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We present a calculation of the quark distribution amplitudes (DAs), the Gegenbauer moments, and
decay constants for �, �, K, and K� mesons using the light-front quark model. While the quark DA for �
is somewhat broader than the asymptotic one, that for � meson is very close to the asymptotic one. The
quark DAs for K and K� show asymmetric form due to the flavor SU(3)-symmetry breaking effect. The
decay constants for the transversely polarized � and K� mesons (fT� and fTK� ) as well as the longitudinally
polarized ones (f� and fK� ) are also obtained. Our averaged values for fTV=fV , i.e. �fT�=f��av � 0:78 and
�fTK�=fK� �av � 0:84, are found to be consistent with other model predictions. Especially, our results for the
decay constants are in good agreement with the SU(6) symmetry relation, fT��K�� � �f��K� � f��K���=2.
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I. INTRODUCTION

Hadronic distribution amplitudes (DAs) are important
ingredients in applying QCD to hard exclusive processes
via the factorization theorem [1–3]. They provide essential
information on the nonperturbative structure of the hadron
describing the distribution of partons in terms of the lon-
gitudinal momentum fractions inside the hadron. Both the
electromagnetic form factors at high Q2 and the B-physics
phenomenology are highly relevant to the detailed compu-
tation of hadronic DAs.

During the past few decades, there have been many
theoretical efforts to calculate the pion DA using nonper-
turbative methods such as the QCD sum rule [3–8], lattice
calculation [9–13], the chiral-quark model from the in-
stanton vacuum [14–16], the Nambu-Jona-Lasinio (NJL)
model [17,18], and the light-front quark model (LFQM)
[19,20]. It is well known that the shape of the pion quark
DA is very important in the predictions of the pion elec-
tromagnetic form factor in both nonperturbative and per-
turbative momentum transfer regimes. The QCD sum-rule
based analysis [6,7] of the �� � transition form factor
F���

�
�Q2� measured by the CLEO experiment [21] has

shown that neither double-humped DA for the pion pre-
dicted by Chernyak and Zhitnitsky [3] nor the asymptotic
one are favored at the 2� level of accuracy. It is also
interesting to note that the recent anti-de Sitter space
geometry/conformal field theory (AdS/CFT) prediction
[22] for the meson DA is �AdS=CFT�x� /

������������������
x�1� x�

p
, which

would approach the asymptotic form x�1� x� only in the
limit of lnQ2 ! 1. The shape of�AdS=CFT�x� increases the
usual perturbative QCD (PQCD) predictions for the pion
form factor and the �� � transition form factor by 16=9
and 4=3, respectively. In our recent LFQM application to
the PQCD analysis of the pion form factor [23], we further
found a correlation between the shape of the quark DA and
the amount of soft and hard contributions to the pion form
factor. Similar to the previous findings from the Sudakov

suppression of the soft contribution (or enhancement of the
hard contribution) [24–27], our results indicated that the
suppression of the end-point region for the quark DA
corresponds to the suppression (enhancement) of the soft
(hard) contribution.

Another important area that requires a detailed study of
meson DAs is the B-physics phenomenology under intense
experimental investigation at BABAR and Belle experi-
ments. The K, �, and K� DAs have attracted attention
rather recently [28–31] due to the deep relevance to the
exclusive B-meson decays to �K; �;K�� mesons. In par-
ticular, the SU�3� flavor symmetry breaking effect in the
meson quark DA including strange quark is important for
the predictions of exclusive Bu;d;s-decays to light pseudo-
scalar and vector mesons in the context of CP-violation
and Cabibbo-Kobayashi-Maskawa quark mixing matrix
studies. The SU�3� breaking effect is realized in the dif-
ference between the longitudinal momenta of the strange
and nonstrange quark, hxs � xu�d�i � 0, in the two-particle
Fock components of the meson. A similar effect was also
found in our PQCD analysis [32] for the exclusive heavy
meson pair production in e�e� annihilations at

���
s
p
�

10:6 GeV. Not only the shape of the heavy meson quark
DAs matters in the prediction of the cross section for the
heavy meson pair productions, but also the cross section
ratios for ��e�e� ! D�s D

�
s �=��e

�e� ! D�D�� and
��e�e� ! B0

s
�B0
s�=��e

�e� ! B�B�� deviate from 1 ap-
preciably due to the SU�3� symmetry breaking.

A particularly convenient and intuitive framework in
applying PQCD to exclusive processes is based upon the
light-front (LF) Fock-state decomposition of the hadronic
state. In the LF framework, the valence quark DA is
computed from the valence LF wave function
�n�xi;k?i� of the hadron at equal LF time � � t� z=c
which is the probability amplitude to find n constituents
(quarks, antiquarks, and gluons) with LF momenta ki �
�xi;k?i� in a hadron. Here, xi and k?i are the LF momen-
tum fraction and the transverse momenta of the ith con-
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stituent in the n-particle Fock state, respectively. If the
factorization theorem in PQCD is applicable to exclusive
processes, then the invariant amplitude M for the exclu-
sive process factorizes into the convolution of the process-
independent valence quark DA ��x;�� with the process-
dependent hard scattering amplitude TH [1], i.e.

 M �
Z
�dxi�

Z
�dyi���xi; ��TH�xi; yi; ����yi; ��; (1)

where �dxi� � ��1��n
k�1xk��

n
k�1dxk and n is the num-

ber of quarks in the valence Fock state. Here,� denotes the
separation scale between the perturbative and nonpertur-
bative regime. Since the collinear divergences are summed
in ��xi; ��, the hard scattering amplitude TH can be sys-
tematically computed as a perturbative expansion in
	s���. To implement the factorization theorem given by
Eq. (1) at high momentum transfer, the hadronic wave
function plays an important role linking between the long
distance nonperturbative QCD encoded in the DA and the
short distance PQCD encoded in TH.

The quark DA of a meson, ��x;��, is the probability of
finding collinear quarks up to the scale � in the Lz � 0
(s-wave) projection of the meson wave function defined by

 ��xi; �� �
Z jk?j<�

�d2k?i���xi;k?i�; (2)

where

 �d2k?i� � 2�2��3�
�Xn
j�1

k?j

�
�n
i�1

d2k?i
2�2��3

: (3)

The simple relativistic quark model based on the LF frame-
work has been studied for various mesons [19,20,33,34].
Although the proof of duality between the LFQM and the
first principle QCD is not yet available, we have attempted
to fill the gap between the model wave function and the
QCD-motivated effective Hamiltonian [35,36]. The essen-
tial feature of our LFQM [35,36] is to treat the Gaussian
radial wave function as a trial function for the variational
principle to the QCD-motivated Hamiltonian. We saturate
the Fock-state expansion by the constituent quark and
antiquark, i.e. Hq �q � H0 � Vint, where the interaction po-
tential Vint consists of confining and hyperfine interaction
terms. From the variational principle minimizing the cen-
tral Hamiltonian with respect to the Gaussian parameter,
we can find the optimum values of our model parameters
and predict the mass spectra for the low-lying ground state
pseudoscalar and vector mesons [35,36]. We applied our
LFQM for various exclusive processes such as the electro-
magnetic form factors of �, K, and � [35,37] mesons and
semileptonic and rare B decays to � and K [36,38]. Our
results for the above exclusive processes were in good
agreement with the available data as well as other theoreti-
cal model predictions.

The purpose of this work is to calculate the quark DAs,
the Gegenbauer moments, and decay constants for �, �, K,

and K� mesons using our LFQM and compare with other
theoretical model predictions. As expected, while the odd
Gegenbauer moments for � and �meson DAs are found to
be zero due to isospin symmetry, the odd moments for K
and K� meson DAs are nonzero due to the flavor SU(3)-
symmetry breaking effect. We compute the decay con-
stants for the transversely polarized � and K� mesons
(fT� and fTK�) as well as the longitudinally polarized ones
(f� and fK�) and compare with the light-cone sum rule
(LCSR) calculations, in which the ratio of fTV and fV is an
important ingredient for the LCSR predictions of the B!
� andB! K� transition form factors. We also confirm that
our results for the decay constants follow an old SU(6)
symmetry relation [39], fT��K�� � �f��K� � f��K���=2.

The paper is organized as follows: In Sec. II, we briefly
describe the formulation of our LFQM [35,36] and the
procedure of fixing the model parameters using the varia-
tional principle for the QCD-motivated effective
Hamiltonian. The shape of the quark DA is then uniquely
determined in our model calculation. In Sec. III, the for-
mulae for the quark DAs and decay constants of pseudo-
scalar and vector mesons are given in our LFQM. The
Gegenbauer and 
�� x1 � x2� moments are also given in
this section. In Sec. IV, we present the numerical results for
the decay constants, the quark DAs, and the Gegenbauer
and 
moments for ��;K; �;K��mesons and compare with
other theoretical model predictions. A summary and con-
clusions follow in Sec. V. The relations between 
 and
Gegenbauer moments are presented in the appendix.

II. MODEL DESCRIPTION

In our LFQM [35,36], the meson wave function is given
by

 �
JJz
M �x;k?; � ��� � �R�x;k?�R

JJz
� ��
�x;k?�; (4)

where �R�x;k?� is the radial wave function and
R

JJz
� ��
�x;k?� is the spin-orbit wave function obtained by

the interaction-independent Melosh transformation [40]
from the ordinary equal-time static spin-orbit wave func-
tion assigned by the quantum numbers JPC. The meson
wave function in Eq. (4) is represented by the Lorentz-
invariant variables xi � p�i =P

�, k?i � p?i � xiP?, and
�i, where P, pi, and �i are the meson momentum, the
momenta, and the helicities of the constituent quarks,
respectively.

The radial wave function �R�x;k?� of a ground state
pseudoscalar meson (JPC � 0��) is given by

 �R�x;k?� �
�

1

�3=2�3

�
1=2

exp�� ~k2=2�2�; (5)

where ~k2
� k2

? � k
2
z and the Gaussian parameter � is

related with the size of the meson. Here, the longitudinal
component kz of the three momentum is given by kz �
�x1 �

1
2�M0 � �m2

2 �m
2
1�=2M0 with the invariant mass M0
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defined by

 M2
0 �

k2
? �m

2
1

x1
�

k2
? �m

2
2

x2
; (6)

where x1 � x and x2 � 1� x. The covariant form of the
spin-orbit wave functions for pseudoscalar (JPC � 0��)
and vector (1��) mesons are given by

 R 00
� ��
� �

�u�p1; ���5v�p2; ������
2
p
�M2

0 � �m1 �m2�
2�1=2

;

R1J3

� ��
� �

�u�p1; ���6�Jz� �
	�p1�p2�
M0�m1�m2

�v�p2; ������
2
p
�M2

0 � �m1 �m2�
2�1=2

:

(7)

The polarization vectors � � ��; �; ?� used in this
analysis are given by

 ��
1� �
�

0;
2

P�
?�
� 	 P?; ?�
1�

�
;

?�
1� � �
�1;
i����

2
p ;

��0� �
1

M0

�
P�;

P2
? �M

2
0

P�
;P?

�
:

(8)

Note that
P
� ��R

JJzy
� ��

RJJz
� ��
� 1. The normalization of our

wave function is given by
 X

� ��

Z
d3kj�JJz

M �x;k?; � ���j2

�
Z 1

0
dx
Z
d2k?

�
@kz
@x

�
j�R�x;k?�j2 � 1; (9)

where the Jacobian of the variable transformation
fx;k?g ! ~k � �k?; kz� is given by

 

@kz
@x
�

M0

4x1x2

�
1�

�
�m1 �m2�

2

M2
0

�
2
�
: (10)

The effect of the Jacobi factor has been analyzed in
Ref. [41].

The key idea in our LFQM [35,36] for mesons is to treat
the radial wave function �R�x;k?� as a trial function for
the variational principle to the QCD-motivated
Hamiltonian saturating the Fock-state expansion by the
constituent quark and antiquark. The QCD-motivated ef-
fective Hamiltonian for a description of the meson mass
spectra is given by [42]

 Hq �q � H0 � Vq �q �
������������������
m2
q � ~k2

q
�

������������������
m2

�q � ~k2
q

� Vq �q: (11)

In our LFQM [35,36], we use the two interaction potential
Vq �q for the pseudoscalar and vector mesons: (1) Coulomb
plus harmonic oscillator (HO), and (2) Coulomb plus linear
confining potentials. In addition, the hyperfine interaction,
which is essential to distinguish the vector from pseudo-
scalar mesons, is included for both cases, viz.,

 Vq �q � V0 � Vhyp � a�V conf �
4�
3r
�

2Sq 	 S �q

3mqm �q
r2VCoul:;

(12)

where V conf � br�br2� for the linear (HO) potential and
hSq 	 S �qi � 1=4��3=4� for the vector (pseudoscalar)
meson.

We then take�R�x;k?� as our trial function to minimize
the central Hamiltonian via

 

@h�j�H0 � V0�j�i

@�
� 0: (13)

From the above constraint, only 4 parameters are indepen-
dent among the light-quark masses and the potential pa-
rameters �mq;�q �q; a; b; �� �q � u; d�. In order to
determine these four parameters from the two experimental
values of � and � masses, we take the string tension b �
0:18 GeV2 and the constituent u and d quark massesmu �
md � 0:22�0:25� GeV for the linear (HO) potential, which
are rather well known from other quark-model analyses
commensurate with Regge phenomenology [42]. A more
detailed procedure of determining the model parameters of
the light-quark sector (u�d� and s) can be found in [35,36].
Our model parameters for the light-quark sector obtained
by the variational principle are summarized in Table I.

III. QUARK DISTRIBUTION AMPLITUDES AND
DECAY CONSTANTS

The quark DA of a hadron in our LFQM can be obtained
from the hadronic wave function by integrating out the
transverse momenta of the quarks in the hadron (see
Eq. (2)),

 ��x;�� �
Z jk?j<� d2k?�����������

16�3
p

��������
@kz
@x

s
��x;k?; � ���: (14)

For K and K� meson cases, we assign the momentum
fractions x for s-quark and (1� x) for the light
u�d�-quark. The quark DA describes probability ampli-
tudes to find the hadron in a state with a minimum number
of Fock constituents and small tranverse-momentum sepa-
ration defined by an ultraviolet (UV) cutoff � * 1 GeV.
The dependence on the scale � is then given by the QCD
evolution equation [1] and can be calculated perturbatively.
However, the DAs at a certain low scale can be obtained by
the necessary nonperturbative input from LFQM.
Moreover, the presence of the damping Gaussian factor

TABLE I. The constituent quark masses mq (in GeV) and the
Gaussian parameters �q �q (in GeV) for the linear [HO] potential
obtained from the variational principle. q � u and d.

mq ms �q �q �q �s

0.22[0.25] 0.45[0.48] 0.3659[0.3194] 0.3886[0.3419]

DISTRIBUTION AMPLITUDES AND DECAY CONSTANTS . . . PHYSICAL REVIEW D 75, 034019 (2007)

034019-3



in our LFQM allows us to perform the integral up to
infinity without loss of accuracy. The quark DAs for pseu-
doscalar (P) and vector (V) mesons are constrained by

 

Z 1

0
�P�V��x;��dx �

fP�V�
2
���
6
p ; (15)

where the decay constant is defined as

 h0j �q���5qjPi � ifPP
�; (16)

for a pseudoscalar meson and

 h0j �q��qjV�P; ��i � fVMV
����;

h0j �q���qjV�P; ��i � ifTV�
����P� � ����P��;

(17)

for a vector meson with longitudinal (� � 0) and trans-
verse (� � 
1) polarizations, respectively. The constraint
in Eq. (15) must be independent of the cutoff � up to
corrections of order �2=�2, where � is some typical
hadronic scale ( & 1 GeV) [1]. For the nonperturbative
valence wave function given by Eq. (5), we take ��
1 GeV as an optimal scale for our LFQM.

The explicit form of a pseudoscalar decay constant is
given by

 fP �
Z 1

0
dx
Z
�d2k?�

A���������������������
A2 � k2

?

q �R�x;k?�; (18)

where A � �1� x�m1 � xm2. The decay constants, fV
and fTV , for longitudinally and transversely polarized vec-
tor mesons, respectively, are given by
 

fV �
Z 1

0
dx
Z
�d2k?�

�R�x;k?����������������������
A2 � k2

?

q


�
A�

2k2
?

M0 �m1 �m2

�
; (19)

 

fTV �
Z 1

0
dx
Z
�d2k?�

�R�x;k?����������������������
A2 � k2

?

q


�
A�

k2
?

M0 �m1 �m2

�
: (20)

The pion decay constant fexp:
� ’ 131 MeV is measured

from �! �� and the � meson decay constant fexp:
� ’

215 MeV is measured from �! e�e� with the longitudi-
nal polarization. While the constant fV is known from the
experiment, the constant fTV is not that easily accessible in
the experiment and hence can be estimated only
theoretically.

The average value of the transverse momentum is given
by

 hk2
?iQ �Q �

Z
d3kjk2

?jj�R�x;k?�j2: (21)

Numerically, we have confirmed that hk2
?i

1=2
Q �Q
� �Q �Q. This

is a nonperturbative measure of the transverse size in the
mesonic valence state.

We may also redefine the quark DA as �P�V��x� �
�2

���
6
p
=fP�V����x� so that

 

Z 1

0
�P�V��x�dx � 1: (22)

The quark DA ��x� evolved in the leading order (LO) of
	s��� is usually expanded in Gegenbauer polynomials
C3=2
n as

 ��x;�� � �as�x�
�

1�
X1
n�1

an���C
3=2
n �2x� 1�

�
; (23)

where �as�x� � 6x�1� x� is the asymptotic DA and the
coefficients an��� are Gegenbauer moments [1,17,43]. The
Gegenbauer moments with n > 0 describe how much the
DAs deviate from the asymptotic one. The zeroth
Gegenbauer moment is fixed by the decay constant [1],
e.g. for the pion:

 a0 � 6
Z 1

0
�dx����xi; �� �

3���
6
p f�; (24)

where f� ’ 131 MeV. In addition to the Gegenbauer mo-
ments, we can also define the expectation value of the
longitudinal momentum, so-called 
-moments:

 h
ni �
Z 1

�1
d

n�̂�
� �

Z 1

0
dx
n��x�; (25)

where ��x� � 2�̂�2x� 1� normalized by h
0i � 1. In the
appendix, the relations between h
ni and an��� are explic-
itly given up to n � 6.

IV. NUMERICAL RESULTS

In our numerical calculations, we use two sets of the
model parameters for the linear and harmonic oscillator
confining potentials given in Table I.

We show in Table II our predictions for the decay con-
stants of ��;K; �;K�� mesons and compare with other
theoretical model predictions [9,30] as well as data [44].

TABLE II. Decay constants (in MeV) for the linear [HO]
potential models compared with other models and data.

fM Linear [HO] SR [30] Lattice [9] Exp. [44]

f� 130[131] — 126.6 (6.4) 130.70 (10) (36)
fK 161[155] — 152.0 (6.1) 159.80 (1.4) (44)
f� 246[215] 205 (9) 239.4 (7.3) 220 (2)a, 209 (4)b

fT� 188[173] 160 (10) — —
fK� 256[223] 217 (5) 255.5 (6.5) 217 (5)c

fTK� 210[191] 170 (10) — —

aExp. value for ���0 ! e�e��.
bExp. value for ���! ����.cExp. value for ���! K����.
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As one can see from Table II, our results for the decay
constants of ��;K; �;K�� obtained from both linear and
HO potential models (especially, those from the HO po-
tential) are compatible with the data [44]. Our values for
the ratio of fTV and fV , i.e. fT�=f� � 0:76�0:80� and
fTK�=fK� � 0:82�0:86� obtained from the linear [HO] po-
tential, are quite comparable with the recent QCD sum-rule
results, fT�=f���0:78
0:08� and fTK�=fK� � �0:78

0:07� [30]. We also find that our results for the decay
constants agree surprisingly well with an old SU(6) sym-
metry relation [39], fT��K�� � �f��K��f��K���=2 via the sum

rule �T
��K�� � ����K���

L
��K���=2, where �L�T��x� is the

longitudinally (transversely) polarized vector meson DA.
We show in Fig. 1 the normalized quark DAs �P�x� for

� and K mesons obtained from linear (solid line) and HO
(dashed line) potentials. For the pion DA, we also compare
our results with the asymptotic result �as�x� � 6x�1� x�
(dotted line) as well as the AdS/CFT prediction [22]
�AdS=CFT�x� � �

������������������
x�1� x�

p
=8 (double-dot-dashed line).

For the pion case, our quark DAs obtained from both model
parameters are somewhat broader than the asymptotic one.
We also note from the normalized pion DAs that the
suppression of the end-point (x! 0 and 1) region has
the following order in DAs, �HO�x�>�as�x�>
�Linear�x�>�AdS=CFT�x�. As discussed in Ref. [23], there
exists correlation between the shape of the nonperturbative
quark DA and the amount of low/high Q2 contributions to
the pion form factor. As the end-point region for the quark
DA is more suppressed, the soft (hard) contribution to the
pion form factor gets suppressed (enhanced). This finding
is rather similar to the previous findings from the Sudakov
suppression of the soft contribution [24–27]. For the kaon
case, the quark DA is asymmetric due to the flavor SU(3)
symmetry breaking effect. The peak points of quark DAs
for two potential models are moved slightly to the right of
the x � 0:5 point indicating that the s-quark carries more
longitudinal momentum fraction than the light u�d�-quark.

In the LO QCD [1], the information of the leading-twist
pion DA can be extracted from the pion-photon transition
form factor F���Q2� as follows:

 

Q2FLO
���Q2����
2
p
f�

��������twist-2
�
Z 1

0
dx

���x;Q�
6x�1� x�

: (26)

The experimental value obtained in CLEO [21] is
Q2F���Q2� � �16:7
 2:5
 0:4�  10�2 GeV at Q2 �

8 GeV2, which goes to
���
2
p
f� ’ 0:185 GeV in the asymp-

toticQ2 ! 1 limit. With our leading-twist pion DA shown
in Fig. 1, we obtain Q2FLO

���Q2� � 0:202�0:181� GeV for
the linear [HO] potential.

For comparison between the leading-twist and next-to-
leading-twist contributions to Q2F���Q

2�, we show in
Fig. 2 our previous LFQM [35] prediction for
Q2F���Q2� compared with the data [21,45]. The thick
solid and thick dashed lines represent our linear and HO

potential model predictions including the higher twist ef-
fects (i.e. k? and the constituent mass m � mu � md)
obtained from
 

FNLO
�� �Q

2� � �e2
u � e

2
d�

������
Nc
p

�3=2

Z 1

0
dx


Z
d2k?

��������
@kz
@x

s
�R�k2��������������������
m2 � k2

?

q �1� x�m

k02? �m
2 ; (27)
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where Nc is the color factor and k0? � k? � �1� x�q?.
The thin solid and thin dashed lines represent our leading-
twist contribution (see Eq. (26)) from �linear�x� and
�HO�x�, respectively. We also compare our results with
the leading-twist contributions from the asymptotic �as�x�
(dot-dashed line) and the AdS/CFT �AdS=CFT�x� (double-
dot-dashed line). One should note that the AdS/CFT pre-
diction (�

������������������
x�1� x�

p
) increases the usual PQCD predic-

tion (� x�1� x�) by 4=3. Our higher twist results for both

potential models are not only very similar to each other but
also in good agreement with the experimental data up to
the Q2 � 10 GeV2 region. At the large Q2 region, our
higher twist prediction for the linear [HO] potential ap-
proaches Q2FNLO

�� �Q
2� � 0:194�0:180� compared to the

leading-twist result 0.202[0.181]. While the higher twist
effect on Q2F���Q

2� is large for the low and intermediate
Q2 ( & 10 GeV2) region, its effect becomes very small for
the large Q2 region compared to the leading-twist contri-
bution. Incidentally, it has been found that the leading
Fock-state contribution to F���Q2� fails to reproduce the
Q2 � 0 value corresponding to the axial anomaly [46,47],
i.e. it gives only a half of what is needed to get the correct
�0 ! �� rate [48]. However, as shown in Refs. [49–51],
the leading Fock-state contribution to F���Q2� has been
enhanced by replacing the leading Fock-state wave func-
tion to an ‘‘effective’’ valence quark wave function that is
normalized to one. By taking the effective pion wave
function with the asymptoticlike DAs, the authors in
[49–51] found an agreement with the experimental data.
Our LFQM prediction [35] also uses the same approach as
Refs. [49–51], i.e. the leading Fock-state effective wave
function that is normalized to one. The reason why our
model is so successful for the F�� transition form factor is
because the Q2 dependence (� 1=Q2) is due to the off-
shell quark propagator in the one-loop diagram and there is
no angular condition [52] associated with the pseudoscalar
meson.

In Tables III and IV, we list the calculated h
ni and
Gegenbauer moments an��� for the pion (Table III) and
the kaon (Table IV) DAs obtained from the linear [HO]
potential models at the scale �� 1 GeV. We also present
the comparison with other model estimates at the scale of
1 � � � 3 GeV. While the odd Gegenbauer moments of

TABLE III. The 
 and Gegenbauer moments a�n ��� for the pion DAs obtained from the linear [HO] potential models compared with
other model estimates. The numbers in the parentheses stand for the scales of the corresponding works.

Models h
2i h
4i h
6i a�2 a�4 a�6

Linear [HO] 0.24[0.22] 0.11[0.09] 0.07[0.05] 0.12[0.05] �0:003��0:03� �0:02��0:03�
Asymptotic WF 0.20 0.09 0.05 0 0 0
AdS/CFT [22] 0.25 0.125 0.078 0.146 0.057 0.031
[3] (2.4 GeV) 0.35 0.21 — 0.44 0.25 —
[4] (1.0 GeV) 0.24 0.11 — 0.115 �0:015 —
[5] (1.0 GeV) 0.28 0.13 — 0.23 �0:05 —
[8] (1.0 GeV) 0.27 0.12 — 0.20 �0:14 —
[14] (1.0 GeV) 0.22 0.10 — 0.046 0.007 —
[15] (1.0 GeV) 0.21 0.09 0.05 0.029 �0:046 �0:019
[16] (1.0 GeV) 0.22 0.09 — 0.05 �0:04 —
[11] (2.0 GeV) 0.269 (39) — — 0.201 (114) — —
[6] (2.4 GeV) 0:24
 0:01 — — 0:12
 0:03 — —
[8] (2.4 GeV) 0.25 0.11 — 0.14 �0:08 —
[10] (2.4 GeV) 0.23 0.11 — 0.08 0.02 —
[21] (2.4 GeV) 0.27 0.11 — 0.19 �0:14 —
[53] (2.4 GeV) 0.25 0.12 — 0.16 0.02 —
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the �meson DA become zero due to isospin symmetry, the
odd moments for the kaon are nonzero due to a flavor
SU(3) violation effect of O�ms �mu�d��. For the pion
case, our result for the second Gegenbauer moment, a�2 �
0:12�0:05� obtained from the linear [HO] potential is quite
comparable with other theoretical model predictions given
in Table III. A fair average is, however, a�2 � 0:17
 0:15
with still large errors [11]. The LCSR based CLEO-data
analysis [5–7] on the transition form factor F�� suggests a
negative value for a�4 , which is consistent with the result
a�4 �1 GeV2�>�0:07 obtained in Ref. [4]. Our result
a�4 � �0:003��0:03� obtained from the linear [HO] po-
tential also prefers a negative value consistent with the
recent LCSR based CLEO-data analysis [5–7]. For the
kaon case, the first moment is proportional to the difference
between the longitudinal momenta of the strange and non-
strange quark in the two-particle Fock component of the
kaon, i.e. aK1 � �5=3�hxs � x �ui �xs � x; x �u � 1� x�. The
knowledge of aK1 is important for predicting SU(3)-
violation effects within any QCD approach that employs
the quark DAs of mesons. In our model calculation, we
obtain a positive value of aK1 � 0:09�0:13� for the linear
[HO] potential. Our results for aK1 are quite consistent with
those obtained from other estimates such as the previous
LFQM [20] (aK1 � 0:08), the chiral-quark model [15]
(aK1 � 0:096), and the QCD sum rules [28,29] (aK1 �
0:05
 0:02). The positive sign of aK1 can be understood
intuitively since the heavier strange quark (antiquark) car-
ries a larger longitudinal momentum fraction than the
lighter nonstrange antiquark (quark). It is interesting to
note that aK1 for the HO potential model is greater than
that for the linear one although the constituent mass dif-
ference ms �mu � 0:23 GeV is the same for both models.
This difference is attributed to the fact that the strange
quark mass for the HO potential model (ms � 0:48 GeV)
is larger than for the linear one (ms � 0:45 GeV) and leads
to a more asymmetric shape for the HO potential. For the
second Gegenbauer moment aK2 , however, the linear po-

tential model gives positive value (0.03), while the HO one
gives negative value (� 0:03). We note that the QCD sum
rules [28,29] and lattice calculation [11] give positive
values while the chiral-quark model [15] gives a negative
value.

We show in Fig. 3 the normalized quark DAs for �
(upper panel) and K (lower panel) mesons obtained from
the linear potential model (exact solution) and compare
with those from the truncated Gegenbauer polynomials up
to n � 6 (approximate solution). For the pion case, the
truncation up to n � 4 (dashed line) seems more close to
our exact solution (solid line) than the truncation up to n �
6 (dot-dashed line) although the end-point behavior of the
n � 6 case is closer to the exact solution than the n � 4
case. Since the result up to n � 2 truncation is not much
different from that up to n � 4 truncation, we do not show
the result for the n � 2 case in the figure. For the kaon
case, while both truncations up to n � 4 (dashed line) and
n � 6 (dot-dashed line) show good agreement with the
exact solution (solid line), the truncation up to n � 2
(dotted line) deviates a lot from the exact solution. Thus,
it seems not sufficient to truncate the Gegenbauer poly-
nomials only up to n � 2 for the kaon case. In both cases of
� and K mesons, our model calculation shows that the
truncation of the Gegenbauer polynomials up to n � 4
seems to give a reasonable approximation to the exact
solution.

We show in Fig. 4 the normalized quark DAs ���x� for
the longitudinally (solid line) and transversely (dashed
line) polarized � meson obtained from the linear (upper
panel) and HO (lower panel) potential models and compare
with the asymptotic result (dotted line). For both potential
models, the quark DA �L

� with longitudinal polarization is
not much different from the asymptotic result and the
quark DA �T

� with transverse polarization is somewhat
broader than both �L

� and �as. Overall, the quark DAs
for the � meson are closer to the asymptotic result than
those for the pion case. Although the overall shapes of our

TABLE IV. The 
 and Gegenbauer moments aKn ��� for the kaon DAs obtained from the linear [HO] potential models compared with
other model estimates. The numbers in the parentheses stand for the scales of the corresponding works.

Models h
1i h
2i h
3i h
4i h
5i h
6i

Linear [HO] 0.06[0.08] 0.21[0.19] 0.03[0.04] 0.09[0.08] 0.02[0.03] 0.05[0.04]
[15] (1.0 GeV) 0.057 0.182 0.023 0.070 0.012 0.0345
[20] (1.0 GeV) 0.046 0.20 0.025 0.08 0.015 0.04
[29] (2.0 GeV) 0:03
 0:01 0:26
 0:04 — — — —

Models aK1 aK2 aK3 aK4 aK5 aK6
Linear [HO] 0.09[0.13] 0:03��0:03� 0.06[0.04] �0:02��0:03� 0:007��0:01� �0:01��0:01�
[15] (1.0 GeV) 0.096 �0:051 �0:008 �0:040 �0:002 �0:0097
[20] (1.0 GeV) 0.08 0 0.03 �0:06 �0:14 �0:03
[28] (1.0 GeV) 0:05
 0:02 0:27�0:37

�0:12 — — — —
[11] (2.0 GeV) 0.0453 (9) (29) 0.175 (18) (47) — — — —
[29] (2.0 GeV) 0:05
 0:02 0:17
 0:10 — — — —
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�L
� and �T

� are not much different from the asymptotic
result, the end-point behaviors of our model calculation
exhibiting the concave shape are different from the asymp-
totic result of the convex shape. We also should note that

our DAs for the � meson satisfy the SU(6) symmetry
relation [39], �T

� � ��� ��L
��=2.

In Table V, we list the calculated h
ni and Gegenbauer
moments an��� for the � meson DAs obtained from the
linear [HO] potential models at �� 1 GeV and compare
with other model estimates. The odd Gegenbauer moments
of both longitudinally and transversely polarized � meson
DAs become zero due to isospin symmetry. Our 
 mo-
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ments obtained from both linear and HO potential models
are similar to the asymptotic results and quite consistent
with the previous LFQM [20] and QCD sum rules [30].
However, slight differences of 
 moments among different
model predictions turn out to be quite sensitive in terms of
Gegenbauer moments. For instance, the second
Gegenbauer moment a�2L for the longitudinally polarized
� meson obtained from the linear potential model gives
positive value (0.02), while the same from the HO potential
model gives negative value (� 0:02). This may be still
comparable with the previous LFQM [20] giving negative
value (� 0:03) and the QCD sum rules [30] giving positive
value (0:09�0:10

�0:07). Our results for the higher Gegenbauer
moments a�n�n � 4� obtained from both linear and HO
potential models show negative values regardless of polar-
ization states. These negative values for the higher

Gegenbauer moments are related with the concave shapes
of quark DAs, �L

��x� and �T
��x�, at the end-point region.

We show in Fig. 5 the normalized quark DAs �K� �x� for
the longitudinally (solid line) and transversely (dashed
line) polarized K� meson obtained from the linear (left
panel) and HO (right panel) potential models. As in the
case of the � meson, the shape of �T

K� for the transversely
polarized K� meson near the central (x � 1=2) region is
somewhat broader than that of �L

K� for the longitudinally
polarized K� meson in both linear and HO models. Also,
the peak points for both �L

K� and �T
K� are shifted to the

right of the x � 1=2 point due to the SU(3) flavor symme-
try breaking as in the case of the K meson. Our quark DAs
for the K� meson satisfy also the SU(6) symmetry relation
[39], �T

K� � ��K ��L
K� �=2.

TABLE V. The 
 and Gegenbauer moments a�n ��� for the � meson DAs obtained from the linear [HO] potential models compared
with other model estimates. The numbers in the parentheses stand for the scales of the corresponding works.

Models h
2iL h
4iL h
6iL h
2iT h
4iT h
6iT

Linear [HO] 0.21[0.19] 0.09[0.08] 0.05[0.04] 0.22[0.20] 0.10[0.09] 0.06[0.04]
Asymptotic WF 0.20 0.09 0.05 0.20 0.09 0.05
[20] (1.0 GeV) 0.19 0.07 0.036 0.2 0.082 0.042
[30] (1.0 GeV) 0:23�0:03

�0:02 0:11�0:03
�0:02 — 0:23�0:03

�0:02 0:11�0:03
�0:02 —

Models a�2L a�4L a�6L a�2T a�4T a�6T

Linear [HO] 0:02��0:02� �0:01��0:03� �0:02��0:02� 0.06[0.007] �0:01��0:03� �0:02��0:02�
[20] (1.0 GeV) �0:03 �0:09 0.7 0 �0:04 �0:04
[30] (1.0 GeV) 0:09�0:10

�0:07 0:03
 0:02 — 0:09�0:10
�0:07 0:03
 0:02 —
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In Tables VI and VII, we list the calculated h
ni and
Gegenbauer moments an��� for the longitudinally
(Table VI) and transversely (Table VII) polarized K� me-
son DAs obtained from the linear [HO] potential models at

�� 1 GeV and compare with the available QCD sum-rule
results [30,31]. While the odd Gegenbauer moments of the
� meson DAs become zero due to the isospin symmetry,
the odd moments for the K� meson DAs are nonzero

TABLE VI. The 
 and Gegenbauer moments aK
�

n ��� for the longitudinally polarized K� meson DAs obtained from the linear [HO]
potential models compared with other model estimates. The numbers in the parentheses stand for the scales of the corresponding
works.

Models h
1iL h
2iL h
3iL h
4iL h
5iL h
6iL

Linear [HO] 0.07[0.09] 0.19[0.18] 0.03[0.04] 0.08[0.07] 0.02[0.02] 0.04[0.03]
[30] (1.0 GeV) 0:06
 0:04 0:22�0:03

�0:02 — 0:10
 0:02 — —

Models aK
�

1L aK
�

2L aK
�

3L aK
�

4L aK
�

5L aK
�

6L

Linear [HO] 0.11[0.14] �0:03��0:07� 0.03[0.02] �0:02��0:03� 0��0:01� �0:01��0:01�
[30] (1.0 GeV) 0:10
 0:07 0:07�0:09

�0:07 — 0:02
 0:01 — —

TABLE VII. The 
 and Gegenbauer moments aK
�

n ��� for the transversely polarized K� meson DAs obtained from the linear [HO]
potential models and compared with other model estimates. The numbers in the parentheses stand for the scales of the corresponding
works.

Models h
1iT h
2iT h
3iT h
4iT h
5iT h
6iT

Linear [HO] 0.06[0.08] 0.20[0.18] 0.03[0.04] 0.08[0.07] 0.02[0.02] 0.04[0.04]
[30] (1.0 GeV) 0:06
 0:04 0:22�0:03

�0:02 — 0:10
 0:02 — —
[31] (1.0 GeV) 0:06
 0:04 — 0:03
 0:02 — — —

Models aK
�

1T aK
�

2T aK
�

3T aK
�

4T aK
�

5T aK
�

6T

Linear [HO] 0.10[0.14] �0:008��0:05� 0.04[0.03] �0:02��0:03� 0:003��0:01� �0:01��0:01�
[30] (1.0 GeV) 0:10
 0:07 0:07�0:09

�0:07 — 0:02
 0:01 — —
[31] (1.0 GeV) 0:10
 0:07 — 0:02
 0:02 — — —
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because the SU(3) flavor symmetry is broken. Our values
of the first Gegenbauer moments, aK

�

1L � 0:11�0:14� and
aK

�

1T � 0:10�0:14� for the linear [HO] potential model are in
good agreement with the QCD sum-rule results [30] aK

�

1L �

aK
�

1T � 0:10
 0:07 at the scale � � 1 GeV. Note that the
positive aK

�

1 refers to K� containing an s quark but the sign
will change for �K� with an �s quark. Our predictions for the
even powers of aK

�

2nL and aK
�

2nT�n � 1� give negative values
while the LCSR results [30] give positive values. However,
the recent QCD sum-rule result aK

�

3T � 0:02
 0:02 [31] at
the scale � � 1 GeV is consistent with our value aK

�

3T �
0:04�0:03� obtained from the linear [HO] potential model.
Also, the h
2ni moments are not much different between
the two models. We show in Fig. 6 the normalized quark
DAs for transversely polarized � (left panel) and K� (right
panel) mesons obtained from the linear potential model
and compare with those from the truncated Gegenbauer
polynomials up to n � 6. For the � meson case (upper
panel), since the truncation up to n � 2 does not much
differ from that up to n � 4 (dashed line), we do not show
the result for the n � 2 case in the figure. Both truncations
up to n � 2 and n � 4 are quite close to our exact solution
(solid line). The truncation up to n � 6 (dot-dashed line)
having a deep at x � 1=2 point shows a slight deviation
from the exact solution. For the K� meson case (lower
panel), both truncations up to n � 4 and n � 6 show
good agreement with the exact solution, while the trunca-
tion up to n � 2 (dotted line) deviates a lot from the exact
solution. For both � and K� meson cases, the truncation of
the Gegenbauer polynomials up to n � 4 seems to give an
overall reasonable approximation to the exact solution.

V. SUMMARY AND DISCUSSION

In this work, we investigated the quark DAs, the
Gegenbauer moments, and decay constants for �, �, K,
and K� mesons using the LFQM constrained by the varia-
tional principle for the QCD-motivated effective
Hamiltonian. Our model parameters obtained from the
variational principle uniquely determine the above non-
perturbative quantities.

Our predictions for the quark DAs for � and � mesons
show somewhat broader shapes than the asymptotic one.
The odd Gegenbauer moments for � and � meson DAs
become zero due to isospin symmetry. Our predictions for
a�2 and a�4 are consistent with the recent light-cone sum-
rule based CLEO-data analysis for the pion-photon tran-
sition form factor. Interestingly, we also find that our
leading-twist result for the pion-photon transition form
factor, Q2FLO

���Q2� � 0:202�0:181� GeV obtained from
the linear [HO] potential model, is reduced to
Q2FNLO

�� �Q2� � 0:194�0:180� if we include the higher twist
effects such as the transverse momentum and the constitu-
ent mass. Our result is quite compatible with the CLEO
data, Q2F���Q2� � �16:7
 2:5
 0:4�  10�2 GeV at

Q2 � 8 GeV2 [21]. The quark DAs for K and K� show
asymmetric forms due to the flavor SU(3)-symmetry
breaking effect. This leads to the nonzero values of the
odd Gegenbauer moments. In our model calculations of the
quark DAs for ��;K; �;K�� mesons, the truncation of the
Gegenbauer polynomials up to n � 4 seems to give a
reasonable approximation to the exact solution.

Our predictions for the decay constants for �, K, longi-
tudinally polarized � and K� mesons are in a good agree-
ment with the data. We also obtain the decay constants for
the transversely polarized � and K� mesons (fT� and fTK�)
using our LFQM. Our predicted values of fTV=fV averaged
between the linear and HO potential cases are �fT�=f��av �

0:78 and �fTK�=fK� �av � 0:84. They are consistent with the
recent QCD sum rule results, fT�=f� � �0:78
 0:08� and
fTK�=fK� � �0:78
 0:07� [30]. Moreover, our results for
the decay constants are in good agreement with the SU(6)
symmetry relation [39], fT��K�� � �f��K� � f��K���=2 via
the sum rule �T

��K�� � ����K� ����K���=2. Further inves-
tigations to utilize our LFQM are underway.
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APPENDIX: RELATION BETWEEN � AND
GEGENBAUER MOMENTS

The 
 moments h
ni defined by Eq. (25) can be related
to the Gegenbauer moments an��� in Eq. (23). The rela-
tions up to n � 6 are given by
 

h
1i � 3
5a1; h
2i � 12

35a2 �
1
5; h
3i � 9

35a1 �
4
21a3;

h
4i � 3
35�

8
35a2 �

8
77a4; h
5i � 1

7a1 �
40
231a3 �

8
143a5;

h
6i � 1
21�

12
77a2 �

120
1001a4 �

64
2145a6: (A1)

Also, the first six Gegenbauer polynomials in Eq. (23) are
as follows:

 C3=2
1 �
� � 3
;

C3=2
2 �
� �

3
2�5


2 � 1�;

C3=2
3 �
� �

5
2
�7


2 � 3�;

C3=2
4 �
� �

15
8 �21
4 � 14
2 � 1�;

C3=2
5 �
� �

21
8
�33
4 � 30
2 � 5�;

C3=2
6 �
� �

1
16�3003
6 � 3465
4 � 945
2 � 35�:

(A2)
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