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Solving instability of the Savvidy vacuum in QCD is a longstanding problem. Using light cone
quantization, we analyze the problem not in the real confining vacuum but in dense quark matter where
gluons interact weakly with each other. We find a stable ferromagnetic ground state of gluons which carry
a single longitudinal momentum. Their states are composed as if they are confined in a two-dimensional
quantum well. This supports our previous result that gluons form a quantum Hall state in dense quark
matter.
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About 30 years ago, Savvidy [1] showed that a color
magnetic field is generated spontaneously in the Yang-
Mills gauge theory. Namely, when one calculates an effec-
tive potential of the color magnetic field using the one loop
approximation, it is found that the nontrivial color mag-
netic field is generated spontaneously. Soon after, it was
shown [2] that some of the gluons have imaginary energies
under the color magnetic field and produce an imaginary
part in the effective potential. The existence of the non-
trivial imaginary part in the effective potential implies the
instability of the vacuum with the color magnetic field.
Some of the gluons are unstable in the vacuum. We call it
Savvidy instability. This magnetic instability of the vac-
uum in the Yang-Mills gauge theory was expected by many
authors to lead to a confining vacuum. Namely, it was
expected that the confining vacuum would be realized by
the condensation of the unstable gluons. The subsequent
analysis [3] of the gluons has revealed the complication of
the color magnetic flux due to the production of an addi-
tional magnetic field generated by the unstable gluons.
Although the formation of a lattice of the flux tube has
been argued [3], any other clear pictures of such compli-
cate states formed by the unstable gluons have not been
presented. Eventually, a confining vacuum could not be
obtained.

We have recently investigated the Savvidy instability in
dense quark matter and shown [4] that the instability is
solved by the formation of a stable quantum Hall state [5,6]
of the unstable gluons. Since perturbative arguments such
as loop expansions are applicable in sufficiently dense
quark matter, it is reliable that the spontaneous generation
of the color magnetic field arises in the matter. Although
the quantum Hall state is realized nonperturbatively due to
the effect of the gluon’s repulsive self-interactions, this
formation mechanism is well established in the physics
of quantum Hall states of electrons. This is similar to the
formation mechanism of BCS states; BCS states arise due
to the effect of attractive forces between electrons on the
Fermi surface, even if the forces are fairly weak. Hence, it
is also reliable that the quantum Hall states of the gluons
arise in the dense quark matter. Consequently, we may

understand that Savvidy instability is solved in the dense
quark matter. It is composed of quarks, the color magnetic
field, and the colored quantum Hall state of gluons. The
phase of the quark matter is called the color ferromagnetic
phase. Although quarks occupy Landau levels, they do not
form quantum Hall states in general. (We have shown [4]
that the color ferromagnetic phase is realized in the quark
matter with lower densities than ones with which color
superconductivity [7] is realized. Thus, the phase is phe-
nomenologically more important than the color supercon-
ducting phase. We have discussed an astrophysical
implication of the phase [8] and also have pointed out
the similarity [9] between the gluons in the dense quark
matter and color glass condensate in nucleons.)

Quantum Hall states arise only in two-dimensional
space. For example, quantum Hall states of electrons are
realized in quantum wells of semiconductors, which are
effectively two dimensional. Excitations with nontrivial
momenta perpendicular to the two-dimensional well are
forbidden energetically as far as we are concerned with
smaller energies (or lower temperature) than a finite gap.
Thus, only excitations with smaller energies than the gap
are allowed and they are excitations in the two-dimensional
well. This is a feature of the two-dimensional quantum
well. Then, it is natural to ask how two-dimensional quan-
tum Hall states of gluons are formed in the three-
dimensional dense quark matter. In this paper we analyze
the problem as well as Savvidy instability, using the light
cone quantization [10,11]. Since the QCD Hamiltonian
with a color magnetic field can be well defined in the
quantization, it is easy to analyze ground states of the
gluons with the use of an approximation valid at small
couplings. As a result, we find that the gluons in the lowest
Landau level form a ground state in which all of the gluons
have a single longitudinal momentum. Furthermore, the
energies of excitations with the same longitudinal momen-
tum as the momentum of the gluons in the ground state are
much smaller than the energies of excitations with non-
trivial longitudinal momenta. Such excitations arise in the
two-dimensional transverse space. Thus, the gluons are
two dimensional since their excitations are only allowed
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in the transverse directions as far as we are concerned with
much smaller energies. In this way, two-dimensional
gluonic states arise effectively in the three-dimensional
quark matter. All of them carry the single longitudinal
momentum. These gluons may form quantum Hall states,
but we do not discuss in this paper how the two-
dimensional gluons form a quantum Hall state. Hereafter
we analyze SU(2) gauge theory.

First of all, we will give a brief review of our previous
result [4,6] obtained with the use of equal-time quantiza-
tion, that is, how the two-dimensional states of gluons arise
in a ground state. We assume the presence of a color
magnetic field, Bai / �i;3�

a;3, generated spontaneously;
indices of a and i denote a coordinate of color and of
space, respectively. Then, some of the gluons under a
spatially uniform color magnetic field, B � �3ij@iA

3
j ,

have imaginary energies such that E2 � k2 � gB. These
gluons (A1

l � iA
2
l / e

�iEt perpendicular to magnetic field,
B, in color space) occupy the lowest Landau level and have
color magnetic moments parallel to B. Here g is the gauge
coupling constant and k is a momentum parallel to the
magnetic field ~B � �0; 0; B�. Indices j of Ajl denote colors
of SU(2). The other stable gluons occupy higher Landau
levels and their energies are given by E2 � k2 � gBn with
integer n � 0. Thus, the unstable gluons with small mo-
mentum, such as k2 < gB, have imaginary energies and
their amplitudes grow up rapidly in time. Among them, the
most unstable gluons are the ones with vanishing momen-
tum k � 0. (There are infinitely many degenerate states
with k � 0 in the lowest Landau level.) Hence, their wave
functions are uniform in the direction parallel to the mag-
netic field. These most unstable gluons with k � 0 are
expected to form a new stable ground state similar to the
case in the Higgs model with a negative mass term
�m2j�j2. In the model, unstable Higgs modes with ener-
gies such as E2 � ~k2

�m2 < 0 are present in a naive
vacuum h�i � 0. Among them, the most unstable modes
with ~k � 0 form a new ground state, h�i � 0, with the
condensation of the field �. Similarly, we expect that only
the gluons with k � 0 form a stable ground state. They are
two-dimensional objects since they are uniform in the
direction of ~B. In this way, the two dimensionality of the
gluonic ground state arises since only the most unstable
gluons with k � 0 make a stable ground state. It is reason-
able to assume that any gluons with k � 0 do not contrib-
ute to the formation of the ground state. This is because the
similar phenomena arise in the Higgs model. This is our
previous result derived with the use of the equal-time
quantization. (It is well known that bosons as well as
fermions in two-dimensional space can form a quantum
Hall state if repulsive interaction between them is present.
Hence, the two-dimensional gluons may make a quantum
Hall state due to the repulsive self-interaction [5,12].)

In such a circumstance, we wish to examine in detail
whether the ground states of gluons are two dimensional or

not, by using the light cone quantization. In the formula-
tion, the states with imaginary light cone energy never
appear. Instead, a naive Fock vacuum is not the lowest
energy state. The real ground state with the lowest energy
is formed as a composite state of gluons in the lowest
Landau level. In this paper we do not investigate the real
confining vacuum which is a complicated composite of
strongly interacting gluons; the problem of obtaining such
a real QCD vacuum is beyond our scope [13]. Instead, we
investigate a ground state of gluons in dense quark matter,
in which gluons are weakly interacting with each other. We
assume the presence of a color magnetic field, which is
generated spontaneously. Here, we do not address a ques-
tion of spontaneous generation of color magnetic field in
the light cone quantization.

Now, we show that a ground state of gluons is two
dimensional, that is, it depends trivially on a longitudinal
momentum p�. We use the notations of the light cone time
coordinate, x� � �x0 � x3�=

���
2
p

, and longitudinal coordi-
nate, x� � �x0 � x3�=

���
2
p

. Transverse coordinates are de-
noted by xi, or ~x. We assume a finite length,
�L � x� � L, in the longitudinal space and impose a
periodic boundary condition such that Aaj �x

� � L� �
Aaj �x

� � �L�. Then, corresponding momentum becomes
discrete denoted by p�n � n�=Lwith integer n. Light cone
components of gauge fields, A�, A�, Ai, are defined simi-
larly. Then, the Hamiltonian, H, with the light cone gauge,
A� � 0, is given by

 H �
1

4
FaijF

a
ij �

g2

2
�a

1

��@2
��
�a; (1)

with field strength, Faij � @iAaj � @jA
a
i � g�abcA

b
i A

c
j ,

where color indices a run from 1 to 3 and space indices
i, j run from 1 to 2. �a is defined by

 �a � �DiAi�
a � �@i�

ab � g�a3bABi �A
b
i ; (2)

where ABi denotes the gauge potential of color magnetic
field, which is assumed to direct into �3 in color SU(2);
B � @1AB2 � @2AB1 . We have neglected a dynamical gauge
potential Aa�3

i aside from the classical one ABi since it does
not couple directly with ABi . We have only taken dynamical
gauge fields Aa�1;2

i perpendicular in color space to the
color magnetic field. They form Landau levels under B.
We treat only the quantum effects of the gluons, but treat
quarks classically for simplicity. Their color charge neu-
tralizes the color charge of the gluons.

We make a comment that our treatment of ‘‘zero mode’’
[14,15] in the light cone quantization is similar to the one
used by Thorn [16]: We quantize gauge fields in the finite
volume, �L � x� � L, and neglect zero modes of the
fields. Consequently, the Hamiltonian becomes a simple
form involving at most quartic terms of creation or anni-
hilation operators in addition to quadratic ones. As has
been shown [16] in a two-dimensional model of the scalar
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field, the true ground state can be gripped even if we
neglect the zero mode of the field, at least in the limit of
L! 1. We assume that it also holds in the gauge theory.
We may justify neglecting the zero mode in the analysis of
dense quark matter as follows. That is, our concern is not
the real vacuum, but a ground state of gluons in dense
quark matter. The zero mode may play an important role in
the real vacuum of strongly interacting gluons. But, it may
not play such a role in a ground state of gluons weakly
interacting with each other in the dense quark matter.
Typical energy scale of quarks and gluons in the quark
matter is given by the chemical potential of the quarks and
is much larger than �QCD. In such dense quark matter, the
zero mode does not play an important role for realizing the
ground state. It is similar to the case of QCD at high energy
scattering [17] where the typical energy scale is much
higher than �QCD. Hence, the zero mode does not play
an important role for realizing so-called color glass con-
densation. Therefore, it is reasonable to neglect the zero
modes of the gluons in the quark matter.

We assume the spontaneous generation of the color
magnetic field, B, in the light cone quantization. The
condition of neglecting the zero mode requires the coher-
ent length of B in x� being shorter than L, but becoming
infinite as L! 1. Thus, our discussion below is limited
for the case such that momentum scale p� of gluons is
larger than the inverse of the coherent length of B.

In the light cone gauge, only dynamical variables are
transverse components Aai of gauge fields. This can be
expressed in terms of creation and annihilation operators:
 

Abi �
����
�
L

r X
p�>0

1�������������
2�p�

p
	 �abi;p�x

�; ~x�e�ip
�x� � abyi;p�x

�; ~x�eip
�x��; (3)

with p� � �n=L (integer, n � 1), where operators ali;p
satisfy the commutation relations 
abi;p�x

�; ~x�;

aycj;k�x
�; ~y�� � �ij�

bc�pk�� ~x� ~y�, with other commutation
relations being trivial. As we mentioned before, we have
neglected the zero modes, p� � 0, of the gauge fields.

Then, the gauge fields satisfy the equal time, x�, com-
mutation relation,

 
@�Aai �x
�; x�; ~x�; Abj �x

�; y�; ~y��

� �i�ij�ab�� ~x� ~y�
�
��x� � y�� �

1

2L

�
; (4)

where the last factor, 1=2L, on the right-hand side of the
equation comes from neglecting the zero modes of the
gauge fields.

We should mention that the second term in H represents
a Coulomb interaction. It is derived by solving a constraint
equation, @2

�A�;a � �a, that is, Gauss law associated with
the light cone gauge condition, A� � 0. In order to assure
that the gauge field A� is periodic in x�, the zero mode of

� (� /
P
n�integer�ne

i�nx�=L) must vanish; �n�0 � 0.
Then, the operation of 1=��@2

�� is well defined. The con-
dition of �n�0 � 0 implies that the total color chargeR
L
�L dx

��tot vanishes. Here we should include background
classical color charge of quarks in �tot. � in Eq. (1) should
be replaced by �tot � �� �quark with �tot;n�0 � 0. This
requirement of �tot;n�0 � 0 is consistent with the condition
A�n�0 � 0.

We now rewrite the Hamiltonian in terms of ‘‘charged
vector fields,’’ �i � �A1

i � iA
2
i �=

���
2
p

, which may be de-
composed into the spin parallel (antiparallel) component,
�p � ��1 ��2�=

���
2
p

(�ap � ��1 ��2�=
���
2
p

). These
fields transform as Abelian charged fields under the U�1�
gauge transformation, Ai ! UyAiU with U � exp�i��3�.

Then, using the fields �p (�ap), we obtain the following
Hamiltonian:
 

H�
1

2
B2��yp�� ~D2� 2gB��p��yap�� ~D2� 2gB��ap

�
g2

2
�j�pj

2�j�apj
2�2�

g2

2
�

1

��@2
��
�; (5)

with ~D � ~@� ig ~AB, where � is given by
 

� � i��yp@��p � @��yp�p ��yap@��ap � @��yap�ap�

� �quark: (6)

The first term in Eq. (5) represents the classical energy
of the color magnetic field, and the second (third) term
represents the kinetic energy of the charged gluons with
spin parallel (antiparallel) under the color magnetic field,
B. The fourth term represents the energy of the repulsive
self-interactions. The last term represents the Coulomb
energy coming from the second term with the �a�3 com-
ponent in Eq. (1).

Since eigenstates of the operator ~D2 are classified by
Landau levels, the second and the third terms can be
rewritten as

 

X
n�0;1;2;...

��yp;n�2n� 1�gB�p;n ��yap;n�2n� 3�gB�ap;n�;

(7)

where the fields �p;n (�ap;n) denote operators in the
Landau level specified by integer n. (We have implicitly
assumed integration over the transverse directions in the
above equation.)

Now, we take only the field �p;n�0 in the lowest Landau
level n � 0, that is, the component having negative kinetic
energy. It is most important, among others, for realizing the
ground state of the Hamiltonian in the limit of strong
magnetic field B. The field corresponds to the unstable
gluon in our previous discussions [4] with the use of the
timelike quantization. Therefore, we obtain the following
reduced Hamiltonian for analyzing the ground state of the
system:
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 Hr � �gBj�j
2 �

g2

2
j�j4 �

g2

2
�r

1

��@2
��
�r; (8)

with �r � i��y@��� @��y�� � �quark, where we have
put � � �p;n�0 for simplicity. The field � can be ex-
pressed by using creation and annihilation operators,
 

� �

����
�
L

r X
p>0;m�0;1;2;...

1����������
2�p
p

	 �ap;m�m� ~x�e
�ipx � byp;m�

y
m� ~x�eipx�; (9)

where simplified notation such as x � x� and p � p� is
exploited and will be used below. �m� ~x� �
gmzm exp��jzj2=4l2� represents the normalized eigenfunc-
tion of ~D2 with angular momentum m, in the lowest
Landau level

R
d2 ~x�ym�n � �m;n; z � x1 � ix2 and gm �

1
�m!�2l2�m�1 with l2 � 1=gB. ap;m and bp;m satisfy the com-

mutation relations; 
ap;m; a
y
k;n� � �p;k�m;n, 
bp;m; b

y
k;n� �

�p;k�m;n, others � 0.
When we express the first term in Eq. (8) in terms of the

operators, ap;m and bp;m,
 Z L

�L
dxd2 ~x:� gBj�j2

:� �gB
X

p>0;m

1

p
�ayp;map;m � b

y
p;mbp;m�; (10)

we find that there exist states with lower energies than a
trivial Fock vacuum, jvaci; ap;mjvaci � bp;mjvaci � 0.
Namely, gluons in the lowest Landau level are produced
spontaneously to form a state with lower energy than that
of the vacuum. The production of the gluons is limited by
the second term in Eq. (8) representing repulsion among
the gluons. This is similar to the case of the Higgs model.
Contrary to the model, the gluons do not condense. Thus,
we postulate h�i � 0. (This is consistent with neglecting
zero mode.) In order to find the ground state of the gluons,
we will express approximately the energy hHri of the state
in terms of the distribution functions hayp;map;mi and
hbyp;mbp;mi. Then, by minimizing the energy we will find
the momentum p and angular momentum m distribution of
gluons. The state of the gluons may carry nonvanishing
color charge density, in general. The fact that quarks and
gluons are weakly interacting in the dense quark matter
certificates that our approximation gives rise to reliable
results; any quantum corrections to the results are small.

Before finding the ground state of the Hamiltonian Hr,
we should note that there are two conserved quantities such
as total color charge and momentum,
 

Q �
Z L

�L
dxd2 ~x�r �

X
p>0;m

�ayp;map;m � b
y
p;mbp;m�

�
Z L

�L
dxd2 ~x�quark � 0

Ptotal �
X

p>0;m

p�ayp;map;m � b
y
p;mbp;m�;

(11)

where we have required that the total color charge of
gluons and quarks must vanish. The ground state must be
found under the condition of the conserved quantities being
given. Since our concern is the ground state of gluons in
dense quark matter, not real vacuum, the total color charge
of the gluons can be nonzero and is neutralized by the color
charge of quarks.

In order to evaluate the expectation value of Hr with the
ground state jgi, we assume the following approximation:

 hay�a
y
	a
a�i ’ ha

y
�a
iha

y
	a�i � ha

y
�a�iha

y
	a
i;

for � � 	; similar for b�
(12)

 

hay�b
y
	a
b�i ’ ha

y
�a
ihb

y
	b�i;

hayaybyai � haybybybi � hayaabi � hbybbai � 0;

(13)

 hay�a	i / ��;	; hby�b	i / ��;	; (14)

where indices�;	; . . . denote a set of p andm. Namely, we
assume no mixing among states with different p and m in
Eq. (12). Furthermore, we assume no pair creations and
annihilations in Eq. (13) so that the numbers of particle and
antiparticle are conserved, respectively. We also postulate
momentum and angular momentum conservation in
Eq. (14). These formulas are satisfied by eigenstates of
the number operators ay�a� and by�b�. Hence, we minimize
the Hamiltonian by using the eigenstates of the number
operators in our approximation.

Using the approximation, we evaluate an expectation
value h:Hr:i of normal ordered Hamiltonian :Hr: and find
the ground state minimizing the expectation value,

 h:Hr:i � �gB
X

p>0;m

�a�p;m� � b�p;m�� �
g2

2L

X
p;q>0;m;n

�a�p;m�a�q; n� � b�p;m�b�q; n� � 2a�p;m�b�q; n��Nm;n

�
g2

2L

X
p�q>0

�
p� q
p� q

�
2X
m;n

�a�p;m�a�q; n� � b�p;m�b�q; n��Nm;n �
g2

2L

X
p;q>0

�
p� q
p� q

�
2X
m;n

2a�p;m�b�q; n�Nm;n;

(15)
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with Nm;n � �m� n�!��m!n!2m�n�2l2��1, where a�p;m�
and b�p;m� are defined by

 hayp;maq;ni � �p;q�m;npa�p;m�;

hbyp;mbq;ni � �p;q�m;npb�p;m�;
(16)

where a�p;m� and b�p;m� represent distributions of p and
m in the ground state, respectively. We have used the color
neutrality condition �r;n�0 � 0 in the derivation of
Eq. (15); the condition is imposed as a constraint such as
p � q in the third term.

It is easy to see that the expectation value of the color
charge density becomes uniform in the longitudinal direc-
tion x � x�,

 h�ri �
1

L

X
p>0;m

p�a�p;m� � b�p;m��j�m� ~x�j
2 � �quark;

(17)

which may depend on transverse coordinate ~x.
In Eq. (15) the first term represents the kinetic energy in

the Landau level and the second term represents the energy
of the repulsion between gluons. These two terms are
denoted by E1. The third and fourth terms represent the
Coulomb energy between gluons and are denoted by E2.
Obviously, these terms are non-negative except for the first
one. Therefore, we can find a ground state with the lowest
energy h:H:i � E1 � E2, by minimizing the first two terms
E1 and the last two terms E2 of the Coulomb energy,
respectively. Simultaneously, we need to take into account
the condition that the state carries a given total momentum
and vanishing total color charge. We may assume that the
color charge of quarks �quark is spatially uniform.

It is easy to minimize the first two terms, i.e. E1, which is
given by a set of values c�m� �

P
p>0�a�p;m� � b�p;m��.

This is because E1 can be rewritten such that E1 �

�gB
P
mc�m� � g

2=�2L�
P
m;nc�m�Hm;nc�n�. Thus, mini-

mizing the energy E1 does not determine the dependence
of a�p;m� or b�p;m� on the longitudinal momentum p �
p�. It simply gives the summation over the momentum p,
namely, c�m� / gBL=g2. The dependence on p is deter-
mined only by minimizing the Coulomb energy E2. The
energy E2 � 0 can be minimized easily by assuming that
the ground state depends only on a single momentum p �
p0, that is, a�p;m� / �p;p0

and b�q; n� / �q;p0
. This distri-

bution of the momentum leads to the minimum E2 � 0.
[Any other distributions with the dependence on
various momenta give rise to higher energies (> 0).]
It follows from the distribution that the color charge
density is given such that h�ri � p0

P
m�a�p0; m� �

b�p0; m��j�m� ~x�j
2=L� �quark. For the color charge density

to vanish, a�p0; m� � b�p0; m� should be independent of

m. Then, the color charge density of the gluons becomes
uniform in ~x, and can cancel that of quarks �quark sinceP
mj�m� ~x�j

2 � 1=�2l2��. On the other hand, the total mo-
mentum is given by Ptot �

P
mp

2
0�a�p0; m� � b�p0; m�� �

p2
0

P
mc�m�.

Therefore, the ground state minimizing the energy in
Eq. (15) is characterized by the trivial distribution of
the longitudinal momentum; hayp;map;mi / �p;p0

and
hbyp;mbp;mi / �p;p0

. The Coulomb energy E2 of the state
vanishes. All of the gluons in the lowest Landau level
occupy the states with a single momentum, e.g. p � p0.
It implies that the ground state is composed of two-
dimensional gluons occupying the lowest Landau level. It
is also important to note that the displacement of a gluon
with the momentum p0 in the ground state to a state with a
momentum k � p0 gives rise to an energy gap �Ek;
hkj:Hr:jki � h:Hr:i � �Ek (�Ek > 0 for any k), where
jki � ayk;map0;mjgi. We note that �k ! 1 as k! p0.
This simple argument suggests the existence of a finite
gap energy needed to excite modes with longitudinal mo-
menta different than p0. On the other hand, we can show
that there exist gapless excitations with the momentum p0,
which have different distributions in m with a�p0; m� and
b�p0; m� in the ground state. The fact implies that gluons
are confined in a two-dimensional quantum well extending
in the transverse directions. Only motions are allowed in
the well as far as we are concerned with smaller energies
than the gap energy. Motions in the longitudinal direction
are visible only when we are concerned with higher ener-
gies than the gap energy. On this point, more detail analysis
is necessary to demonstrate the conclusion.

Here, we wish to mention that, for Ptotal to be finite in the
limit of L! 1, p0 goes to 0 in the limit because c�m� / L.
On the other hand, the color charge density of gluons
/ p0�a�p0; m� � b�p0; m�� can take any finite value even
in the limit. Hence, all of the gluons occupy the states with
a vanishingly small longitudinal momentum. In the termi-
nology used in high energy scattering of hadrons or nuclei,
parton (gluons) distribution behaves such as ��x� since x �
p0=Ptot ! 0. (The distribution contains only contributions
of charged vector field �� or Aa�1;2

i . If we take into
account momentum distribution of the gauge field Aa�3

i
neglected in our argument, it would give a parton distribu-
tion with a finite support in x.)

We have not yet shown that the gluons form quantum
Hall states, but have only shown that they form two-
dimensional states. It is a necessary condition for the
realization of quantum Hall states of the gluons. Whether
or not the quantum Hall states of the gluons are made
depends on the color charge density of the gluons. If
a specific condition of ‘‘filling factor’’ � � 2��rL=gB
is satisfied, the quantum Hall state can be realized, that
is, � � 2�p0

P
m�a�p0; m� � b�p0; m��j�m� ~x�j2=gB �

1=2; 1=4; . . . . Otherwise, gluons simply form a two-
dimensional compressible state, i.e. gapless state.
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As we have shown, the two dimensionality of the ground
state of gluons arises from the Coulomb interaction � 1

�@2
�
�

in the longitudinal direction x�. In our approximation, the
Coulomb energy E2 is a positive semidefinite. Thus, the
ground state is given by the state with E2 � 0. When we
apply the similar approximation to quarks coupled with the
magnetic field, we obtain a negative semidefinite Coulomb
energy. Thus, we do not obtain the two dimensionality in
the quarks. In the ground state of the quarks, the distribu-
tion of the longitudinal momentum does not take the form
of a delta function. The result in the quarks or fermions is
natural physically. Electrons in metals never take a form of
two-dimensional gases under external magnetic field ex-
cept for ones confined in two-dimensional space, e.g.
quantum wells.

The difference between the case of the gluons and that of
quarks comes from their difference in statistics. In order to
see this point more explicitly, we take the following simple
model of a Coulomb interaction,

 Vc �
g2

2
:�

1

��@2
��
�: ��x� �  y�x� �x� � h y i

(18)

with �L � x � L, where the field,  represents boson or
fermion with an appropriate boundary condition at x �
�L.

Suppose that we have two states with momentum p > 0
and q�� p�> 0, whose wave functions are denoted as
f�p; x� and f�q; x� / e�iqx. We define the field operator
such that

  �x� � apf�p; x� � aqf�q; x�; (19)

with annihilation operators ap and aq satisfying commu-
tation relations 
ap; a

y
q �� � �p;q; . . . . As in the previous

case, we extract zero modes of � for 1=��@2
�� to be well

defined. Thus,  y � aypaqfy�p; x�f�q; x� � H:c: When
we evaluate the expectation value of Vc with the use of a
state aypa

y
q j0i,

 hVci� � �2jf�p; x�j2jf�q; x�j2
1

�p� q�2
; (20)

we find that the Coulomb energy is positive semidefinite in
the bosonic case hVci� � 0, and negative semidefinite in
the fermionic case hVci� � 0. If we allow additional in-
ternal states with an identical momentum, i.e. fi�p; x� with
i � 1; 2 and evaluate hVci with the use of a state
ayp;i�1a

y
p;i�2j0i, we find hVci � 0. Therefore, it turns out

that, in the case of bosons, the state of two particles with an
identical momentum is more stable than the state of two
particles with different momentum. On the other hand, in
the case of fermions, the situation is reverse; the state of
two particles with different momentum is more stable than
the state of two particles with an identical momentum.

To summarize, we have shown using light cone quanti-
zation that Savvidy instability is solved in sufficiently
dense quark matter where quarks and gluons couple
weakly with each other. In the quark matter, the color
magnetic field is generated spontaneously and gluons in
the lowest Landau level are also produced spontaneously to
form a ground state of gluons. All of the gluons in the
ground state carry a vanishingly small longitudinal mo-
mentum. Thus, they form a nontrivial two-dimensional
state with finite color charge. The state arises due to the
effect of Coulomb interaction among gluons in the longi-
tudinal direction. We need further analysis to see whether
or not these gluons form quantum Hall states.
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