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We calculate one-loop renormalization factors for heavy-light bilinears as well as four-fermion
operators relevant for B® — B® mixing calculations on the lattice. We use the static approximation for
heavy quarks and the domain-wall formulation for light quarks. We present results for different choices of

improved gauge action.
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I. INTRODUCTION

Recent experimental observations [1-3] intensified the
interest in B-meson physics as the prime area in which the
validity of the standard model can be put to test. In order to
perform such a test, theoretical predictions for fz, Bg, and
Amg/Amy are needed. In principle, the lattice approach to
QCD allows one to calculate these and other quantities of
interest from the first principles. However, the majority of
lattice results to date suffer from substantial systematic
errors which make comparison with experimental results
inconclusive. One of the largest systematic errors comes
from the procedure which relates lattice operators to the
corresponding operators in continuum QCD.

There are two main sources of error in this matching
procedure. First, lattice actions used in simulations usually
have a reduced symmetry group. The lack of symmetry
leads to the introduction of additional lattice operators
which complicates the matching. Second, the matching is
usually performed at the one-loop level in perturbation
theory. More often than not, the one-loop contributions
turn out to be quite large. Large one-loop contributions
undermine the perturbative approach to matching and force
the introduction of a large systematic error in order to
account for possible higher-order corrections.

In this paper we will demonstrate that both of these
issues can be addressed by an appropriate choice of lattice
action. Specifically, we will focus on the combination of
the static effective field theory [4] for heavy quarks, the
domain-wall formulation [5,6] for light quarks and an
improved gauge action [7] for gluons. This action provides
a good approximation for heavy mesons such as B, and it
has already been employed in numerical simulations [8].

‘We will obtain the renormalization constants connecting
bare lattice operators to continuum QCD operators renor-
malized in the MS(NDR) scheme. In particular, we will
consider heavy-light bilinears and four-fermion operators
relevant for B — B mixing. The matching will be done at
the one-loop level in perturbation theory. We will split the
matching into two parts. First, the continuum QCD opera-
tors need to be related to the continuum static theory
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operators. This step has already been carried out, and we
will quote the results here. Second, the continuum static
theory operators need to be matched to their lattice coun-
terparts. This second step has not been performed before
for our choice of lattice action, and thus is the main subject
of this paper.

This paper is organized as follows. In Sec. II we intro-
duce our choice of lattice action and discuss the corre-
sponding Feynman rules. In Sec. III the symmetries of the
action are discussed. In Sec. IV we quote the results of
matching the continuum QCD and continuum static theory
operators. In Sec. V we will match the static theory bi-
linears to their lattice counterparts. In Sec. VI we present
the matching of four-fermion operators as well as Bz. In
Sec. VII we discuss the application of mean-field improve-
ment to our results.

II. LATTICE ACTION AND FEYNMAN RULES

Our lattice action consists of three parts:
S = Sstatic + SDW + Sgauge: (1)

where Sqic 18 the static-quark action describing heavy
quarks, Spw is the domain-wall fermion action describing
light quarks and Sy, is the pure gauge action. In this and

all subsequent sections we set the lattice spacing a equal to
1.

A. Static-quark action

The simplest formulation of the static-effective-field-
theory action on the lattice is given by [9]

Ssaic = Y h[h(x) = U§(x = Oh(x = 0)],  (2)

where Uy(x — 0) is the gauge link in temporal direction
between sites x and x — 0. The static-quark field 4 satisfies
voh = h. The static-quark propagator in momentum space
is given by
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H) = —— ;
( ) 1— gilko + € ( )
The quark-gluon vertices are
Va(k k) = —igT®8,e hotk)/2, @

~ 1 e k!
Vil (k K) = == 4T T7}80, 80,7102, (5)

with T, being a generator of the SU(N,.) color group. We
note that it is not difficult to extend the results of this paper
to the case of the modified static-quark action of Ref. [10].
The results of such extension will be reported elsewhere.

B. Domain-wall fermion action

For a quark with mass m the domain-wall fermion action
[6,11] is given by

N
SDW = Z Z l/_/S(X)DEV\,V(X, )’)‘l’s’(y) + ch_l(x)Q(X),

s,5'=1 X%y X
(6)
DPV(x,y) = D*(x,y)8,y + D(s,5')8,,
+ (MS - 5)5ss’ 8xy) (7)
1
D4()C, y) = ZE[(l + YM)UM(X)aer,&,y
M
+ (1 - YM)UL(y)ax—ﬂ,y]r (8)
Prbsy (s=1)
DS(S’ sl) = PR6s+1,s’ + PL65—1,5’ (1 <s< N) ©)
Préy_1y (s=N)

where ,(x) is a (4 + 1)-dimensional Wilson-style fermion
field. The fifth dimension extends from 1 to N and is
labeled by s. P, = (1 — ys)/2 and Pgr = (1 + 75)/2 are
the projectors for the left- and right-handed spinors. The
domain-wall height M5 is a parameter of the theory, which
can be set 0 = M5 < 2. Finally, g(x) represents the physi-
cal four-dimensional quark field constructed from the five-
dimensional field ¢ (x) at s = 1 and N

q(x) = Prip(x) + Pripy(x), (10)

g(x) = ()P + ¢y (x)Pp. (1)

In momentum space the free field domain-wall Dirac op-
erator is given by

D(p)st = Zlyﬂ Sinp,u(sst + (W+ (p)st + mar,l‘SN,t)PR
73

+ (Wi(p)st + m(ss,N81,t)PLr (12)

where s and ¢ label coordinates in the fifth dimension and
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-W(p) 1
W*(p)y = ' g . (13)
—W(p) 1
—W(p)
—W(p)
~ 1 —W(p)
W (p)y = L . (4
I —W(p)
W(p)=1—Ms + Z(l —cosp,). (15)

From now on we will focus on m = 0 case and assume that
N is large. We will rely on the formalism developed in
Refs. [12,13] in our perturbative treatment of domain-wall
fermions. By inverting the Dirac equation one can write the
tree-level DWF propagator as

S(p)si = (—iy,sinp, 8y, + We)Gl(p)Pr
+ (—iyysinp, 8, + Wi)Gi(p)P,  (16)
where
GR(p) = — 411 = Wem)ema@N-s0

+ (1 — We®)e @60 + Aem el (17)

A
th(p) = _F[(l - We"‘)e*a(zN*sftJQ)
(1~ Wemapeatrtia] 4 ool (18)

Note that «, A, F, and W in the above formulas all depend
on the momentum p as follows:

1+ W3(p) + 3sin’p,
w

cosh(a) = W) , (19)
1

A= W sinh(a)’ 20)

F=1-¢*W(p). 2D

The form of the propagator in Eq. (16) is valid for positive
W.For 0 < M5 <1, Wis positive for any p. For | < M5 <
2, W is negative in the small-momentum region. For that
momentum region we need to adjust the formulas using the
substitution

et — —e*a, (22)

Using Egs. (10), (11), and (16) one can obtain the formula
for the physical quark propagator

iy, sinp,

7 (23)

S4(p) =<{q(—=p)a(p)) =
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For one-loop calculations we will also need propagators
connecting the physical quark field and the domain-wall
fermion field

(a(- p)¢s(p)>_—j;np—“( TP 4 e TPy

— e—a(e—a(N—s)PL + e—a(s—l)PR)’ (24)
1an(

F
— e (e ®WNTIPp + e7207IP ). (25)

(¥(=p)g(p)) = —aN=Ipp 4 emalmlp) )

The relevant quark-gluon interaction vertices are the same

as in the N-flavor Wilson case with r = —1:
. . (p+p),
Vi(p, Py = —lgT”(yM cos———*
+ /

#isin 2P )“)6”, 26)

1,1 (p+p)

Vis(p, p)y = 58251, Tb}(w,L sin———+
+ !

+ cos%)@u,és,. 27

C. Gauge action

In this paper we consider the following class of gauge
actions:

2
Sgauge == g_%<(1 - 861); ReTr[UP]
+ chRe Tr[UR]>, (28)
R

where g, denotes the bare lattice coupling, Up is the path-
ordered product of links around the 1 X 1 plaquette P and
Uk is the path-ordered product of links around the 1 X 2
rectangle R. For ¢; = 0, Eq. (28) reduces to the standard
Wilson plaquette action. In the case ¢; = —1.40686, ¢; =
—0.331 and ¢; = —1/12 we have the doubly-blocked
Wilson (DBW2) [14,15], Iwasaki [16], and Symanzik
[7,17] actions, respectively.

For the Wilson plaquette action, the gluon propagator in
momentum space is straightforward

8Vp . (29)

() = 4Zs1n2( +) A,

For improved gauge action the gluon propagator is given
by [17]
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vp (k)
(1 — Ay, (k)4 sm(k ) sin(*2 ”) + 5sz4s1n2(k”)A L (k)

A2 '
(30)

where A3}, (k) is a function symmetric in » and p whose
explicit dependence on ¢; and k is given in the appendix.
We assumed the Feynman gauge for both propagators.

III. SYMMETRIES OF THE ACTION

We will now discuss the symmetries of our action and
their consequences for heavy-light operators. Similar dis-
cussions for different choices of action were presented in
Refs. [18,19]. We will use the following notation to denote
lattice heavy-light bilinears

S Tr=1
) P I'=1s)
ot =prg=4{Vv, T=vy, . (€2}
Ay, T=1vy,vs)
T,, I'=0,,

A. Chiral symmetry

The five-dimensional domain-wall fermion field #(x)
can be subjected to the following chiral rotations:

P(x) = i gy (x), l=s=N/2, (32

Po(x) = e g (), N/2+1=s=N, (33

where {7,} are the generators of the SU(N,) flavor group
and N is the extent of the fifth dimension. Together with the
definition of the physical quark field g in Eq. (10), the
transformations in Egs. (32) and (33) act as standard chiral
symmetry transformations on g. For finite N this symmetry
is not exact. However, as was shown in Refs. [20,21] the
degree of the symmetry breaking decreases rapidly with
increasing N. Since we take N — oo limit in this calcula-
tion, we can consider the symmetry breaking to be negli-
gible. Thus, under chiral symmetry transformations we
have S — iP, Vu — iAM and vice versa. This implies
that at the level of the static-theory-to-lattice matching
we should expect Zg = Zp and Zy, = Z,, where Z’s are
defined in Eq. (85).

B. Heavy quark symmetries

First, we note that since the static-quark field % satisfies
the field equation yoph = h we have V) = Sand Aj = P as
well as Ty; = V; and T;; = €;;;,A;. Second, the action in
Eq. (2) as well as the continuum static-effective-field-
theory action are invariant under the following SU(2) trans-
formation
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h— e ibicmoup, (34)

where ¢; is a parameter and o; = £[y;, ,]. This is the
heavy-quark spin symmetry [22,23]. As its consequence
we have the following transformations § — iA;, P — iV,
and vice versa. This implies that at the level of the static-
theory-to-lattice matching we should expect Zg = Z, and
Zp = Zy.

IV. MATCHING FULL-THEORY AND STATIC
THEORY OPERATORS

In this section we will briefly review the relation of full
QCD operators renormalized in MS(NDR) scheme to the
corresponding static theory operators.

A. Heavy-light bilinears

The QCD bilinear Op = qu, renormalized in
MS(NDR) at the scale up, can be related to the corre-

sponding static theory bilinear O = hI'g, renormalized at
the scale u, as follows [24,25]:

Or(up) = Cop(p, w)Or(w) + O(Agep/mp),  (35)

where Co.(u, @) is a perturbative coefficient encoding
the physics between the scales u;, and w. In lattice calcu-
lations w naturally assumes the value of the inverse lattice
spacing and w, is chosen to match the b quark mass. The
coefficients Cy for each Or were calculated perturba-
tively at one-loop level in Ref. [4] and at two-loop level
in Ref. [26]. The coefficients Cy,. are different for different
bilinears.

B. Four-fermion operator

The QCD operator relevant for B — B mixing, here
renormalized according to the MS(NDR) scheme, is

Ow—-mv-n = [by*(1 = ys5)qllby, (1 — ys)gl.  (36)
We need to consider only the parity conserving part of it:
Ovvian = (by*q)(by,q) + (by*ysq)(by,vsq). (37)
The relation to the static theory operators is as follows:
Ovysan(py) = Zy(p, 1#)Oyy s aa(pe)

+ Zy(pp, w)Ossipp(p) + O(Agep/ mp),
(38)

where
O yyian =200y q) (W y . q) + 2(h ) yrysq)
X (K 7)y,ys5q), (39)

O ss1pp = 2(M M q) (K7 q) + 2(A ) ysq) (B ysq),
(40)
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with
+ +i 1=*
h(,)(x) = pFimvx 3 ﬁ

The coefficients Z, , were calculated at one-loop in per-
turbation theory in Refs. [27-29]. We note that Z, is an
order g? coefficient.

b(x). 41)

V. MATCHING STATIC-THEORY AND LATTICE
HEAVY-LIGHT BILINEARS

In this section we will match the MS(NDR) renormal-
ized static theory heavy-light bilinears introduced in
Sec. IV to their lattice counterparts. We will use the lattice
Feynman rules from Sec. II.

The Feynman graphs representing one-loop corrections
to the tree-level heavy-light bilinears are depicted in Fig. 1.
The light-quark wave function renormalization factor com-
ing from the diagrams (a) and (b) has been calculated in
Refs. [13,30]. The vertex correction (c) has not been cal-
culated before for the case of DWF-static quarks. We will
present this calculation below. The heavy-quark wave
function renormalization factor coming from the
diagrams (d) and (e) has been calculated for the Wilson
gauge action in Ref. [9]. We will extend the result of
Ref. [9] to include the case of improved gauge actions.

A. Vertex correction

At the tree level, the Green’s function
((h(x)I'q(x))h(y)g(z)) for small external momenta p is
given by

_ } I . (1—w?)
<(hFQ)hq>tree = _F—O: (42)
ipo  ip
where

We need to calculate the one-loop correction to this
(a) (d)
A ©) N

(b) (e)

FIG. 1. One-loop corrections to heavy-light bilinears.
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Green’s function coming from the graph depicted in Fig. 2.
As can be seen from Eq. (25), for small external momenta
the external line of the light quark propagator is

Wy(=p = 0)g(p = 0)) = (Wi P + wy~'Pg)————"

This implies that the one-loop vertex-corrected Green’s
function will take the form

1 - w(z))

—rar ,
(+)14

((hTq)hg) = (45)

where
~ N _
or= | ZH(k)V‘;(k)Di‘p(k)F{Z@(—k)dfs(k)Wz(k)
v,p s=1

X (W(})VisPL + WSIPR)}, (46)

IS f ﬂ(zw)“ @7

First, we focus on the factor in curly brackets in the
integrand of Eq. (46). Since the light quark-gluon vertex
V§ has vy, and Wilson parts, it is convenient to consider
them separately. We denote the part coming from the vy,
term as S, and the part coming from the Wilson term as S,
Then

and

N
S (0) = Sg(=R0, (R)wY Py + wi'PL), (48)
s=1

Z<q( ), () (wo ™ P+ wi Pg). (49)

Using Eqgs. (24) and (25) and performing the sum over s we

find
|
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hTq

FIG. 2. Heavy-light vertex correction.

| >y, sink,
k) = - , 50
S0 wo —e* W(k) —e @ (50)
1
S, (k) = = (51
Wy — €

Combining this result with the Feynman rules presented in
Sec. II, the one-loop correction to the vertex in Fig. 2 can
be written as

:_gchle

+Sw(k)isin<k7’)>}, (52)

—z(k0/2

*lkU + €

Dy (k)F{S (k)ypcos<k2p>

where the second Casimir = (N? — 1)/2N...
Performing the sum over p and dropping the terms odd
in k we can write it as follows:

ST =T6Vy = — cFr(z +1,), (53)

162

where

sin?(ky) + 4ZA Lsin?( /)cosz(ko) + Z(l - AC‘)smz(k )

I, = 1672
X k (
and
1, = 16772j; (55)
v k2(wp — e*)A;

The integral /,, is finite and can be evaluated numerically.
The integral 1, is infrared divergent. We can write it as
follows:

I, =1y +12, (56)

where the first term is the finite contribution coming from

o = W0 — I |

(54)

[

the difference between the improved and the Wilson gauge
action

1§ = 1672 ﬁ {G(cy, k) — G(0, k), (57)

with G(c,, k) representing the integrand in Eq. (54). The
second term
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Iy = 1677-2f G(0, k)
k

B cos? (%)
= tom j;c (wo — 6“)(W(k§ —e A}’

(38)

is just the Wilson gauge action case added back in. Now,
the integral I} is infrared divergent. We will regularize it
by including a gluon mass A and extract the finite part
using the method described in Ref. [31]. We have

o e Aw 0(1 — k?)
B=Ii-Li-lom | ey 9
where
1
e
X7\ — e (W) — e A,
0(1 — k2
+ %) (60)
and
TV =167 ! : 61)
X ﬁ 16(wg — e*)(W(k) — e™*)’

both are finite and can be calculated numerically.
Then the one-loop correction to the vertex is given by

g2

oVr = Tor2 Cr[—1In(A2%a?) — Iy — Iy + I;(” —-1,]
&
= —2CF[_ In(A%a?) + d]. (62)
167

Note that neither the constant d nor the coefficient of the
logarithm depend on the matrix I' at the vertex. The
Y, and i | are tabulated in
Table 1. The values of I3 for different gauge actions can
be found in Table II. The value of the constant d is given in
Table III. These and all other numerical integrals in this
paper were calculated using the Monte Carlo integration
routine VEGAS [32], with 1000000 sample points.

numerical results for I, I%

B. Heavy quark corrections

Now, let us focus on the heavy quark propagator correc-
tions. The tadpole graph in Fig. 1(e) is given by the
following expression

1 ; c
S@d(py) = _EgZCFeﬂp”j;Dob(k)

1 .
= _Eg CFeilpoTc]’ (63)

where T, is the tadpole integral whose numerical values
are
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TABLE I. Results for vertex integrals defined in Sec. V.

Ms; I, Iy IT;

0.05 —4.138229(319) —1.909304(325) —0.703771(17)
0.10 —4.034432(236) —2.030270(283) —0.712970(18)
0.15 —3.948298(192) —2.133953(315) —0.722356(18)
020 —3.872189(163) —2.228815(258) —0.731938(18)
025 —3.802874(143) —2.316957(249) —0.741722(18)
030 —3.738464(129) —2.400620(227) —0.751716(18)
035 —3.677754(117) —2.480180(264) —0.761929(19)
040 —3.619923(108) —2.558862(216) —0.772367(19)
045 —3.564378(100) —2.634128(243) —0.783041(19)
050 —3.510664(93) —2.709506(214) —0.793959(19)
0.55 —3.458427(87) —2.782736(229) —0.805132(20)
0.60 —3.407373(81) —2.855975(230) —0.816570(20)
0.65 —3.357255(75) —2.928999(222) —0.828285(20)
0.70  —3.307856(70) —3.001320(248) —0.840288(20)
075 —3.258987(65) —3.074 116(255) —0.852592(20)
0.80 —3.210479(60) —3.147106(260) —0.865211(21)
0.835 —3.162165(55) —3.220438(268) —0.878159(21)
090 —3.113899(50) —3.294598(273) —0.891453(21)
095 —3.065532(44) —3.369698(280) —0.905107(21)
1.00  —3.016959(36) —3.445750(258) —0.919141(22)
1.05  —2.967904(40) —3.523295(291) —0.933573(22)
1.10  —2.918434(44) —3.602252(251) —0.948424(22)
1.15 —2.868167(47) —3.682678(253) —0.963696(24)
1.20  —2.816869(48) —3.764914(309) —0.979474(23)
1.25 —2.764631(52) —3.849567(315) —0.995722(23)

1.30  —2.711104(56) —3.936509(322) —1.012510(29)

135 —2.656052(60)  —4.026280(329) —1.029829(30)
140 —2.599188(65)  —4.119041(336) —1.047733(30)
145 —2.540188(72)  —4.215449(345) —1.066257(31)
150 —2.478673(79)  —4.315845(352) —1.085443(31)
155 —2.414181(87)  —4.421470(280) —1.105334(32)
1.60 —2.346139(97)  —4.531634(286) —1.125985(35)
1.65 —2.273804(108) —4.647352(381) —1.147436(33)
170 —2.196232(120) —4.770915(392) —1.169762(34)
175 —2.112133(135)  —4.903247(399) —1.193028(34)
1.80 —2.019661(155) —5.046261(405) —1.217309(35)

1.85 —1.916047(182)
1.90 —1.796524(223)

—5.202899(419)
—5.378317(435)

—1.242693(36)
—1.269279(37)

1.95 —1.651230(292) —5.583553(420) —1.297141(31)
0.154933(3) Wilson, ¢; =0
T o= 0.094759(3) Iwasaki, c; = —0.331 (64)
a 0.062426(2) DBW2,¢; = —1.40686°
0.128291(3) Symanzik,¢; = —1/12

The formula for the rising sun diagram in Fig. 1(d) is given
by

e ipotko)

?WW=—fQﬁDM%m“_

T—ehre @

The heavy quark wave function renormalization is ob-
tained via

034504-6



PERTURBATIVE RENORMALIZATION FOR STATIC AND ...

PHYSICAL REVIEW D 75, 034504 (2007)

TABLE II. Results for the 7} integral defined in Eq. (57). TABLE III. Results for d defined in Eq. (62).
M; Iwasaki DBW2 Symanzik Ms Wilson Iwasaki DBW2 Symanzik
0.05 0.246331(9) 0.408 168(15) 0.100 822(4) 0.05 5.343762(661) 5.097431(670) 4.935594(676) 5.242940(665)
0.10 0.249 861(9) 0.414 136(16) 0.102247(4) 0.10 5.351732(537) 5.101871(546) 4.937596(553) 5.249485(541)
0.15 0.253 496(9) 0.420275(16) 0.103714(4) 0.15 5.359895(525) 5.106399(534) 4.939620(541) 5.256181(529)
020 0257237(10) 0.426 590(16) 0.105 225(4) 020 5.369066(439) 5.111829(449) 4.942476(455) 5.263841(443)
025 0.261091(10) 0433 088(16) 0.106 782(4) 0.25 5.378109(410) 5.117018(420) 4.945021(426) 5.271327(414)
0.30 5.387368(374) 5.122306(384) 4.947594(391) 5.278982(378)
030 0.265062(10)  0.439774(17) 0.108386(4) (35 5396005400) 5.126852(410) 4.949348(417) 5.285964(404)
0.35 0.269 153(10) 0.446 657(17) 0.110041(4) 040 5.406418(343) 5.133047(353) 4.952676(360) 5.294671(347)
0.40 0.273371(10) 0.453742(17) 0.111747(4) 045 5.415465(362) 5.137745(372) 4.954426(380) 5.301958(366)
0.45 0.277 720(10) 0.461039(18) 0.113507(4) 0.50 5.426211(326) 5.144004(337) 4.957655(344) 5.310888(330)
0.50 0.282207(11) 0.468 556(18) 0.115323(4) 0.55 5.436031(336) 5.149194(347) 4.959729(354) 5.318832(341)
0.55 0.286 837(11) 0.476 302(18) 0.117 199(5) 0.60 5.446778(331) 5.155161(342) 4.962491(349) 5.327 640(336)
0.60 0.291617(11) 0.484287(18) 0.119 138(5) 0.65 5.457969(317) 5.161415(328) 4.965447(336) 5.336828(322)
0.65 0.296 554(11) 0.492522(19) 0.121 141(5) 0.70 5.468888(338) 5.167233(349) 4.967870(357) 5.345676(343)
070 OGS OOy 02 08 SIS S s s s
0.75 0.306929(12) 0.509787(19) 0.125355(5) 0.85 5.504444(344) 5.186415(356) 4.976243(364) 5.374573(349)
080 0312383(12)  0.518844(20) 0.127573(5) (90 5517044(344) 5.193170(356) 4.979169(365) 5.384791(349)
0.85 0.318029(12) 0.528201(20) 0.129871(5) 095 5.530123(345) 5.200192(358) 4.982240(366) 5.395401(350)
0.90 0.323874(12) 0.537875(21) 0.132253(5) 1.00 5.543568(316) 5.207357(329) 4.985326(337) 5.406283(321)
0.95 0.329931(13) 0.5473883(21) 0.134722(5) 1.05 5.557626(353) 5.214900(366) 4.988654(375) 5.417680(359)
1.00 0.336211(13) 0.558242(21) 0.137285(5) 1.10 5.572262(317) 5.222772(330) 4.992167(339) 5.429550(323)
1.05 0.342726(13) 0.568 972(22) 0.139 946(6) 1.15 5.587149(324) 5.230630(338) 4.995515(347) 5.441560(330)
1.10 0.349490(13) 0.580095(22) 0.142712(6) 1.20 5.602309(380) 5.238481(394) 4.998695(403) 5.453726(386)
1.15 0.356519(14) 0.591 634(23) 0.145 589(6) 1.25 5.618476(390) 5.247041(404) 5.002412(414) 5.466773(396)
20 00N 0wsoMeY  OmssRe 10 S0 s s sanou
1.25 0.371435(14) 0.616064(24) 0.151703(6) 140 5670 496(431) 5274 244(447) 5013 945(456) 5.508 594(438)
1.30 0.379360(15) 0.629014(24) 0.154956(6) ’ ’ ' ’ ’
1.45 5.689380(448) 5.284112(464) 5.018 164(474) 5.523765(455)
135 0387625(15)  0.642497(25) 0.158353(6) 150 5.709075(462) 5.294373(478) 5.022536(489) 5.539571(469)
1.40 0.396252(16) 0.656 551(25) 0.161902(7) 1.55 5.730317(399) 5.305731(416) 5.027747(426) 5.556733(406)
1.45 0.405268(16) 0.671216(26) 0.165615(7) 1.60 5.751788(418) 5.316832(435) 5.032423(446) 5.573920(426)
1.50 0.414702(16) 0.686 539(27) 0.169 504(7) 1.65 5.773720(522) 5.327868(540) 5.036731(551) 5.591344(530)
1.55 0.424 586(17) 0.702 570(27) 0.173 584(7) 1.70 5.797385(546) 5.340064(565) 5.041872(576) 5.610260(554)
1.60 0.434956(17) 0.719365(28) 0.177 868(8) 1.75 5.822352(568) 5.352939(587) 5.047333(599) 5.630214(576)
1.65 0.445 852(18) 0.736 989(29) 0.182376(8) 1.80 5.848613(595) 5.366427(615) 5.053015(627) 5.651173(604)
170 045732119) 075551360 QISTIZN®) o e T 3063 145030) 3696533705
1.75 0.469413(19) 0.775019(31) 0.192 138(8) : ’ ’ ’ :
150 0482 186(20) 0795 598(32) 0.197 440(9) 1.95 5.937642(743) 5.412316(767) 5.072723(780) 5.722255(753)
1.85 0.495709(21) 0.817357(33) 0.203059(9)
1.90 0.510059(22) 0.840417(35) 0.209 029(10) .
1.95 0.525326(24) 0.864919(37) 0.215387(10) o, ¢ e o
Eexp =g Cr ﬁ Dy (k) 1—e + ¢ (68)
. B3 4 S Note that
ZZ - 1= _164 (66) —ikg 1 k 1
Po Po=0 _€ = —_ cot<—0> -, (69)
1= o ik 2i 2) 2
The calculation of the tadpole contribution to Z# is trivial. o
In order to calculate the contribution from 3™ we willusea  Ihen Eq. (68) can be simplified to
method similar to the one developed in Ref. [9]. We write
P ®l Sep = 22C T — 12Ci T, (70)
QX"
—i =2 T 20 (67)  where
IPo | py=0 X
3 Pk . -
where X, and X, come from differentiating TEI) - / .7 Do (0, k). (71

exp[—i(po + ko)l and Dg(k — p) in Eq. (65) respectively.
We get

The numerical results for T Q) are
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0.252721(6)
0.164 361(5)
0.093831(4)
0.219018(6)

Wilson, ¢; =0

Iwasaki, ¢; = —0.331
DBW2,¢; = —1.40686°
Symanzik, ¢, = —1/12

TS = (72)

For X, in Eq. (67) we obtain

= —ig CprC"(k)4s1n< >cos<%>

e lk()
(s 7
where

aDg kg, k
Dy (k) = 700( v b, (74)
oks

with &, = 2 sin(ky/2). We calculated D)) (k) numerically
and symbolically using Mathematica. Using Eq. (69) and
dropping the term odd in ky we can reduce Eq. (73) to

= —2g CF/ D) (k)cos ( ) (75)

Again, we calculate the difference between the improved
and the Wilson gauge action numerically:

I = 167 ﬂ( Dy (k) + )cosz<%>. (76)

The results are

1.310153(55)  Iwasaki, c; = —0.331
I,' = {3.510284(162) DBW2,¢; = —1.40686. (77)
0.297720(15)  Symanzik, ¢; = —1/12

The contribution of the Wilson part to be added back in is
cos?(% 1 1
16772/ (2) = 1672 — 772[—
k kA

A} (A}
1

= 16772ﬁp — Ty, (78)
1

where T, is the Wilson tadpole integral calculated in
Eq. (64). Once again, we subtract numerically the infrared
divergent part using the method of Ref. [31]:

_ 1.2
0= 16772f<i2 - M) = 4.791861(251). (79)
k Al k

Finally, putting together all one-loop contributions to Z%
we have

Zh=1+ 21‘2 Cel—In(A2a?) — 1 — ' + ©
+ 47T — 727], (80)

or

PHYSICAL REVIEW D 75, 034504 (2007)

2
Zh=1+ ﬁCF[—ZIn()\ZaQ) +el @D

where
24.480 Wilson,c; =0
o — 14.883 Iwasaki, c; = —0.331 82)
4914 DBW2,¢; = —1.40686°
21.223 Symanzik, ¢; = —1/12

with a maximum error of £1 in the last digit. Our result for
the Wilson case agrees with the result of Ref. [9]. Note that
the correction to Z! is significantly reduced in the case of
Iwasaki and DBW?2 action.

Now, let us discuss the radiative correction to the mass

dM = =X (py = 0) — 2"(py = 0). (83)

We obtain
M = 278
16
19.954 Wilson,c; =0
_ & c.x | 12977 Iwasaki, ¢; = —0.331
1672 F 7.409 DBW2,¢; = —1.40686’
17.293 Symanzik, ¢; = —1/12
(84)

which agrees with the Wilson case result in Refs. [9,33,34].

C. Relation to MS scheme

Now, we can calculate Zr relating the continuum static
theory bilinear Oy, renormalized in MS(NDR) , to the
lattice bilinear 0ldt as follows:

Or(w) = (1 — wd) 22,71 (1, a) 0 (a),  (85)

where (1 — w})~"/ 27,1/ is a DWF-specific factor, whose
origin and numerical values are discussed in Refs. [13,30]
and

2

A 1 A2
Zr(u,a) =1+ CF<—ln +D+2< 21n—2+E>
M

16 1672
1 )\2 g2

+§<1IIP+F>> 16 2CF<_1n/\2a2 +d
1

+ z(—21n/\2a2 +e)+ 5(ln)lza2 + f)>. (86)

The continuum static theory constants D = 1, E = 0 and
F = 1/2 were calculated in Ref. [4]. The values for d and e
can be found in Table III and Eq. (82). The lattice light
quark renormalization factor f = 1/2 — z,, where z, was
calculated in Refs. [13,30]. Eliminating A from Eq. (86) we
obtain

034504-8



PERTURBATIVE RENORMALIZATION FOR STATIC AND ...

Zr(w,a) =1+ > —f—f>

3
CF(E ln,LL2a2 + Z —d 3 5 .
&7)
Note that the result for Z does not depend on I' since both
D and d are I' independent. This is consistent with the
observation in Sec. III that Z should be the same for all
bilinears because of the symmetries of the action.

1672

VI. MATCHING STATIC THEORY AND LATTICE
FOUR-FERMION OPERATORS

In Sec. IV we discussed the relationship between the full
theory operator Oyy.44 and static theory operators
Ovy+as and Ogg, pp. In this section we will match these
static theory operators renormalized in MS(NDR) scheme
to lattice operators. We will also discuss the renormaliza-
tion of By.

A. Operators matching

First, we note that the coefficient Z, in Eq. (38) is
already of the order g2. Thus for the purposes of matchmg
at the leading order in g2 it will suffice to match Ogg. pp
and O, .., at tree level.

OSS+PP(M) Zs SS+PP(a) (88)

with
Zs=(1-w) 1z, (89)

being the DWF-specific factor present even at tree level.
The matching of Oy 444 to the lattice has been worked out
for the Wilson case in Refs. [35,36]. In our case, the mixing
is simplified, since the chiral symmetry prohibits mixing
with operators of different chirality [18,37,38]. With the
exception of the diagrams depicted in Fig. 3, the four-
fermions diagrams can be reduced to the diagrams already
discussed in Sec. V. Thus, we have

O yyran(p) = Z, 0%, 44 (a), (90)

(a) (b)

FIG. 3. Four-fermion specific one-loop corrections.
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with

Z, = (- wg)*lz;v1<1 (4Inp2a? + DL)> ©1)

1672
and

—7_1. 10

e - 3f (92)

The constants d, e and f were discussed in Sec. V. The
constant v is the light-light correction depicted in Fig. 3(a),
which was calculated in Refs. [13,30,39]. In the notation of
Ref. [13] v = —V, p. The constant c is the heavy-heavy
correction depicted in Fig. 3(b), which we calculate below.
Omitting the trivial I" structure, the contribution from
the graph in Fig. 3(b) is given by the following expression:

o~ ik
oV = Dg)(k A fmter
V= 8 CF] ( ) — e_’ko + 6)2 (93)
Noting that
e~ iko 1
A = - , 94
(1 — e k)2 4sin®(ky/2) O

we integrate Eq. (93) by parts and arrive at

— —2g%C; f D (k)cos ( ) (95)

which is identical to Eq. (75) in Sec. V. Using our results
from Sec. V we can immediately write

v =22 6 SCe[— A2 — 1 — [0 + O — 72T,]
g
16 —— Cp[—2InA%a* + c], (96)
where
4.525 Wilson, ¢; =0
| 1.905 Iwasaki, ¢c; = —0.331
€71 —2495 DBW2, ¢, = —1.40686° D
3.930  Symanzik, ¢; = —1/12

with a maximum error of =1 in the last digit. Our result for
the Wilson case agrees with the result of Ref. [35].

B. B renormalization
In QCD, the B-meson parameter By is defined as
(BlOV D 1B)

8 2.2
3JBMp

Bp = (98)

Combining the results of this section with the results of
Sec. IV and V we can relate By to lattice as

Z\Z;

. VAYAS
Bldt 4+ 22T Bldt ) 99
Cioz‘i VV+AA SS+PP ( )

BB = C2 ZZ

where
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B|0"(0)|B
w2 (BIOFOIB) (100)
© 3 KOIAG|B)*mp
Note that the Bz renormalization does not depend on (1 —
w3)~1Z,;! since it cancels in the ratios.

VII. MEAN-FIELD IMPROVEMENT

Finally, let us briefly discuss the application of mean-
field improvement to our results. We follow the much more
detailed discussion in Refs. [13,30,40]. The main reason
for the improvement program is the fact that for some
values of M5, the DWF-specific factor Z,, becomes quite
large [12]. This problem can be circumvented by substitut-
ing wy and Z,, with:

wiF = 1wy + 4(1 — w), (101)
4wMF
N = Z, |y + ?x(ﬁ)ﬁ)zz(l —u), (102)

where u = P'/4, with P being the value of the plaquette.
The mean-field improvement will also affect other per-
turbative constants. The constant f=1/2—2z, in
Egs. (87) and (92) should be replaced by fMf = 1/2 —
2, with ZF of Refs. [13,30]. Because of the change in
wy, the value of the constant d in Eq. (62) should also
change. One can obtain the values of dMF from d by
observing that dMF(Ms) = d(Ms), where Ms =
Ms — 4(1 — u). Similarly, the constant v in Eq. (92) should
be replaced by vMF(Ms) = v(Ms). For the heavy quark,
mean-field improvement has no effect on the wave function
renormalization as was pointed out in Refs. [40,41].
However, one should be mindful of the subtlety involving
different normalization conditions for Z% discussed in
Refs. [9,33]. The normalization condition consistent with
the mean-field improvement necessitates the use of e —
O0M instead of e in Eqs. (87) and (92). The constant ¢ in
Eq. (97) is unaffected by mean-field improvement. Finally,
the light-quark field should be multiplied by +/u, which
leads to the multiplication of Z by /u and of Z; g by u.

VIII. CONCLUSIONS

In this paper we have calculated one-loop renormaliza-
tion constants for operators combining static heavy and
domain-wall light quarks. We obtained results for Wilson,
Iwasaki, DBW2, and Symanzik gauge actions. We have
confirmed that all bilinears regularize by a single constant
when matched to the static theory. We have shown that the
combination of domain-wall fermions and an improved
gauge action reduces the size of perturbative corrections

PHYSICAL REVIEW D 75, 034504 (2007)

significantly compared to the Wilson case. This suggests
that our choice of action is quite suitable for the determi-
nation of fg, Bg, and Am,/Am, with increased precision.
Our results provide the necessary connection between
those phenomenological quantities and lattice calculations.
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APPENDIX

The improved gauge propagator in momentum space is
given by [17]

1

Diyly(k) = W

([ =~ A0 &, + 0,5 00

(A1)
where « is the gauge parameter, IEM = 2sin(k, /2), P =
4y sin*(k,/2) and

Agh (k) = As), (k)

1—06 n ~ N N ~
= [l k2 2 _ k2 INF + 2 k2
sw [ e 2tk 2 b

pFE M,V
" cg((zzz;*,)z FESE Y R
P p

TF M,V
+ (@2 [ kf,ﬂ (A2)
pPF M,V
with
AW = (B = e Sk & — o2+ SR
P T
1 A A, A A
+ Ec%<(k2)3 +23 kS - kZZk‘,‘ﬂ
— 4c$21€;‘, l_[k2 (A3)

p TEp

The different choices for the parameter ¢; correspond to
different gauge actions discussed in the main text of this
paper. In the case c¢; = 0, the propagator in Eq. (Al)
reduces to the standard Wilson plaquette action propagator.
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