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We investigate the lattice QCD Dirac operator with staggered fermions at temperatures around the
chiral phase transition. We present evidence of a metal-insulator transition in the low lying modes of the
Dirac operator around the same temperature as the chiral phase transition. This strongly suggests the
phenomenon of Anderson localization drives the QCD vacuum to the chirally symmetric phase in a way
similar to a metal-insulator transition in a disordered conductor. We also discuss how Anderson
localization affects the usual phenomenological treatment of phase transitions a la Ginzburg-Landau.
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One of the most important features of the infrared limit
of the strong interactions is the spontaneous breaking of the
approximate chiral symmetry. The order parameter asso-
ciated with this spontaneous chiral symmetry breaking
(S�SB) is the chiral condensate, h �  i, which in the ab-
sence of S�SB would vanish as the quark mass goes to
zero. In nature the lightest quarks are not massless so a
nonzero condensate is expected even in a free theory.
However the small quark mass can only account for a small
percentage of the chiral condensate, the rest has its origin
in the strong nonperturbative color interactions of QCD.
Although lattice simulations have already provided over-
whelming evidence that S�SB is a feature of QCD it is still
highly desirable to understand its origin in more simple
terms.

Simplified models of QCD where gauge configurations
are given by instantons have played a leading role in the
description of the S�SB [1–3]. Instantons [4], originally
introduced in QCD by ’t Hooft [5] to solve the so called
U�1� problem, are classical solutions of the Euclidean
Yang-Mills equations of motion. Their relation with the
S�SB stems from the fact that the QCD Dirac operator has
an exact zero eigenvalue in the field of an instanton. In the
QCD vacuum, these zero modes coming from different
instantons mix together to form a band around zero. It
turns out the spectral density, ����, of the Dirac operator
in this region is directly related to the chiral condensate
through the Banks-Casher relation [6],
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where V is the space-time volume. Based on this result it
was shown that the instanton contribution was capable of

producing a nonzero chiral condensate with a value close to
the phenomenological one [2,3] (see [7] for a detailed
review).

For sufficiently high energies the non-Abelian gauge
interaction of QCD is weak (asymptotic freedom) and
chiral symmetry is restored. This poses an interesting
question: How is the chiral symmetry restored as we go
from low to high energies or, equivalently, from low to high
temperatures?

A standard approach to the chiral phase transition is to
invoke universality arguments [8], namely, it is assumed
that the nature of the transition is determined solely by
symmetries of QCD. The chiral phase transition is then
studied by looking at the most general renormalizable
Ginzburg-Landau Lagrangian with the chiral symmetries
of QCD. By using a perturbative renormalization group
analysis, Pisarsky and Wilczek [8] found that for two
massless flavors the transition is expected to be second
order. However, for three or more flavors, it was conjec-
tured to be first order due to the absence of infrared stable
fixed points in the renormalization group equations. The
order and the very existence of the chiral transition is also
sensitive to details such as the mass of the light quarks and
whether the above mentioned U�1� symmetry is restored at
the same temperature as the chiral one.

Generally speaking it is still under debate to what extent
effective models only based on universality arguments
provide an accurate description of the chiral phase transi-
tion [9] (see e.g. [10] for a recent discussion of some lattice
results). For instance, it is unclear whether the � expansion
used to determine the fixed points is reliable at � � 1 and
additionally whether nonperturbative effects may alter this
behavior completely.

In this paper we present evidence that the phenomenon
of Anderson localization [11] plays a crucial role in the
chiral restoration. We suggest that localization drives the
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system to the chirally symmetric phase in a way similar to a
metal-insulator transition (also referred to as Anderson
transition (AT)) in a disordered conductor. Anderson lo-
calization thus counterbalances the effect of the QCD
interactions which tend to keep the S�SB phase. For the
sake of completeness we briefly review some basic facts
about disordered systems with special emphasis on the
phenomenon of Anderson localization (see Sec. VI of
[12] for a review).

Localization properties of a disordered system, i.e. a free
particle in a random potential [11], are investigated by
looking at the eigenstates or, more economically, by study-
ing level statistics of the Hamiltonian. In two and lower
dimensions, destructive interference caused by backscat-
tering produces exponential localization of the eigenstates
in real space for any amount of disorder. As a consequence,
quantum transport is suppressed, the spectrum is uncorre-
lated (Poisson statistics) and the system becomes an insu-
lator. In more than two dimensions there exists a metal-
insulator transition for a critical amount of disorder due to
the interplay of destructive interference and tunneling. By
critical disorder we mean a disorder such that, if increased,
all the eigenstates become exponentially localized. For a
disorder strength below the critical one, the system has a
mobility edge at a certain energy which separates localized
from delocalized states. Its position moves away from the
band center as the disorder is decreased. Delocalized ei-
genstates, typical of a metal, are extended through the
sample and their level statistics agree with the random
matrix theory (RMT) prediction for the appropriate sym-
metry. We note that in the case of QCD the role of
Hamiltonian is played by the Dirac operator.

Localization has already been investigated in lattice
QCD [13–15]. The low lying modes of lattice QCD with
overlap fermions at zero temperature are generally found to
be localized even though the eigenvalue spectrum agrees
with the random matrix prediction [13]. This gives an
apparent contradiction since the RMT also predicts ex-
tended eigenstates. Conversely, simulations with staggered
fermions do find extended states along with an eigenvalue
spectrum that agrees with RMT [14], though the localiza-
tion properties of the low modes in unquenched simula-
tions have not been studied in detail near the chiral phase
transition. In the context of instanton liquid models (ILM)
at zero temperature, the S�SB has been related to the
conductivity (delocalization) in a disordered medium
[16–19]. At nonzero temperature, we have recently re-
ported [20] that, in agreement with a previous suggestion
[21], the chiral phase transition in the ILM is induced by an
AT of the lowest lying eigenmodes of the Dirac operator. In
this letter we show that the close relations between
Anderson localization and the chiral phase transition found
in the ILM holds in full lattice QCD as well.

In the next section we introduce the lattice simulations
used in this paper and present evidence of a localization
transition in quenched lattice QCD. Then we show that this

metal-insulator transition occurs around the same tempera-
ture as the chiral restoration. In Sec. III we repeat the
analysis in full (unquenched) lattice QCD with similar
results. The last section provides some further clarifica-
tions about the relation between Anderson localization and
chiral restoration including the effect of localization on the
standard picture of phase transitions à la Ginzburg-
Landau.

I. LOCALIZATION OF THE QCD DIRAC
OPERATOR AT NONZERO TEMPERATURE

In this section we investigate how the localization prop-
erties of the QCD Dirac operator depend on temperature.
Specifically we are looking for a critical temperature at
which a metal-insulator transition occurs. We shall also
investigate if the spectral and eigenfunction properties
around the critical region are compatible with those of a
disordered conductor at the metal-insulator transition.

Our first task is to obtain both the eigenvalues and
eigenvectors of the Dirac operator for different tempera-
tures and then find the location, if any, of the metal-
insulator transition. In principle one should also determine
the spectral region in which the transition takes place. In
the quenched case, according to the Banks-Casher relation,
the physics of the S�SB and its eventual restoration is
exclusively linked with the lowest eigenmodes of the
Dirac operator so we will look for the metal-insulator
transition only in this region. For dynamical fermions the
situation is different, the condensate depends on a wider
spectral region, so we will examine how much the region in
which the AT occurs overlaps with the one relevant for the
chiral condensate.

Details of the lattice QCD simulations

For the present study we have used quenched and 2� 1
flavor lattices at couplings (�) around the chiral restoration
transition. Both sets of lattices were generated using a one-
loop Symanzik improved gauge action [22]. The lattice
sizes used are L3 � 4 where L is the spatial size and the
number of time slices is always 4. The quenched lattices
used L � 16 and 20 while the unquenched lattices used
L � 12 and 16. The 2� 1 flavor lattices were generated
using the a2 tadpole improved ‘‘asqtad’’ staggered Dirac
operator [23] with 2 light quark flavors and 1 strange quark
flavor with the light quark masses one tenth the strange
quark mass. The L � 12 lattices come from the MILC
collaboration and are a subset of the ones mentioned in
[24]. The L � 16 lattices were generated using the same
parameters as the smaller lattices except for the volume.

We have obtained the lowest 64 eigenvalues and eigen-
vectors of the asqtad staggered Dirac operator on these
lattices. In the quenched lattices we first rotated the gauge
fields by an appropriate Z3 transformation so that the
Polyakov loop is in the ‘‘real’’ phase. This avoids having
to deal with seeing separate transitions for the different
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phases at different temperatures, although it would be
interesting to examine the other phases too. We note that
the staggered Dirac operator actually represents four cop-
ies of the continuum Dirac operator (called ‘‘tastes’’) that
are mixed together. However, since the lattice spacing is
large, the scale for the taste breaking is much larger than
the eigenvalues being studied here. It is thus expected that
the eigenvalues behave as if from a single continuum Dirac
operator confined to the topological sector � � 0.

A. Eigenvalue analysis in quenched QCD

The critical temperature at which the AT close to the
origin occurs was determined by performing a finite size
scaling analysis [25]. In essence this method consists of
computing a spectral correlator for different sizes and then
seeing for what value of the temperature it becomes scale
invariant (no dependence on the size). We recall that scale
invariance is a typical signature of the AT. Since we are
interested in a small spectral window close to the origin we
have chosen a short range correlator, the level spacing
distribution P�s� [26]. This is the probability of finding
two neighboring eigenvalues at a distance si � ��i�1 �
�i�=�, with � being the local mean level spacing. For an
insulator, levels are not correlated, there is no level repul-
sion and P�s� � e�s. In the case of a metal there is level
repulsion, P�s� � s��s� 1�, and Gaussian decay P�s� �
e�4s2=��s	 1� with � an integer depending on the sym-
metry of the Dirac operator (� � 2 in our case).

In order to avoid any dependence on bin size in the
spacing distribution, the scaling behavior of P�s� is exam-
ined through its variance,

 var 
 hs2i � hsi2 �
Z 1

0
dss2P�s� � 1; (2)

where h. . .i denotes spectral and ensemble averaging. The
prediction for a metal (from RMT) is varM � 0:178 while
an insulator (Poisson statistics) gives varI � 1. If the vari-
ance gets closer to the metal (insulator) result as the
volume is increased we say that the system is delocalized
(localized). Any other intermediate value of var in the
thermodynamic limit is a signature of a metal-insulator
transition.

In Fig. 1 we plot the variance of the eigenvalues in the
interval a� 2 �0:025; 0:05 (with a the lattice spacing) for
different volumes and couplings. Increasing � corresponds
to increasing temperature. The variance appears to be scale
invariant at � � 7:93 and increases (decreases) with the
volume for larger (smaller) �. This behavior points to a
metal-insulator transition around �c � 7:93 for this inter-
val. The interval above was chosen so as to contain enough
eigenvalues to obtain good statistics for all couplings used.
Other intervals give similar results provided that we remain
sufficiently close to the origin although the value of �c
may decrease slightly as the interval approaches zero. Note

also that as � increases the lattice spacing a decreases
which, in turn, increases the eigenvalue range in physical
units. We have not tried to correct it in the quenched case as
it would not affect the scaling with volume seen at fixed �
which is how the localization properties and �c are deter-
mined. However we mention this is likely the cause of the
downward bend in Fig. 1 for � � 7:95.

Evidence of a metal-insulator transition is also seen
directly in the level spacing distribution shown in Fig. 2.
This is plotted for the largest volume lattices (203 � 4) at
different � along with the metal (RMT) and insulator
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FIG. 1 (color online). Level spacing variance (var) of the low
eigenvalues of the Dirac operator in quenched QCD for two
volumes (L3 � 4) and values of the lattice coupling � spanning
the transition. The system undergoes a metal-insulator transition
around �c � 7:93.
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FIG. 2 (color online). Level spacing distribution, P�s�, of the
low eigenvalues of the Dirac operator in quenched QCD for
lattice size 203 � 4 and values of the coupling around the
transition. A transition from the random matrix prediction
(RMT) typical of a metal towards the Poisson result typical of
an insulator is observed as the temperature is increased (increas-
ing �).
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(Poisson) results. As the temperature is increased the dis-
tribution moves from metallic towards an insulator simi-
larly to the variance. Note that, as with the variance plot,
the system has still not reached the result of an insulator at
this volume, but should scale towards it as the volume is
increased.

C. Eigenvector analysis in quenched QCD

We now investigate whether eigenstate properties are
compatible with the findings of the previous section. We
recall that extended eigenstates are a signature of a metal
and exponential localization is typical of an insulator. The
eigenstate decay is very sensitive to statistical fluctuations,
boundary conditions and finite size effects in general and
consequently it is not the best alternative for numerical
investigations. A much simpler option is to study the
scaling with volume of the eigenstate moments, Pq �
Ld�q�1�

R
dd�1rj ��r�j2q, where  ��r� is a normalized ei-

genstate of the Dirac operator with eigenvalue � and d is
the spatial dimension. In a metallic sample it is expected
that Pq decreases with volume approaching Pq � 1 in the
thermodynamics limit. Conversely in an insulator, Pq is
expected to increase with volume as Pq / Ld�q�1�. At the
AT, eigenstates are multifractal meaning the wavefunction
moments present anomalous scaling with respect to the
sample size, Pq / L��Dq�d��q�1�, where Dq is a set of
exponents describing the transition [27,28]. For the analy-
sis of the lattice data we restrict ourselves to the second
moment, P2, usually referred to as the inverse participation
ratio (IPR). In Fig. 3 we plot the average of the IPR versus

eigenvalue for different volumes and couplings. We ob-
serve that for � � 7:92 ( � 7:93) the IPR decreases (in-
creases) with the volume. This suggests, in agreement with
the previous spectral analysis, that an AT takes place
around �c � 7:93. Unfortunately the range of accessible
volumes is too small to provide a reliable estimate of the
multifractal dimensions, Dq, in the critical region.

II. LOCALIZATION AND CHIRAL RESTORATION
IN QUENCHED LATTICE QCD

Having found that an AT close to the origin does occur in
quenched QCD we now investigate its possible relation
with the chiral phase transition. Although in the quenched
case there is no true chiral symmetry, it is still possible to
study the quenched chiral condensate. From the Banks-
Casher relation (1) we know that the condensate in the
chiral limit is proportional to the density of eigenvalues of
the Dirac operator near zero. By chiral restoration it is thus
meant that the infrared limit of the spectral density of the
Dirac operator vanishes at a certain temperature. Using this
definition of the condensate we can then approximate the
density of eigenvalues near zero simply from the average
of the smallest eigenvalue. The precise relation can be
obtained from the RMT prediction of the distribution of
the smallest eigenvalue [29]. We will then compare the
behavior of the quenched chiral condensate to the local-
ization transition in QCD.

In Fig. 4 we plot the quenched chiral condensate in the
chiral limit, the average IPR of the low modes, and the real
part of the average Polyakov loop at different couplings.
Amazingly the indicators for chiral symmetry restoration,
Anderson localization and deconfinement (respectively) all
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show signs of a transition around the same temperature. We
have shown the condensate for two different volumes so
the scaling to infinite volume can be seen. As the volume
increases the condensate increases for �< 7:93 and de-
creases for �> 7:93 suggesting that the chiral transition
occurs around �c � 7:93. This behavior is very similar to
that found in the level spacing variance shown in Fig. 1.

The IPR in Fig. 4 is averaged over modes in the same
eigenvalue range used in the previous section. In agree-
ment with Fig. 3 we again see that it rises abruptly around
the same �c. Although we cannot currently provide any
direct connection between the localization transition and
deconfinement, it is still interesting to see that the order
parameter for confinement (the Polyakov loop) shows an
extremely similar behavior to the IPR thus suggesting that
the two transitions are also related. Additionally, as is
shown above, we do see evidence that there is a connection
between localization and the chiral phase transition.
Indeed, the apparent agreement in critical temperatures
strongly suggests that Anderson localization is the mecha-
nism driving the chiral phase transition in quenched QCD.

III. LOCALIZATION AND CHIRAL RESTORATION
IN FULL LATTICE QCD

We now examine the localization transition in full lattice
QCD. With respect to the chiral transition the most impor-
tant difference from the quenched case is the fact that, for
nonzero quark masses, the condensate is no longer exclu-
sively determined by the eigenmodes close to the origin.
The condensate now gets contributions from larger eigen-
values with a relative weight given in (1). The importance
of the modes right at zero then becomes diluted by the
nonzero modes. Only in the chiral limit, as the dynamical
mass approaches zero, does the condensate only depend on
the lowest modes. Therefore in order to understand the
relationship between localization and chiral restoration we
must study the localization properties over a range of
eigenmodes similar to the ones relevant for the condensate.
Typically this spectral window comprises not only critical
eigenstates at the mobility edge but also localized and
delocalized eigenstates around it. The issue of whether
such a mixture causes a crossover or a transition is subtle
and requires further study.

Understanding the relationship between localization and
S�SB in full QCD is also complicated by the fact that at
the physical quark masses the chiral transition is really a
rapid crossover. The critical temperature in this case is
usually defined by the maximum of the chiral susceptibil-
ity. However, as discussed below, the localization proper-
ties are related to the susceptibility and thus could still
provide a connection between the two phenomena.

In order to explore this scenario our first task is to locate
the mobility edge in full lattice QCD. For this we look at
the level spacing variance (2) for two different lattice sizes

versus coupling (Fig. 5) in a range of eigenvalues 0 � � �
30 MeV (the relation for the lattice spacing in [24] was
used to convert to physical units). This range goes up to
roughly 3 times the light quark mass and thus covers an
important fraction of the contribution to the condensate.
Our results are not sensitive to the length of the spectral
interval utilized provided that there is no coexistence of
localized and delocalized eigenstates. If this occurs we
shall observe a crossover rather than a transition.

Here we clearly see that the variance is close to the
random matrix prediction typical of a metal for �< 6:2
while for �> 6:2 it tends rapidly to the result of Poisson
statistics typical of an insulator. Thus around �c � 6:2
there is a transition from the metallic to the insulator limit.
Converting this to physical units we get Tc � 195 MeV.
By transition we really mean that there is a sharp increase
of the variance in a quite narrow window of temperatures.
Much larger volume would be needed to clarify whether it
is just a crossover or a true transition.

We see a similar scaling behavior in the IPR (Fig. 6).
Again there is a transition from extended to localized states
at around the same �c � 6:2. However if we look at the
chiral condensate also plotted on the same figure we see
that it does not show any volume dependence. This is in
agreement with the expected behavior at a chiral crossover.
In this case one can still define the critical temperature
from the maximum of the chiral susceptibility. For the
unquenched lattices this is about 194 MeV [30], which
compares favorably with that found for the AT.

The reason why a transition is observed for localization
can be understood fairly easily. For the localization tran-
sition, a mobility edge forms at zero for some temperature
and then moves towards higher energies as the temperature
is increased. If the mobility edge is below the spectral
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window being studied then the states will appear extended
and if above then they will appear localized. While the
mobility edge is inside the window there will be a mix of
extended, critical and localized eigenmodes. This will
technically give a crossover, however this is merely a
consequence of the size of the spectral window analyzed
which is related to the dynamical quark mass. From the
point of view of localization theory the determination of
what constitutes a large and small window is governed by
the rate of change of the mobility edge with temperature
which, for our case, seems to be very fast. Thus if the
window around the mobility edge is small enough a true
transition is expected.

However the reason why we observe a crossover in the
chiral transition is less clear. The spectral region which the
chiral condensate is sensitive to is also determined by the
quark mass. Evidently due to the nonzero mass, the chiral
transition is not as sensitive to the mobility edge itself but
rather to the coexistence of localized, delocalized and
critical eigenmodes in the spectral region of interest.
Since we find that both phenomena occur at the same
temperature, it is natural to expect that Anderson localiza-
tion is still responsible for causing the chiral transition.
However the exact nature of the relationship is still under
investigation.

In summary, our numerical results show that an AT
occurs in the low energy part of the Dirac eigenmodes at
around the same temperature as the chiral transition. This
is fully consistent with the idea of Anderson localization as
the microscopic mechanism driving the chiral phase tran-
sition. However much larger lattices and better statistics
are still needed to fully explore this scenario, and espe-
cially to extract the spectrum of multifractal dimensions
and critical exponents.

IV. ADDITIONAL DISCUSSION ON
LOCALIZATION AND CHIRAL RESTORATION

This final section is devoted to a more detailed account
on how localization and the chiral phase transition are
related. We start by addressing certain problems associated
to linking these two phenomena. The most serious one is
the fact that the spectral density is not a good order
parameter for the transition to localization since it does
not vanish in any of the phases. Signatures of the transition
to localization are typically found in correlation functions
of higher order. By contrast the chiral condensate is di-
rectly related to the spectral density of the Dirac operator
through the Banks-Casher relation (1). This seems to
suggest that Anderson localization and the chiral phase
transition cannot be so intimately related. However, in
disordered systems with chiral symmetry (or any other
additional discrete symmetry) the spectral density is al-
ready sensitive to the strength of disorder [31,32] so it may
still play the role of an order parameter for the transition.
Additionally the fluctuations of the order parameter are
related to density-density correlations which are sensitive
to localization effects even in systems with no chiral
symmetry.

Another issue that deserves further clarification is the
choice of the term Anderson localization. In the context of
disordered systems, this term is used if localization is
produced by destructive interference. On the other hand
the term Mott transition refers to a transition caused by
interactions. Quark interactions are a key ingredient in
QCD so it may seem more appropriate to use Mott-
Anderson instead of Anderson. We stick to Anderson to
emphasize that disorder, due to the fluctuations of gauge
fields, plays a crucial role in the transition as well. An
indication that this is the case is the fact that even for
temperatures just above chiral restoration, QCD is still
nonperturbative [33] thus suggesting the mechanism driv-
ing the transition is not exclusively a weakening of the
strong interactions.

Finally we discuss whether the order and critical expo-
nents of the phase transition can be deduced from the study
of localization. In the case of the standard nonchiral AT
evidence that some sort of phase transition takes places is
the fact that the localization length diverges at the transi-
tion with a certain universal critical exponent �. Also the
spectrum of multifractal dimensions Dq at the AT must be
related to certain critical exponents of the chiral phase
transition. For instance, the susceptibility is given by the
integral of a density-density correlation function whose
decay is controlled by the multifractal dimension D2 [34].

We recall that critical exponents related to Dq cannot be
predicted by any mean field theory even if perturbative
corrections are taken into account. Unfortunately the range
of volumes used here is still too small to provide a reliable
estimate of the multifractal dimensions Dq in the critical
region and its relation to critical exponents. However in the
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context of ILM [20] it has already shown that, at the chiral
phase transition, eigenvectors of the QCD Dirac operator
are multifractal with a Dq similar to the one found in a 3D
disordered conductor at the AT. This is another indication
that Anderson localization is an important ingredient to
understand the chiral phase transition in QCD.

In conclusion, we have studied Anderson localization of
the QCD Dirac operator at nonzero temperature. Near the
origin we found a clear transition from delocalized to
localized states as the temperature is increased. Around
this mobility edge, the eigenvectors and spectral correla-
tions are similar to those of a disordered system under-
going an AT. Remarkably both the transition to localization
and the chiral phase transition occur at the same tempera-

ture. This indicates that the phenomenon of Anderson
localization plays a crucial role in the restoration of the
chiral symmetry.
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