporal
(N�) size of the lattice to the physical volume V � �N�a�3

and temperature T � 1=N�a, respectively. The lattice
spacing, and thus the temperature, is controlled by the
gauge coupling, � � 6=g2, as well as the bare quark
masses. The parameters of our finite temperature simula-
tions are given in Table I. We extended the results of
Ref. [7] in two respects. Compared to Ref. [7] we have
added a smaller mass value m � 0:005 for N� � 4 and
extended the runs at larger quark masses to achieve a better
statistical accuracy. In addition we have studied the finite
temperature transition on N� � 6 lattices for two values of
the quark mass m. All the results presented in this section
have been obtained with the R-algorithm.

As mentioned in the introduction, in 3 flavor QCD for
small quark mass we have a 1st order phase transition
which turns into rapid crossover at the quark mass corre-
sponding to the light pseudoscalar mass of about 70 MeV
[4]. The transition is signaled by a rapid change in bulk
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thermodynamic observables (energy density, pressure) as
well as in the chiral condensates and the Polyakov loop
expectation value,
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which are order parameters for a true phase transition in the
zero and infinite quark mass limit, respectively. Note that
we have defined the chiral condensate per flavor degree of
freedom, hence the factor 1=3 in Eq. (1).

We use the Polyakov loop susceptibility as well as the
disconnected part of the chiral susceptibility to locate the
transition temperature.

 �L � N3
��hL2i � hLi2�; (3)

 

�q
T2 �

N�
16N3

�
�h�TrM�1�m��2i � hTrM�1�m�i2�: (4)

We calculate the value of the Polyakov loop at the end of
every trajectory. For each tenth trajectory we calculate the
value of �  and �q using ten Gaussian random vectors. In
Fig. 1 we show the disconnected part of the chiral suscep-
tibility calculated on our N� � 4 lattice with different
spatial volumes at different quark masses. In Fig. 2 we
show the Polyakov loop �L and chiral �q susceptibilities
calculated on 163 � 6 lattice. The location of peaks in the
susceptibilities has been determined using Ferrenberg-
Swedsen reweighting for several values � in the vicinity
of the transition. Errors on the peak location have been
obtained from a jackknife analysis where Ferrenberg-
Swedsen reweighting has been performed on different
subsamples. The resulting pseudocritical couplings are
shown in Table II. In finite volume the pseudocritical
couplings �c determined from the Polyakov loop correla-
tor and chiral susceptibility are generally different. In the
case of the crossover this difference can persist even in the
infinite volume limit. From Table II we see that in most
cases the two pseudocritical couplings are identical within
statistical errors even for small volume 83 � 4. The cases
where this difference is the largest are the cases where �c;q
has large statistical errors. For example for the 163 � 6
lattice and m � 0:05 we find �c;L � �c;q � :0113�328�.
Therefore we have also calculated the weighted average of
�c;L and �c;q which is shown in the last column of Table II
together with the corresponding error. This error is calcu-
lated from the statistical errors and the difference between
the central values added quadratically. The difference in

 

 0

 20

 40

 60

 80

 100

 120

3.25 3.30 3.35 3.40

β

χq / T
2 m = 0.005

123x4

163x4

 0

 20

 40

 60

 80

 100

 120

3.25 3.30 3.35 3.40

β

χq / T
2 m = 0.010

 83x4

163x4

0

20

40

60

80

100

120

3.25 3.30 3.35 3.40

β

χq / T
2 m = 0.025

 83x4

 0

 20

 40

 60

 80

 100

 120

3.25 3.30 3.35 3.40

β

χq / T
2 m = 0.050

 83x4

163x4

FIG. 1 (color online). The disconnected part of the chiral susceptibility calculated on N� � 4 lattices at different quark masses.

TABLE I. Parameters of the numerical simulations.

N� m N� # � values max. no. of traj.

4 0.100 16 4 42000
0.050 8, 16 8, 14 4130, 2650
0.025 8, 16 8, 9 6250, 8650
0.010 8, 16 9, 6 2460, 4660
0.005 12, 16 11, 8 1360, 3000

6 0.100 16 16 6000
0.050 16 14 7900
0.020 16 10 16000
0.010 16 9 10900
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pseudocritical couplings determined on 83 � 4 and 163 �
4 lattices is typically small, indicating small finite volume
effects. As a general tendency the pseudocritical coupling
�c shifts toward smaller values with increasing volume. In
agreement with earlier calculations we find that the posi-
tion of peaks in �q and �L show little volume dependence
and that the peak height changes only little, although the
maxima become somewhat more pronounced on the larger
lattices. This is consistent with the transition being a cross-
over rather than a true phase transition in the infinite
volume limit for the range of quark masses explored by us.

IV. ZERO TEMPERATURE CALCULATIONS AND
THE TRANSITION TEMPERATURE

In order to determine the transition temperature in units
of some physical quantity we performed zero temperature
calculations on 163 � 32 lattices in the vicinity of the
pseudocritical coupling �c. The parameters of these cal-
culations together with the accumulated statistics are sum-
marized in Table III. We have calculated the static quark

potential and meson correlators on each 10th trajectory
generated.

The static potential has been calculated using the ratios
of the Wilson loops at two neighboring time-slices and
extrapolating them to infinite time separation with the help
of constant plus exponential form. The spatial transporters
in the Wilson loop have been constructed from spatially
smeared links with APE smearing. The weight of the 3 link
staple was � � 0:4 and we used ten steps of APE smearing.
From the static potential we have determined the string
tension and the Sommer parameter r0 defined as [19]

 r2
dV �qq�r�

dr

��������r�r0

� 1:65: (5)

When extracting r0 and the string tension on coarse latti-
ces, such as the ones used in thermodynamics studies, the
violation of rotational symmetry has to be taken into
account. We do this using the procedure described in detail
in our recent paper [13]. The value of Sommer scale and
the string tension are given in Table III for different quark
masses. Having determined r0 for different gauge cou-
plings and quark masses allows us to perform interpola-
tions of r0=a in these parameters. As in Ref. [13] we use
the following renormalization group inspired interpolation
ansatz [20]

 �r0=a��1 � R����1� Bâ2��� � Câ4����eA�2ml�ms��D:

(6)

Here R��� is 2-loop beta function of 3 flavor QCD. In the
interpolation we also used the values of r0=a determined in
our 2� 1 flavor study [13] in addition to those shown in
Table III, giving A � 1:45�5�, B � 1:20�17�, C � 0:21�6�
and D � 2:41�5� with �2=dof � 0:9. This was the reason
for using the notation ml and ms for the light and the
strange quark mass in Eq. (6). For 3 degenerate flavors of
course ms � ml � m. In Table III we also show the values
of r0=a obtained from this ansatz for each of the parameter
sets.

Meson masses have been calculated using the four local
staggered meson operators. We used point-wall meson
correlation functions with a Z2 wall source. To extract

TABLE II. Critical couplings determined from the location of
peaks in the Polyakov loop susceptibility as well as in the
disconnected parts of the chiral susceptibilities. The last column
gives the average of �c;L and �c;q with combined statistical and
systematic errors.

N� m N� �c;L [from �L] �c;q [from �q] �c [averaged]

4 0.100 16 3.4800(27) 3.4804(24) 3.4802(18)
0.050 16 3.3884(32) 3.3862(47) 3.3877(34)

8 3.4018(35) 3.3930(201) 3.4015(94)
0.025 8 3.3294(27) 3.3270(28) 3.3283(31)
0.010 16 3.2781(7) 3.2781(4) 3.2781(3)

8 3.2858(71) 3.2820(61) 3.2836(60)
0.005 16 3.2656(13) 3.2678(12) 3.2667(24)

12 3.2659(13) 3.2653(12) 3.2656(10)
6 0.200 16 3.8495(11) 3.9015(279) 3.8495(520)

0.100 16 3.6632(55) 3.6855(105) 3.6680(228)
0.050 16 3.6076(24) 3.6189(328) 3.6077(115)
0.020 16 3.4800(110) 3.4800(80) 3.4800(65)
0.010 16 3.4518(50) 3.4510(83) 3.4516(44)
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FIG. 2 (color online). The disconnected part of the chiral susceptibility (left) and the Polyakov loop susceptibility (right) calculated
on 163 � 6 lattices.
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the meson masses from the correlation functions we used a
double exponential ansatz which takes into account the two
lowest states with opposite parity. The two lowest pseudo-
scalar meson masses as well as the lightest vector meson
mass are shown in Table III. The breaking of the flavor
symmetry can be quantified by the quadratic splitting of the
pseudoscalar masses: �ps � �m

2
ps 2 �m

2
ps�r

2
0, where mps 2

is the mass of the lightest pseudoscalar non-Goldstone
meson that is present with staggered fermions. This quan-
tity should be quark mass independent for sufficiently
small quark masses and should vanish as O�a2� when the
continuum limit (a! 0) is approached. In the last column
of Table III we show the value of �ps from our scale setting
run for N� � 4 and N� � 6. As we see from the table this
quantity does not decrease quite as fast as a2. This is an
indication that on the coarse lattice, corrections to asymp-
totic scaling are still important.

With the help of the interpolation formula we can cal-
culate the lattice spacing in units of r0 and thus r0Tc for
different pseudoscalar meson masses, which is shown in
Fig. 3. The error in a��c� results in an error in the value of
r0Tc which is shown in Fig. 3 as thin error-bars. The
uncertainty in �c itself also contribute to the uncertainty
in r0Tc, which is shown as a thick error-bar in the figure.

If there is a critical point in the �m; T�-plane, then
universality dictates that Tc�m� � Tc�m

e� � �m�
me�1=���� with � and � being critical exponents. In the
case of three degenerate flavors the line of the 1st order

transition in the �m; T� plane ends in a critical endpointme,
Tc�me� belonging to the Z(2) universality class. For this
universality class we have �� � 1:5654. Therefore we
attempted a combined continuum and chiral extrapolation
using the following extrapolation ansatz

 r0Tc�mps; N�� � r0Tcjcont�me
ps� � A��r0mps�

2

� �r0mps;c�
2�1=���� � B=N2

�: (7)

The value of the quark mass where the transition changes
from 1st order to crossover, i.e. the mass corresponding to
the endpoint, has been estimated in [3] using N� � 4
lattices to beme � 0:0007�4�. This translates into the value
of the pseudoscalar mass

 r0m
e
ps � 0:16�3

�5: (8)

It turns out that this large uncertainty in the value of me
ps

produces an uncertainty in the extrapolated value of
Tc�m

2
ps� which is much smaller than the statistical errors.

The extrapolation according to Eq. (7) yields

 r0Tc�me
ps� � 0:429�8�;

Tc�me
ps�����
�
p � 0:391�9�: (9)

For the fit to r0Tc data we get �2=dof � 0:7, while for the
fit to Tc�me

ps�=
����
�
p

data we have �2=dof � 0:4. The quark
mass dependence of the transition temperature is described
by Eq. (7) only for m>me. For smaller quark masses the
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FIG. 3 (color online). The value of the transition temperature in units of r0 (left) and in units of
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p

(right) calculated on N� � 4 and
N� � 6 lattices as function of mps together with continuum extrapolated value. The vertical line and band indicates the value of mps

where the transition becomes 1st order.

TABLE III. Parameters of the zero temperature simulations, meson masses, the Sommer scale r0 and the string tension. Also shown
is the value of r0 obtained from the interpolation formula (6). The upper part of the table refers to scale setting runs for our N� � 4
lattices while the lower part to our N� � 6 calculations. In the last column the splitting between the lightest non-Goldstone and the
Goldstone pseudoscalar meson masses squared is shown. All dimensionful quantities are given in units of the lattice spacings.

� m # traj mps mps 2 mV r0 �r0�smooth

����
�
p

�ps

3.3877 0.050 7800 0.7084(1) 1.094(7) 1.310(20) 2.066(7) [7] 2.061 0.552(12) [12] 2.97(7)
3.3270 0.025 12000 0.5118(3) 0.998(24) 1.222(32) 1.982(14) [13] 1.989 0.564(11) [11] 2.90(20)
3.2680 0.005 1500 0.2341(9) 0.860(90) 1.250(50) 1.888(15) [9] 1.888 0.587(17) [16] 2.44(55)

3.46345 0.020 4420 0.4413(8) 0.665(5) 0.908(11) 2.797(20) [19] 2.813 0.404(6) [5] 1.94(9)
3.4400 0.010 4290 0.3210(7) 0.594(7) 0.882(20) 2.770(13) [13] 2.779 0.405(6) [5] 1.92(7)
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transition is first order and Tc depends linearly on the quark
mass, i.e. we expect Tc�mps; N�� � Tcj

chiral
cont � Am

2
ps �

B=N2
� . If we would insist on the linear dependence of the

transition temperature on the quark mass in the entire mass
range, the combined chiral and continuum extrapolation
would give

 r0Tc � 0:419�9�;
Tc����
�
p � 0:383�10�: (10)

The �2=dof we have found for this fit is almost the same as
for the one above. The value of Tc=

����
�
p

is slightly smaller
than the estimate of Ref. [7] based on N� � 4 lattice and
larger quark masses. This is due to the continuum extrapo-
lation performed in the present work. Note, however, that
the value Tc�0�Nt�4=

����
�
p
� 0:417�9� is entirely consistent

with Ref. [7]. The value of Tc could be compared with the
corresponding 2� 1 flavor value Tcr0 � 0:444�6�	�12
�
	�6
 in the limit of vanishing u and d quark masses but
fixed physical value ofms [13]. Thus the flavor dependence
of r0Tc is about or smaller than 5%. One should also note
that the difference between the transition temperature cal-
culated on N� � 4 and N� � 6 lattices is very similar to
that found in 2� 1 flavor case [13]. In Ref. [7] the tran-
sition temperature in the chiral limit has also been esti-
mated in units of the vector mass. Our estimate for
Tc=mV jm�0 is consistent with that result.

V. COMPARISON OF R AND RHMC ALGORITHM

We investigated the effect of the finite step-size errors of
the R algorithm on the properties of the finite temperature
transition. We performed calculations on 83 � 4 lattices
using the p4fat3 action as well as the p4fat7 action and the
later will be described in Appendix A in more detail. In the
calculations with the p4fat3 action we used a quark mass of
m � 0:01, while in case of p4fat7 action we used two
quark masses m � 0:1 and 0.035. In our calculations with
the R algorithm the step-size of the molecular dynamics
evolution was set to be dt � m=2:5. Some additional cal-
culations have been done at twice smaller step-size dt �
m=5. We have calculated the chiral condensate and the
Polyakov loop and determined the pseudocritical cou-
plings which are summarized in Table IV. In Fig. 4 we
compare the chiral condensate susceptibility calculated

using the R-algorithm and RHMC algorithm for the
p4fat3 action. We find that for the p4fat3 action the results
obtained with R and RHMC algorithms are identical within
statistical errors.

The situation is different for p4fat7. In Fig. 5 the expec-
tation value of the Polyakov loop and the chiral condensate
calculated with the two algorithms are shown for two
values of the quark mass. Here we see significant differ-
ences in the value of the chiral condensate and Polyakov
loops calculated with the R-algorithm and step-size dt �
m=2:5 and the corresponding result obtained with RHMC
algorithm. We see also a small but statistically significant
difference in the value of the pseudocritical coupling cal-
culated with the two algorithms, c.f. Table IV. The differ-
ence becomes much less visible when the step-size is
decreased to dt � m=5. Figure 5 also suggests that the
difference between the results of the two algorithms be-
comes larger for the smaller quark mass.

For the p4fat7 action we also performed a zero tempera-
ture calculation on 163 � 32 lattices using the RHMC
algorithm to determine the scale. We have calculated me-
son masses as well the static quark potential. From the later
we have extracted r0. The results of these calculations are
also given in Table IV. Now we can estimate the transition
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FIG. 4 (color online). The comparison of the disconnected part
of chiral condensate susceptibility calculated with the R and
RHMC algorithms for p4fat3 with m � 0:01.

TABLE IV. Comparison of the R and the RHMC algorithms for the pseudocritical couplings
and the scale at the transition temperature.

Action m Algorithm �c;L �c;q mps r0=a

p4fat3 0.010 HMDR 3.2858(71) 3.2820(61)
RHMC 3.2820(11) 3.2820(11)

p4fat7 0.100 HMDR 2.9850(25) 2.9753(53)
RHMC 2.9939(33) 2.9831(20)

p4fat7 0.035 HMDR 2.7514(6) 2.7485(7) 0.7884(5) 2.1661(123)
RHMC 2.7540(6) 2.7515(7) 0.7897(7) 2.2063(108)
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temperature in units of r0 for m � 0:035 calculated with
the two algorithms. For the R-algorithm we get r0Tc �
0:542�3� while for the RHMC algorithm we have r0Tc �
0:552�3�. Thus in the case of the p4fat7 action the R-
algorithm underestimates the transition temperature
roughly by 2%.

VI. CONCLUSIONS

In this paper we have studied the phase transition in 3
flavor QCD at finite temperature using N� � 4 and N� � 6
lattices. For the quark mass corresponding to the second
order endpoint we find the critical temperature to be
r0Tc � 0:429�8�. The transition temperature in the chiral
limit is about 2% smaller than the above value. For a given
pseudoscalar meson mass the difference between the tran-
sition temperature in 3 flavor and 2� 1 flavor case is less
than 5%. We also find that the cut-off dependence of the
transition temperature in 3 and 2� 1 flavor QCD is very
similar. Furthermore, we find that finite step-size errors
present in the R-algorithm are negligible, at least for the
p4fat3 action at the quark masses studied.
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APPENDIX A

In this appendix we are going to discuss the properties of
the finite temperature transition in the case of the p4fat7
action and compare it to the p4fat3 case. In general the
gauge transporter in the 1-link term of the p4 action can be
replaced by combination of the link variable and different
staples, called the fat link, without changing the naive
continuum limit. This is true provided the coefficient of
different terms in the fat link satisfy appropriate normal-
ization conditions. For example in the case of the fat link
with the three link staple only, this condition reads c1 �
6c3 � 1. Introducing five and seven link staples in addition
to the three link staples give the so-called fat7 link [16]. In
this case the normalization condition reads: c1 � 6c3 �
24c5 � 48c7 � 1. It is possible to eliminate the leading
order coupling to the high momentum gluons with mo-
menta �0; 	; 0; 0�, �0; 	; 	; 0� and �0; 	; 	;	�, i.e. to sup-
press the flavor changing interaction at order g2a2 if the
coefficients are chosen as [16]

 

c3

c1
�

1

2
;
c5

c1
�

1

8
;
c7

c1
�

1

48
: (A1)

This gives then the value c1 � �1=8 for the coefficient of
the 1- link term to get the naive continuum limit.
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In Fig. 6 we show the chiral condensate calculated on the
N� � 4 and N� � 6 lattices. We can see that for small
quark masses the transition becomes strongly first order.
The value of the chiral condensate in the low temperature
phase is also much larger than for the p4fat3 action dis-
cussed in the main text. For the smallest quark mass the
discontinuity in the chiral condensate is about the same for
N� � 4 and N� � 6 lattice, although we would expect it to
decrease by roughly a factor of �6=4�3 ’ 3 when going
from N� � 4 to N� � 6. This could mean that we are
dealing with a bulk transition. In Fig. 7 we also compare
the pseudocritical couplings for the p4fat3 and p4fat7
actions. We see that for large quark masses the N� depen-
dence of the pseudocritical coupling is similar, though their
values are significantly different. For small quark masses
the pseudocritical couplings calculated for N� � 4 and 6
come very close together, again suggesting that the tran-
sition may be a bulk transition. We did calculations also on
84 lattice at m � 0:01. In Fig. 7 we compare the chiral
condensate calculated on 83 � 4, 163 � 6 and 84 lattices.
We see a sharp drop in the value of the chiral condensate,
which occurs at the same �c for N� � 6 and 8. This again
indicates a bulk transition.

One may wonder which feature of the p4fat7 action is
responsible for the bulk transition. The main difference of
the p4fat7 action compared to p4fat3 action as well as to
other fat link action (e.g. ASQTAD) is the negative sign of
the one link term. Close to the continuum limit the nor-
malization condition c1 � 6c3 � 24c5 � 48c7 � 1 should

insure that the combination of 1-, 3-, 5- and 7-link terms
will describe a conventionally normalized, positive Dirac
kinetic energy. However, at stronger coupling where the
gauge field are more disordered, the staples with many
links are expected to give a significantly smaller contribu-
tion and the 1-link term may dominate, resulting in an
effective kinetic energy term with a possibly negative
sign. While this would simply correspond to nonstandard
sign and normalization conventions for the Dirac kinetic
energy, it raises the possibility that this effective kinetic
energy term will change sign as one passes from strong to
weak coupling. Such a sign change could induce a bulk
transition. In addition, the change in magnitude of the
coefficient in the effective kinetic energy (small for strong
coupling and large for weak coupling) would appear re-
versed in the chiral condensate (large for strong coupling
and small for weak coupling) consistent with the observed
behavior. To verify this we did calculations with p4fat7
action but with different coefficients which we call the
p4fat7’ action. The coefficients were chosen to be

 c1 �
3

4
�

1

8
;
c3

c1
�

1

2
;
c5

c1
�

1

8
;
c7

c1
�

1

48
: (A2)

For this action we found no evidence for a strong first order
transition but only a crossover. This can be seen, for
example, in the behavior of the chiral condensate shown
in Fig. 8. Both the value of the chiral condensate and the
location of the transition point is very similar to that of the
p4fat3 action.

 

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

amq

βc

p4fat3, 163x6
p4fat3, 163x4
p4fat7, 163x6
p4fat7,  83x4

0.0

0.5

1.0

1.5

2.0

 2.6  2.62  2.64  2.66  2.68  2.7  2.72  2.74  2.76

β

<ψ⎯ψ>

83×4
163×6
83×8

FIG. 7 (color online). The pseudocritical couplings for the p4fat3 and p4fat7 actions (left) and the chiral condensate calculated with
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We also calculated the eigenvalues � � {�0 � 2m of the
p4fat7 Dirac operator. The normalized distribution of the
lowest 50 eigenvalues �0 is shown in Figs. 9 and 10 for the
quark masses m � 0:1 and m � 0:01, respectively. We
have used 100 configurations for m � 0:01, and 200 con-
figurations for m � 0:1. Given the above definition of �0

the breaking of the chiral symmetry manifests itself in a
nonzero density at �0 ’ 0. In Fig. 9 we show the eigenvalue
distribution for the larger quark massm � 0:1. It shows the
expected features: large density of eigenvalues near � ’ 0
in the low temperature phase (� � 2:96), significant drop
of eigenvalue density around zero at the transition (� �
3:0) and zero density of eigenvalues at the origin for the
deconfined phase (� � 3:04). The situation is different for
the smallest quark mass m � 0:01, where we see nonzero

density of eigenvalues at � ’ 0 even in the deconfined
phase (� � 2:66). The large decrease in the density of
eigenvalues at the origin when going from the confined
phase (� � 2:635) to the deconfined explains the large
drop in the value of the chiral condensate.

APPENDIX B

In this appendix we discuss the calculations of the
largest and the smallest eigenvalue of the staggered Dirac
operator in the free-field limit. Let us start our discussion
with case of the standard staggered fermions. The free-field
staggered Dirac operator acting on a single-component
fermion field is given by

 

FIG. 9 (color online). The eigenvalue distributions of the p4fat7 Dirac operator for m � 0:1 calculated on 83 � 4 lattice in the
confined phase (� � 2:96), at the transition (� � 3:00) and in the deconfined phase (� � 3:04).
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 M��x� �
X



�
�x����x�
� � ��x�
�� � 2m��x�;

(B1)

where �
�x� � ��1�x0�x1�...x
�1 are the normal staggered
phases. Consider M acting on a momentum eigenstate

 ��x� � ��p�e{p�x; (B2)

 M��x� �
X



	��p�e{p�x�e{p
 � e�{p
�e	
�x


� 2m��p�e{p�x; (B3)

where 	0 � �0; 0; 0; 0�; 	1 � �	; 0; 0; 0�; 	2 �
�	;	; 0; 0�; . . . Thus, the staggered Dirac operator has non-
diagonal terms that couple together states at different
corners of the Brillouin zone.

In momentum space, we can write the fermion matrix as

 M p0;p �
X



2{ sin�p
��p0;p�	
 � 2m�p0;p (B4)

 M y
p00;p0 �

X



� 2{ sin�p00
��p00�	
;p0 � 2m�p00;p0 : (B5)

Then, we have for MyM
 

My
p00;p0Mp0;p � 4

X



X
�

sin�p
� sin�p00���p00�	�;p�	


� 4m2�p;p00 (B6)

 

� 4
X



X
�

sin�p
� sin�p� � �	
�� � �	�����p00�	�;p�	


� 4m2�p;p00 (B7)

 � 4
X



X
�<


sin�p
� sin�p� � 	��p00;p�	
�	�

� 4
X



X
�>


sin�p
� sin�p���p00;p�	
�	�

� 4
X



sin2�p
��p;p00 � 4m2�p;p00 : (B8)

Noticing that p� 	
 � 	� � p� 	� � 	
 (mod 2	),
and interchanging 
 and � labels in the second piece of
Eq. (B8), we see that all the off-diagonal pieces of MyM
cancel, and we are left only with the diagonal piece,

 �MyM�p00;p � 4
X



sin2�p
��p;p00 � 4m2�p;p00 : (B9)

As expected, we have a hard lower bound on the eigenvalue
spectrum of �2

min � 4m2. The upper bound �2
max � 16�

4m2 is realized when p � �	2 ;
	
2 ;

	
2 ;

	
2�.

The situation for free-field p4 fermions is similar, but a
little bit more complicated. Here, the p4 Dirac operator is
given by

 

FIG. 10 (color online). The eigenvalue distributions of the p4fat7 Dirac operator for m � 0:01 calculated on 83 � 4 lattice in the
confined phase (� � 2:635), at the transition (� � 2:64) and in the deconfined phase (� � 2:66).
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M��x� � 2m��x�� c1;0

X



�
�x����x�
�

���x�
��� c1;2

X



X
��


�
�x����x�
� 2��

���x�
� 2�����x�
� 2��

���x�
� 2���; (B10)

where c1;0 �
3
4 and c1;2 �

1
24 . Again, we can examine how

M acts on the momentum eigenstate in Eq. (B2). As
before, we see that we have off-diagonal pieces that
come about as a direct result of the presence of staggered
phases.

 M��x� �
X



��p�e{�p�	
��x{h
�p� � 2m��p�e{p�x;

(B11)

 h
�p� � 2c1;0 sin�p
� � 4c1;2

X
��


sin�p
� cos�2p��:

(B12)

Or, in matrix form,

 M p0;p �
X



{h
�p��p0;p�	
 � 2m�p0;p: (B13)

Calculating MyM, we see that the off-diagonal pieces are
eliminated in the same way as in the naive staggered case.
Thus, we are left with only diagonal terms,

 �MyM�p00;p �
X



h2

�p��p;p00 � 4m2�p;p00 : (B14)

We see that �2
min � 4m2. Finding �2

max requires us to max-
imize the function

P
h2

�p�. Doing this, we find the maxi-

mum when two of the components of p are equal to 	=2
and the other two components are equal to 0. For example,
pmax � �	=2; 0; 	=2; 0�. This yields �2

max � 50=9� 4m2

for the p4 action. A similar calculation for the Naik action
yields �2

max � 196=9� 4m2.
For completeness, we also quote the eigenvectors of the

free p4 Dirac operator. Using a slightly different method
we find,
 

��x� � ���X�

�

�
{
X



�
��0 �p� sinp


�
2c1;0 � 4c1;2

X
��


cos2p�

�

� ��� 2m����0
�
u0
�0e

{2p�X; (B15)

where we implicitly sum over �0. Here we have used
hypercube coordinates X and �, where X labels the hyper-
cube and � is the offset within the hypercube, x � 2X� �
with �
 � 0, 1. Furthermore, �
��0 �p� is defined by

�
��0 �p�: � �
���	����
̂�;�0 � ����
̂�;�0 
e{p����
0� and u0

� is
a constant vector depending only on �. Finally, the eigen-
value of the free p4 Dirac operator is

 � � 2m� {

����������������������������������������������������������������������������X



sin2p


�
2c1;0 � 4c1;2

X
��


cos2p�

�
2

vuut :

(B16)
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