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I. INTRODUCTION

Recent experimental observations [1–3] intensified the
interest in B-meson physics as the prime area in which the
validity of the standard model can be put to test. In order to
perform such a test, theoretical predictions for fB, BB, and
�ms=�md are needed. In principle, the lattice approach to
QCD allows one to calculate these and other quantities of
interest from the first principles. However, the majority of
lattice results to date suffer from substantial systematic
errors which make comparison with experimental results
inconclusive. One of the largest systematic errors comes
from the procedure which relates lattice operators to the
corresponding operators in continuum QCD.

There are two main sources of error in this matching
procedure. First, lattice actions used in simulations usually
have a reduced symmetry group. The lack of symmetry
leads to the introduction of additional lattice operators
which complicates the matching. Second, the matching is
usually performed at the one-loop level in perturbation
theory. More often than not, the one-loop contributions
turn out to be quite large. Large one-loop contributions
undermine the perturbative approach to matching and force
the introduction of a large systematic error in order to
account for possible higher-order corrections.

In this paper we will demonstrate that both of these
issues can be addressed by an appropriate choice of lattice
action. Specifically, we will focus on the combination of
the static effective field theory [4] for heavy quarks, the
domain-wall formulation [5,6] for light quarks and an
improved gauge action [7] for gluons. This action provides
a good approximation for heavy mesons such as B, and it
has already been employed in numerical simulations [8].

We will obtain the renormalization constants connecting
bare lattice operators to continuum QCD operators renor-
malized in the MS�NDR� scheme. In particular, we will
consider heavy-light bilinears and four-fermion operators
relevant for B0 � �B0 mixing. The matching will be done at
the one-loop level in perturbation theory. We will split the
matching into two parts. First, the continuum QCD opera-
tors need to be related to the continuum static theory

operators. This step has already been carried out, and we
will quote the results here. Second, the continuum static
theory operators need to be matched to their lattice coun-
terparts. This second step has not been performed before
for our choice of lattice action, and thus is the main subject
of this paper.

This paper is organized as follows. In Sec. II we intro-
duce our choice of lattice action and discuss the corre-
sponding Feynman rules. In Sec. III the symmetries of the
action are discussed. In Sec. IV we quote the results of
matching the continuum QCD and continuum static theory
operators. In Sec. V we will match the static theory bi-
linears to their lattice counterparts. In Sec. VI we present
the matching of four-fermion operators as well as BB. In
Sec. VII we discuss the application of mean-field improve-
ment to our results.

II. LATTICE ACTION AND FEYNMAN RULES

Our lattice action consists of three parts:

 S � Sstatic � SDW � Sgauge; (1)

where Sstatic is the static-quark action describing heavy
quarks, SDW is the domain-wall fermion action describing
light quarks and Sgauge is the pure gauge action. In this and
all subsequent sections we set the lattice spacing a equal to
1.

A. Static-quark action

The simplest formulation of the static-effective-field-
theory action on the lattice is given by [9]

 Sstatic �
X
x

�h�x��h�x� �Uy0 �x� 0̂�h�x� 0̂��; (2)

where U0�x� 0̂� is the gauge link in temporal direction
between sites x and x� 0̂. The static-quark field h satisfies
�0h � h. The static-quark propagator in momentum space
is given by
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 H�k� �
1

1� e�ik0 � �
: (3)

The quark-gluon vertices are

 

~V a
��k; k0� � �igTa�0�e

�i�k0�k00�=2; (4)

 

~V ab
���k; k0� � �

1

2
g2fTa; Tbg�0��0�e

�i�k0�k00�=2; (5)

with Ta being a generator of the SU�Nc� color group. We
note that it is not difficult to extend the results of this paper
to the case of the modified static-quark action of Ref. [10].
The results of such extension will be reported elsewhere.

B. Domain-wall fermion action

For a quark with massm the domain-wall fermion action
[6,11] is given by

 SDW �
XN
s;s0�1

X
x;y

� s�x�D
DW
ss0 �x; y� s0 �y� �

X
x

m �q�x�q�x�;

(6)

 

DDW
ss0 �x; y� � D4�x; y��ss0 �D

5�s; s0��xy

� �M5 � 5��ss0�xy; (7)

 

D4�x; y� �
X
�

1

2
��1� ���U��x��x��̂;y

� �1� ���U
y
��y��x��̂;y�; (8)

 D5�s; s0� �

8><
>:
PR�2;s0 �s � 1�
PR�s�1;s0 � PL�s�1;s0 �1< s < N�
PL�N�1;s0 �s � N�

(9)

where  s�x� is a �4� 1�-dimensional Wilson-style fermion
field. The fifth dimension extends from 1 to N and is
labeled by s. PL � �1� �5�=2 and PR � �1� �5�=2 are
the projectors for the left- and right-handed spinors. The
domain-wall height M5 is a parameter of the theory, which
can be set 0 � M5 � 2. Finally, q�x� represents the physi-
cal four-dimensional quark field constructed from the five-
dimensional field  s�x� at s � 1 and N

 q�x� � PR 1�x� � PL N�x�; (10)

 �q�x� � � 1�x�PL � � N�x�PR: (11)

In momentum space the free field domain-wall Dirac op-
erator is given by
 

D�p�st �
X
�

i�� sinp��st � �W��p�st �m�s;1�N;t�PR

� �W��p�st �m�s;N�1;t�PL; (12)

where s and t label coordinates in the fifth dimension and

 W��p�st �

�W�p� 1

. .
. . .

.

�W�p� 1
�W�p�

0
BBBB@

1
CCCCA; (13)

 W��p�st �

�W�p�
1 �W�p�

. .
. . .

.

1 �W�p�

0
BBBB@

1
CCCCA; (14)

 W�p� � 1�M5 �
X
�

�1� cosp��: (15)

From now on we will focus onm � 0 case and assume that
N is large. We will rely on the formalism developed in
Refs. [12,13] in our perturbative treatment of domain-wall
fermions. By inverting the Dirac equation one can write the
tree-level DWF propagator as

 S�p�st � ��i�� sinp��su �W�su�GR
ut�p�PR

� ��i�� sinp��su �W
�
su�G

L
ut�p�PL; (16)

where
 

GR
st�p� � �

A
F
��1�We���e���2N�s�t�

� �1�We��e���s�t�� � Ae��js�tj; (17)

 

GL
st�p� � �

A
F
��1�We��e���2N�s�t�2�

� �1�We���e���s�t�2�� � Ae��js�tj: (18)

Note that �, A, F, and W in the above formulas all depend
on the momentum p as follows:

 cosh��� �

1�W2�p� �
P
�

sin2p�

2jW�p�j
; (19)

 A �
1

2W sinh���
; (20)

 F � 1� e�W�p�: (21)

The form of the propagator in Eq. (16) is valid for positive
W. For 0<M5 < 1,W is positive for any p. For 1<M5 <
2, W is negative in the small-momentum region. For that
momentum region we need to adjust the formulas using the
substitution

 e	� !�e	�: (22)

Using Eqs. (10), (11), and (16) one can obtain the formula
for the physical quark propagator

 Sq�p� � hq��p� �q�p�i �
i�� sinp�

F
: (23)
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For one-loop calculations we will also need propagators
connecting the physical quark field and the domain-wall
fermion field
 

hq��p� � s�p�i �
i�� sinp�

F
�e���N�s�PR � e

���s�1�PL�

� e���e���N�s�PL � e���s�1�PR�; (24)

 

h s��p� �q�p�i �
i�� sinp�

F
�e���N�s�PR � e���s�1�PL�

� e���e���N�s�PR � e
���s�1�PL�: (25)

The relevant quark-gluon interaction vertices are the same
as in the N-flavor Wilson case with r � �1:

 Va��p; p
0�st � �igT

a
�
�� cos

�p� p0��
2

� i sin
�p� p0��

2

�
�st; (26)

 Vab���p; p
0�st �

1

2
g2 1

2
fTa; Tbg

�
i�� sin

�p� p0��
2

� cos
�p� p0��

2

�
����st: (27)

C. Gauge action

In this paper we consider the following class of gauge
actions:

 Sgauge � �
2

g2
0

�
�1� 8c1�

X
P

Re Tr�UP�

� c1

X
R

Re Tr�UR�

�
; (28)

where g0 denotes the bare lattice coupling, UP is the path-
ordered product of links around the 1
 1 plaquette P and
UR is the path-ordered product of links around the 1
 2
rectangle R. For c1 � 0, Eq. (28) reduces to the standard
Wilson plaquette action. In the case c1 � �1:406 86, c1 �
�0:331 and c1 � �1=12 we have the doubly-blocked
Wilson (DBW2) [14,15], Iwasaki [16], and Symanzik
[7,17] actions, respectively.

For the Wilson plaquette action, the gluon propagator in
momentum space is straightforward

 D0
���k� �

���

4
P
�

sin2�
k�
2 �
�
���
�1

: (29)

For improved gauge action the gluon propagator is given
by [17]

 Dc1
���k�

�

�1� Ac1
���k��4 sin�k�2 � sin�

k�
2 � � ���

P
�

4sin2�k�2 �A
c1
���k�

�2
1

;

(30)

where Ac1
���k� is a function symmetric in � and � whose

explicit dependence on c1 and k is given in the appendix.
We assumed the Feynman gauge for both propagators.

III. SYMMETRIES OF THE ACTION

We will now discuss the symmetries of our action and
their consequences for heavy-light operators. Similar dis-
cussions for different choices of action were presented in
Refs. [18,19]. We will use the following notation to denote
lattice heavy-light bilinears

 Olat
� �

�h�q �

8>>>>>><
>>>>>>:

S �� � 1�
P �� � �5�

V� �� � ���
A� �� � ���5�

T�� �� � ����

: (31)

A. Chiral symmetry

The five-dimensional domain-wall fermion field  s�x�
can be subjected to the following chiral rotations:

  s�x� ! ei�
a
Lt
a
 s�x�; 1 � s � N=2; (32)

  s�x� ! ei�
a
Rt
a
 s�x�; N=2� 1 � s � N; (33)

where ftag are the generators of the SU�Nf� flavor group
andN is the extent of the fifth dimension. Together with the
definition of the physical quark field q in Eq. (10), the
transformations in Eqs. (32) and (33) act as standard chiral
symmetry transformations on q. For finiteN this symmetry
is not exact. However, as was shown in Refs. [20,21] the
degree of the symmetry breaking decreases rapidly with
increasing N. Since we take N ! 1 limit in this calcula-
tion, we can consider the symmetry breaking to be negli-
gible. Thus, under chiral symmetry transformations we
have S! iP, V� ! iA� and vice versa. This implies
that at the level of the static-theory-to-lattice matching
we should expect ZS � ZP and ZV � ZA, where Z’s are
defined in Eq. (85).

B. Heavy quark symmetries

First, we note that since the static-quark field h satisfies
the field equation �0h � h we have V0 � S and A0 � P as
well as T0j � Vj and Tij � �ijkAk. Second, the action in
Eq. (2) as well as the continuum static-effective-field-
theory action are invariant under the following SU(2) trans-
formation
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 h! e�i	j�jkl�klh; (34)

where 	j is a parameter and �kl �
i
2 ��k; �l�. This is the

heavy-quark spin symmetry [22,23]. As its consequence
we have the following transformations S! iAj, P! iVj
and vice versa. This implies that at the level of the static-
theory-to-lattice matching we should expect ZS � ZA and
ZP � ZV .

IV. MATCHING FULL-THEORY AND STATIC
THEORY OPERATORS

In this section we will briefly review the relation of full
QCD operators renormalized in MS�NDR� scheme to the
corresponding static theory operators.

A. Heavy-light bilinears

The QCD bilinear O� � �b�q, renormalized in
MS�NDR� at the scale �b, can be related to the corre-
sponding static theory bilinear ~O� � �h�q, renormalized at
the scale �, as follows [24,25]:

 O���b� � CO�
��b;�� ~O���� �O��QCD=�b�; (35)

where CO�
��b;�� is a perturbative coefficient encoding

the physics between the scales �b and �. In lattice calcu-
lations � naturally assumes the value of the inverse lattice
spacing and �b is chosen to match the b quark mass. The
coefficients CO�

for each O� were calculated perturba-
tively at one-loop level in Ref. [4] and at two-loop level
in Ref. [26]. The coefficients CO�

are different for different
bilinears.

B. Four-fermion operator

The QCD operator relevant for B0 � �B0 mixing, here
renormalized according to the MS�NDR� scheme, is

 O�V�A��V�A� � � �b�
��1� �5�q�� �b���1� �5�q�: (36)

We need to consider only the parity conserving part of it:

 OVV�AA � � �b��q�� �b��q� � � �b���5q�� �b���5q�: (37)

The relation to the static theory operators is as follows:

 OVV�AA��b� � Z1��b;�� ~OVV�AA���

� Z2��b;�� ~OSS�PP��� �O��QCD=�b�;

(38)

where

 

~OVV�AA � 2� �h�����q�� �h�����q� � 2� �h������5q�


 � �h������5q�; (39)

 

~OSS�PP � 2� �h���q�� �h���q� � 2� �h����5q�� �h
����5q�;

(40)

with

 h�	��x� � e	imv�x
1	 6v

2
b�x�: (41)

The coefficients Z1;2 were calculated at one-loop in per-
turbation theory in Refs. [27–29]. We note that Z2 is an
order g2 coefficient.

V. MATCHING STATIC-THEORY AND LATTICE
HEAVY-LIGHT BILINEARS

In this section we will match the MS�NDR� renormal-
ized static theory heavy-light bilinears introduced in
Sec. IV to their lattice counterparts. We will use the lattice
Feynman rules from Sec. II.

The Feynman graphs representing one-loop corrections
to the tree-level heavy-light bilinears are depicted in Fig. 1.
The light-quark wave function renormalization factor com-
ing from the diagrams (a) and (b) has been calculated in
Refs. [13,30]. The vertex correction (c) has not been cal-
culated before for the case of DWF-static quarks. We will
present this calculation below. The heavy-quark wave
function renormalization factor coming from the
diagrams (d) and (e) has been calculated for the Wilson
gauge action in Ref. [9]. We will extend the result of
Ref. [9] to include the case of improved gauge actions.

A. Vertex correction

At the tree level, the Green’s function
h� �h�x��q�x��h�y� �q�z�i for small external momenta p is
given by

 h� �h�q�h �qitree �
1

ip0
�
�1� w2

0�

ip6
; (42)

where

 w0 � W�0� � 1�M5: (43)

We need to calculate the one-loop correction to this

 

(a)

(b)

(c)

(d)

(e)

FIG. 1. One-loop corrections to heavy-light bilinears.
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Green’s function coming from the graph depicted in Fig. 2.
As can be seen from Eq. (25), for small external momenta
the external line of the light quark propagator is

 h s��p � 0� �q�p � 0�i � �wN�s0 PL � w
s�1
0 PR�

�1� w2
0�

ip6
:

(44)

This implies that the one-loop vertex-corrected Green’s
function will take the form

 h� �h�q�h �qi �
1

ip0
��� ���

�1� w2
0�

ip6
; (45)

where
 

�� �
Z
k

X
�;�

H�k� ~Va��k�D
c1
���k��

�XN
s�1

hq��k� � s�k�iV
a
��k�


 �wN�s0 PL � w
s�1
0 PR�

�
; (46)

and

 

Z
k

Z 


�


d4k

�2
�4
: (47)

First, we focus on the factor in curly brackets in the
integrand of Eq. (46). Since the light quark-gluon vertex
Va� has �� and Wilson parts, it is convenient to consider
them separately. We denote the part coming from the ��
term as S� and the part coming from the Wilson term as Sw.
Then

 S��k� �
XN
s�1

hq��k� � s�k�i�w
N�s
0 PR � w

s�1
0 PL�; (48)

 Sw�k� �
XN
s�1

hq��k� � s�k�i�w
N�s
0 PL � w

s�1
0 PR�: (49)

Using Eqs. (24) and (25) and performing the sum over swe
find

 S��k� �
1

w0 � e�

i
P
�
�� sink�

W�k� � e��
; (50)

 Sw�k� �
1

w0 � e�
: (51)

Combining this result with the Feynman rules presented in
Sec. II, the one-loop correction to the vertex in Fig. 2 can
be written as
 

����g2CF
Z
k

X
�

e�i�k0=2�

1�e�ik0��
Dc1

0��k��
�
S��k���cos

�k�
2

�

�Sw�k�isin
�k�

2

��
; (52)

where the second Casimir CF � �N
2
c � 1�=2Nc.

Performing the sum over � and dropping the terms odd
in k we can write it as follows:

 �� � ��V� � �
g2

16
2 CF��I� � Iw�; (53)

where

 I� � 16
2
Z
k

sin2�k0� � 4
P
j
Ac1

0jsin2�
kj
2 �cos2�k0

2 � �
P
j
�1� Ac1

0j�sin2�kj�

�w0 � e
���W�k� � e����2

1

; (54)

and

 Iw � 16
2
Z
k

1

2�w0 � e���1
: (55)

The integral Iw is finite and can be evaluated numerically.
The integral I� is infrared divergent. We can write it as
follows:

 I� � Ic1
� � Iw� ; (56)

where the first term is the finite contribution coming from

the difference between the improved and the Wilson gauge
action

 Ic1
� � 16
2

Z
k
fG�c1; k� �G�0; k�g; (57)

with G�c1; k� representing the integrand in Eq. (54). The
second term

 

h

h̄Γq

q̄

ψ̄sψs

FIG. 2. Heavy-light vertex correction.
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 Iw� � 16
2
Z
k
G�0; k�

� 16
2
Z
k

cos2�k0

2 �

�w0 � e
���W�k� � e����1

; (58)

is just the Wilson gauge action case added back in. Now,
the integral Iw� is infrared divergent. We will regularize it
by including a gluon mass � and extract the finite part
using the method described in Ref. [31]. We have

 Iw� � Iw� � Îw� � 16
2
Z
k

�1� k2�

k2�k2 � �2�
; (59)

where

 I w
� � 16
2

Z
k

�
1

�w0 � e���W�k� � e����1

�
�1� k2�

k4

�
; (60)

and

 Î w
� � 16
2

Z
k

1

16�w0 � e���W�k� � e���
; (61)

both are finite and can be calculated numerically.
Then the one-loop correction to the vertex is given by

 

�V� �
g2

16
2 CF�� ln��2a2� � Ic1
� � Iw� � Îw� � Iw�

�
g2

16
2 CF�� ln��2a2� � d�: (62)

Note that neither the constant d nor the coefficient of the
logarithm depend on the matrix � at the vertex. The
numerical results for Iw, Iw� , and Îw� are tabulated in
Table I. The values of Ic1

� for different gauge actions can
be found in Table II. The value of the constant d is given in
Table III. These and all other numerical integrals in this
paper were calculated using the Monte Carlo integration
routine VEGAS [32], with 1 000 000 sample points.

B. Heavy quark corrections

Now, let us focus on the heavy quark propagator correc-
tions. The tadpole graph in Fig. 1(e) is given by the
following expression

 �tad�p0� � �
1

2
g2CFe�ip0

Z
k
Dc1

00�k�

� �
1

2
g2CFe�ip0Tc1

; (63)

where Tc1
is the tadpole integral whose numerical values

are

 Tc1
�

8>>><
>>>:

0:154 933�3� Wilson; c1 � 0
0:094 759�3� Iwasaki; c1 � �0:331
0:062 426�2� DBW2; c1 � �1:406 86
0:128 291�3� Symanzik; c1 � �1=12

: (64)

The formula for the rising sun diagram in Fig. 1(d) is given
by

 �rs�p0� � �g
2CF

Z
k
Dc1

00�k� p�
e�i�p0�k0�

1� e�ik0 � �
: (65)

The heavy quark wave function renormalization is ob-
tained via

TABLE I. Results for vertex integrals defined in Sec. V.

M5 Iw Iw� Îw�

0.05 �4:138 229�319� �1:909 304�325� �0:703 771�17�
0.10 �4:034 432�236� �2:030 270�283� �0:712 970�18�
0.15 �3:948 298�192� �2:133 953�315� �0:722 356�18�
0.20 �3:872 189�163� �2:228 815�258� �0:731 938�18�
0.25 �3:802 874�143� �2:316 957�249� �0:741 722�18�
0.30 �3:738 464�129� �2:400 620�227� �0:751 716�18�
0.35 �3:677 754�117� �2:480 180�264� �0:761 929�19�
0.40 �3:619 923�108� �2:558 862�216� �0:772 367�19�
0.45 �3:564 378�100� �2:634 128�243� �0:783 041�19�
0.50 �3:510 664�93� �2:709 506�214� �0:793 959�19�
0.55 �3:458 427�87� �2:782 736�229� �0:805 132�20�
0.60 �3:407 373�81� �2:855 975�230� �0:816 570�20�
0.65 �3:357 255�75� �2:928 999�222� �0:828 285�20�
0.70 �3:307 856�70� �3:001 320�248� �0:840 288�20�
0.75 �3:258 987�65� �3:074 116�255� �0:852 592�20�
0.80 �3:210 479�60� �3:147 106�260� �0:865 211�21�
0.85 �3:162 165�55� �3:220 438�268� �0:878 159�21�
0.90 �3:113 899�50� �3:294 598�273� �0:891 453�21�
0.95 �3:065 532�44� �3:369 698�280� �0:905 107�21�
1.00 �3:016 959�36� �3:445 750�258� �0:919 141�22�
1.05 �2:967 904�40� �3:523 295�291� �0:933 573�22�
1.10 �2:918 434�44� �3:602 252�251� �0:948 424�22�
1.15 �2:868 167�47� �3:682 678�253� �0:963 696�24�
1.20 �2:816 869�48� �3:764 914�309� �0:979 474�23�
1.25 �2:764 631�52� �3:849 567�315� �0:995 722�23�
1.30 �2:711 104�56� �3:936 509�322� �1:012 510�29�
1.35 �2:656 052�60� �4:026 280�329� �1:029 829�30�
1.40 �2:599 188�65� �4:119 041�336� �1:047 733�30�
1.45 �2:540 188�72� �4:215 449�345� �1:066 257�31�
1.50 �2:478 673�79� �4:315 845�352� �1:085 443�31�
1.55 �2:414 181�87� �4:421 470�280� �1:105 334�32�
1.60 �2:346 139�97� �4:531 634�286� �1:125 985�35�
1.65 �2:273 804�108� �4:647 352�381� �1:147 436�33�
1.70 �2:196 232�120� �4:770 915�392� �1:169 762�34�
1.75 �2:112 133�135� �4:903 247�399� �1:193 028�34�
1.80 �2:019 661�155� �5:046 261�405� �1:217 309�35�
1.85 �1:916 047�182� �5:202 899�419� �1:242 693�36�
1.90 �1:796 524�223� �5:378 317�435� �1:269 279�37�
1.95 �1:651 230�292� �5:583 553�420� �1:297 141�31�
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 Zh2 � 1 � �i
@��tad � �rs�

@p0

��������p0�0
: (66)

The calculation of the tadpole contribution to Zh2 is trivial.
In order to calculate the contribution from �rs we will use a
method similar to the one developed in Ref. [9]. We write

 � i
@�rs

@p0

��������p0�0
� �exp � �D; (67)

where �exp and �D come from differentiating
exp��i�p0 � k0�� and Dc1

00�k� p� in Eq. (65) respectively.
We get

 �exp � g2CF
Z
k
Dc1

00�k�
e�ik0

1� e�ik0 � �
: (68)

Note that

 

e�ik0

1� e�ik0

�
1

2i
cot

�
k0

2

�
�

1

2
: (69)

Then Eq. (68) can be simplified to

 �exp �
1
2g

2CFT
�3�
c1
� 1

2g
2CFTc1

; (70)

where

 T�3�c1
�
Z 


�


d3k

�2
�3
Dc1

00�0; ~k�: (71)

The numerical results for T�3�c1
are

TABLE III. Results for d defined in Eq. (62).

M5 Wilson Iwasaki DBW2 Symanzik

0.05 5.343 762(661) 5.097 431(670) 4.935 594(676) 5.242 940(665)
0.10 5.351 732(537) 5.101 871(546) 4.937 596(553) 5.249 485(541)
0.15 5.359 895(525) 5.106 399(534) 4.939 620(541) 5.256 181(529)
0.20 5.369 066(439) 5.111 829(449) 4.942 476(455) 5.263 841(443)
0.25 5.378 109(410) 5.117 018(420) 4.945 021(426) 5.271 327(414)
0.30 5.387 368(374) 5.122 306(384) 4.947 594(391) 5.278 982(378)
0.35 5.396 005(400) 5.126 852(410) 4.949 348(417) 5.285 964(404)
0.40 5.406 418(343) 5.133 047(353) 4.952 676(360) 5.294 671(347)
0.45 5.415 465(362) 5.137 745(372) 4.954 426(380) 5.301 958(366)
0.50 5.426 211(326) 5.144 004(337) 4.957 655(344) 5.310 888(330)
0.55 5.436 031(336) 5.149 194(347) 4.959 729(354) 5.318 832(341)
0.60 5.446 778(331) 5.155 161(342) 4.962 491(349) 5.327 640(336)
0.65 5.457 969(317) 5.161 415(328) 4.965 447(336) 5.336 828(322)
0.70 5.468 888(338) 5.167 233(349) 4.967 870(357) 5.345 676(343)
0.75 5.480 511(340) 5.173 582(352) 4.970 724(359) 5.355 156(345)
0.80 5.492 374(341) 5.179 991(353) 4.973 530(361) 5.364 801(346)
0.85 5.504 444(344) 5.186 415(356) 4.976 243(364) 5.374 573(349)
0.90 5.517 044(344) 5.193 170(356) 4.979 169(365) 5.384 791(349)
0.95 5.530 123(345) 5.200 192(358) 4.982 240(366) 5.395 401(350)
1.00 5.543 568(316) 5.207 357(329) 4.985 326(337) 5.406 283(321)
1.05 5.557 626(353) 5.214 900(366) 4.988 654(375) 5.417 680(359)
1.10 5.572 262(317) 5.222 772(330) 4.992 167(339) 5.429 550(323)
1.15 5.587 149(324) 5.230 630(338) 4.995 515(347) 5.441 560(330)
1.20 5.602 309(380) 5.238 481(394) 4.998 695(403) 5.453 726(386)
1.25 5.618 476(390) 5.247 041(404) 5.002 412(414) 5.466 773(396)
1.30 5.635 103(407) 5.255 743(422) 5.006 089(431) 5.480 147(413)
1.35 5.652 503(419) 5.264 878(434) 5.010 006(444) 5.494 150(425)
1.40 5.670 496(431) 5.274 244(447) 5.013 945(456) 5.508 594(438)
1.45 5.689 380(448) 5.284 112(464) 5.018 164(474) 5.523 765(455)
1.50 5.709 075(462) 5.294 373(478) 5.022 536(489) 5.539 571(469)
1.55 5.730 317(399) 5.305 731(416) 5.027 747(426) 5.556 733(406)
1.60 5.751 788(418) 5.316 832(435) 5.032 423(446) 5.573 920(426)
1.65 5.773 720(522) 5.327 868(540) 5.036 731(551) 5.591 344(530)
1.70 5.797 385(546) 5.340 064(565) 5.041 872(576) 5.610 260(554)
1.75 5.822 352(568) 5.352 939(587) 5.047 333(599) 5.630 214(576)
1.80 5.848 613(595) 5.366 427(615) 5.053 015(627) 5.651 173(604)
1.85 5.876 253(637) 5.380 544(658) 5.058 896(670) 5.673 194(646)
1.90 5.905 562(695) 5.395 503(717) 5.065 145(730) 5.696 533(705)
1.95 5.937 642(743) 5.412 316(767) 5.072 723(780) 5.722 255(753)

TABLE II. Results for the Ic1
� integral defined in Eq. (57).

M5 Iwasaki DBW2 Symanzik

0.05 0.246 331(9) 0.408 168(15) 0.100 822(4)
0.10 0.249 861(9) 0.414 136(16) 0.102 247(4)
0.15 0.253 496(9) 0.420 275(16) 0.103 714(4)
0.20 0.257 237(10) 0.426 590(16) 0.105 225(4)
0.25 0.261 091(10) 0.433 088(16) 0.106 782(4)
0.30 0.265 062(10) 0.439 774(17) 0.108 386(4)
0.35 0.269 153(10) 0.446 657(17) 0.110 041(4)
0.40 0.273 371(10) 0.453 742(17) 0.111 747(4)
0.45 0.277 720(10) 0.461 039(18) 0.113 507(4)
0.50 0.282 207(11) 0.468 556(18) 0.115 323(4)
0.55 0.286 837(11) 0.476 302(18) 0.117 199(5)
0.60 0.291 617(11) 0.484 287(18) 0.119 138(5)
0.65 0.296 554(11) 0.492 522(19) 0.121 141(5)
0.70 0.301 655(11) 0.501 018(19) 0.123 212(5)
0.75 0.306 929(12) 0.509 787(19) 0.125 355(5)
0.80 0.312 383(12) 0.518 844(20) 0.127 573(5)
0.85 0.318 029(12) 0.528 201(20) 0.129 871(5)
0.90 0.323 874(12) 0.537 875(21) 0.132 253(5)
0.95 0.329 931(13) 0.547 883(21) 0.134 722(5)
1.00 0.336 211(13) 0.558 242(21) 0.137 285(5)
1.05 0.342 726(13) 0.568 972(22) 0.139 946(6)
1.10 0.349 490(13) 0.580 095(22) 0.142 712(6)
1.15 0.356 519(14) 0.591 634(23) 0.145 589(6)
1.20 0.363 828(14) 0.603 614(23) 0.148 583(6)
1.25 0.371 435(14) 0.616 064(24) 0.151 703(6)
1.30 0.379 360(15) 0.629 014(24) 0.154 956(6)
1.35 0.387 625(15) 0.642 497(25) 0.158 353(6)
1.40 0.396 252(16) 0.656 551(25) 0.161 902(7)
1.45 0.405 268(16) 0.671 216(26) 0.165 615(7)
1.50 0.414 702(16) 0.686 539(27) 0.169 504(7)
1.55 0.424 586(17) 0.702 570(27) 0.173 584(7)
1.60 0.434 956(17) 0.719 365(28) 0.177 868(8)
1.65 0.445 852(18) 0.736 989(29) 0.182 376(8)
1.70 0.457 321(19) 0.755 513(30) 0.187 125(8)
1.75 0.469 413(19) 0.775 019(31) 0.192 138(8)
1.80 0.482 186(20) 0.795 598(32) 0.197 440(9)
1.85 0.495 709(21) 0.817 357(33) 0.203 059(9)
1.90 0.510 059(22) 0.840 417(35) 0.209 029(10)
1.95 0.525 326(24) 0.864 919(37) 0.215 387(10)
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 T�3�c1
�

8>>><
>>>:

0:252 721�6� Wilson; c1 � 0
0:164 361�5� Iwasaki; c1 � �0:331
0:093 831�4� DBW2; c1 � �1:406 86
0:219 018�6� Symanzik; c1 � �1=12

: (72)

For �D in Eq. (67) we obtain

 �D � �ig2CF
Z
k
Dc10

00 �k�4 sin
�
k0

2

�
cos

�
k0

2

�



e�ik0

1� e�ik0 � �
; (73)

where

 Dc10
00 �k� �

@Dc1
00�k̂

2
0; ~k�

@k̂2
0

; (74)

with k̂0 � 2 sin�k0=2�. We calculated Dc10
00 �k� numerically

and symbolically using Mathematica. Using Eq. (69) and
dropping the term odd in k0 we can reduce Eq. (73) to

 �D � �2g2CF
Z
k
Dc10

00 �k�cos2

�
k0

2

�
: (75)

Again, we calculate the difference between the improved
and the Wilson gauge action numerically:

 Ic1
h � 16
2

Z
k

�
Dc10

00 �k� �
1

�2
1

�
cos2

�
k0

2

�
: (76)

The results are

 Ic1
h �

8><
>:

1:310 153�55� Iwasaki; c1 � �0:331
3:510 284�162� DBW2; c1 � �1:406 86
0:297 720�15� Symanzik; c1 � �1=12

: (77)

The contribution of the Wilson part to be added back in is

 16
2
Z
k

cos2�k0

2 �

�2
1

� 16
2
Z
k

1

�2
1

� 
2
Z
k

1

�1

� 16
2
Z
k

1

�2
1

� 
2T0; (78)

where T0 is the Wilson tadpole integral calculated in
Eq. (64). Once again, we subtract numerically the infrared
divergent part using the method of Ref. [31]:

 � � 16
2
Z
k

�
1

�2
1

�
�1� k2�

k4

�
� 4:791 861�251�: (79)

Finally, putting together all one-loop contributions to Zh2
we have
 

Zh2 � 1� 2
g2

16
2 CF�� ln��2a2� � 1� Ic1
h ��

� 4
2T�3�c1
� 
2T0�; (80)

or

 Zh2 � 1�
g2

16
2 CF��2 ln��2a2� � e�; (81)

where

 e �

8>>><
>>>:

24:480 Wilson; c1 � 0
14:883 Iwasaki; c1 � �0:331
4:914 DBW2; c1 � �1:406 86
21:223 Symanzik; c1 � �1=12

; (82)

with a maximum error of	1 in the last digit. Our result for
the Wilson case agrees with the result of Ref. [9]. Note that
the correction to Zh2 is significantly reduced in the case of
Iwasaki and DBW2 action.

Now, let us discuss the radiative correction to the mass

 �M � ��tad�p0 � 0� ��rs�p0 � 0�: (83)

We obtain

 �M �
g2

16
2 CF8
2T�3�c1

�
g2

16
2 CF 


8>>><
>>>:

19:954 Wilson; c1 � 0
12:977 Iwasaki; c1 � �0:331
7:409 DBW2; c1 � �1:406 86
17:293 Symanzik; c1 � �1=12

;

(84)

which agrees with the Wilson case result in Refs. [9,33,34].

C. Relation to MS scheme

Now, we can calculate Z� relating the continuum static
theory bilinear ~O�, renormalized in MS�NDR� , to the
lattice bilinear Olat

� as follows:

 

~O ���� � �1� w
2
0�
�1=2Z�1=2

w Z���; a�O
lat
� �a�; (85)

where �1� w2
0�
�1=2Z�1=2

w is a DWF-specific factor, whose
origin and numerical values are discussed in Refs. [13,30]
and
 

Z���;a� � 1�
g2

16
2CF

�
� ln

�2

�2�D�
1

2

�
�2 ln

�2

�2�E
�

�
1

2

�
ln
�2

�2�F
��
�

g2

16
2CF

�
� ln�2a2� d

�
1

2
��2 ln�2a2� e� �

1

2
�ln�2a2� f�

�
: (86)

The continuum static theory constants D � 1, E � 0 and
F � 1=2 were calculated in Ref. [4]. The values for d and e
can be found in Table III and Eq. (82). The lattice light
quark renormalization factor f � 1=2� z2, where z2 was
calculated in Refs. [13,30]. Eliminating � from Eq. (86) we
obtain
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 Z���; a� � 1�
g2

16
2 CF

�
3

2
ln�2a2 �

5

4
� d�

e
2
�
f
2

�
:

(87)

Note that the result for Z� does not depend on � since both
D and d are � independent. This is consistent with the
observation in Sec. III that Z� should be the same for all
bilinears because of the symmetries of the action.

VI. MATCHING STATIC THEORY AND LATTICE
FOUR-FERMION OPERATORS

In Sec. IV we discussed the relationship between the full
theory operator OVV�AA and static theory operators
~OVV�AA and ~OSS�PP. In this section we will match these
static theory operators renormalized in MS�NDR� scheme
to lattice operators. We will also discuss the renormaliza-
tion of BB.

A. Operators matching

First, we note that the coefficient Z2 in Eq. (38) is
already of the order g2. Thus, for the purposes of matching
at the leading order in g2 it will suffice to match ~OSS�PP
and Olat

SS�PP at tree level.

 

~OSS�PP��� � ZSOlat
SS�PP�a�; (88)

with

 ZS � �1� w
2
0�
�1Z�1

w ; (89)

being the DWF-specific factor present even at tree level.
The matching of ~OVV�AA to the lattice has been worked out
for the Wilson case in Refs. [35,36]. In our case, the mixing
is simplified, since the chiral symmetry prohibits mixing
with operators of different chirality [18,37,38]. With the
exception of the diagrams depicted in Fig. 3, the four-
fermions diagrams can be reduced to the diagrams already
discussed in Sec. V. Thus, we have

 

~OVV�AA��� � ZLO
lat
VV�AA�a�; (90)

with

 ZL � �1� w
2
0�
�1Z�1

w

�
1�

g2

16
2 �4 ln�2a2 �DL�

�
; (91)

and

 DL �
7
3�

1
3c�

10
3 d�

4
3e�

4
3f�

1
3v: (92)

The constants d, e and f were discussed in Sec. V. The
constant v is the light-light correction depicted in Fig. 3(a),
which was calculated in Refs. [13,30,39]. In the notation of
Ref. [13] v � �VS;P. The constant c is the heavy-heavy
correction depicted in Fig. 3(b), which we calculate below.

Omitting the trivial � structure, the contribution from
the graph in Fig. 3(b) is given by the following expression:

 �V � g2CF
Z
k
Dc1

00�k�
e�ik0

�1� e�ik0 � ��2
: (93)

Noting that

 

e�ik0

�1� e�ik0�2
� �

1

4sin2�k0=2�
; (94)

we integrate Eq. (93) by parts and arrive at

 �V � �2g2CF
Z
k
Dc10

00 �k�cos2

�
k0

2

�
; (95)

which is identical to Eq. (75) in Sec. V. Using our results
from Sec. V we can immediately write
 

�V � 2
g2

16
2 CF�� ln�2a2 � 1� Ic1
h ��� 
2T0�

�
g2

16
2 CF��2 ln�2a2 � c�; (96)

where

 c �

8>><
>>:

4:525 Wilson; c1 � 0
1:905 Iwasaki; c1 � �0:331
�2:495 DBW2; c1 � �1:406 86
3:930 Symanzik; c1 � �1=12

; (97)

with a maximum error of	1 in the last digit. Our result for
the Wilson case agrees with the result of Ref. [35].

B. BB renormalization

In QCD, the B-meson parameter BB is defined as

 BB 
h �BjOMS�NDR�

VV�AA jBi
8
3 f

2
Bm

2
B

: (98)

Combining the results of this section with the results of
Sec. IV and V we can relate BB to lattice as

 BB �
Z1ZL
C2
A0
Z2
A

Blat
VV�AA �

Z2ZS
C2
A0
Z2
A

Blat
SS�PP; (99)

where

 

(a) (b)

FIG. 3. Four-fermion specific one-loop corrections.

PERTURBATIVE RENORMALIZATION FOR STATIC AND . . . PHYSICAL REVIEW D 75, 034504 (2007)

034504-9



 Blat
Oi

h �BjOlat

i �0�jBi
8
3 jh0jA

lat
0 jBij

2mB
: (100)

Note that the BB renormalization does not depend on �1�
w2

0�
�1Z�1

w since it cancels in the ratios.

VII. MEAN-FIELD IMPROVEMENT

Finally, let us briefly discuss the application of mean-
field improvement to our results. We follow the much more
detailed discussion in Refs. [13,30,40]. The main reason
for the improvement program is the fact that for some
values of M5, the DWF-specific factor Zw becomes quite
large [12]. This problem can be circumvented by substitut-
ing w0 and Zw with:

 wMF
0 � w0 � 4�1� u�; (101)

 ZMF
w � Zwjw0�wMF

0
�

4wMF
0

1� �wMF
0 �

2 2�1� u�; (102)

where u � P1=4, with P being the value of the plaquette.
The mean-field improvement will also affect other per-

turbative constants. The constant f � 1=2� z2 in
Eqs. (87) and (92) should be replaced by fMF � 1=2�
zMF

2 , with zMF
2 of Refs. [13,30]. Because of the change in

w0, the value of the constant d in Eq. (62) should also
change. One can obtain the values of dMF from d by
observing that dMF�M5� � d� ~M5�, where ~M5 �
M5 � 4�1� u�. Similarly, the constant v in Eq. (92) should
be replaced by vMF�M5� � v� ~M5�. For the heavy quark,
mean-field improvement has no effect on the wave function
renormalization as was pointed out in Refs. [40,41].
However, one should be mindful of the subtlety involving
different normalization conditions for Zh2 discussed in
Refs. [9,33]. The normalization condition consistent with
the mean-field improvement necessitates the use of e�
�M instead of e in Eqs. (87) and (92). The constant c in
Eq. (97) is unaffected by mean-field improvement. Finally,
the light-quark field should be multiplied by

���
u
p

, which
leads to the multiplication of Z� by

���
u
p

and of ZL;S by u.

VIII. CONCLUSIONS

In this paper we have calculated one-loop renormaliza-
tion constants for operators combining static heavy and
domain-wall light quarks. We obtained results for Wilson,
Iwasaki, DBW2, and Symanzik gauge actions. We have
confirmed that all bilinears regularize by a single constant
when matched to the static theory. We have shown that the
combination of domain-wall fermions and an improved
gauge action reduces the size of perturbative corrections

significantly compared to the Wilson case. This suggests
that our choice of action is quite suitable for the determi-
nation of fB, BB, and �ms=�md with increased precision.
Our results provide the necessary connection between
those phenomenological quantities and lattice calculations.
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APPENDIX

The improved gauge propagator in momentum space is
given by [17]

 Dc1
���k� �

1

�k̂2�2

�
��� Ac1

���k��k̂�k̂� � ���
X
�

k̂2
�A

c1
���k�

�
;

(A1)

where � is the gauge parameter, k̂� � 2 sin�k�=2�, k̂2 �

4
P
�sin2�k�=2� and

 

Ac1
���k� � Ac1

���k�

�
1� ���

��k�

�
�k̂2�2 � c1k̂

2
�
2
X
�

k̂4
� � k̂

2
X

���;�

k̂2
�

�

� c2
1

��X
�

k̂4
�

�
2
� k̂2

X
�

k̂4
�

X
���;�

k̂2
�

� �k̂2�2
Y
���;�

k̂2
�

��
; (A2)

with

 ��k� �
�
k̂2 � c1

X
�

k̂4
�

��
k̂2 � c1

�
�k̂2�2 �

X
�

k̂4
�

�

�
1

2
c2

1

�
�k̂2�3 � 2

X
�

k̂6
� � k̂

2
X
�

k̂4
�

��

� 4c3
1

X
�

k̂4
�

Y
���

k̂2
�: (A3)

The different choices for the parameter c1 correspond to
different gauge actions discussed in the main text of this
paper. In the case c1 � 0, the propagator in Eq. (A1)
reduces to the standard Wilson plaquette action propagator.
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