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We calculate the branching ratios and CP-violating asymmetries for B0
s ! �0��0� decays in the

perturbative QCD (pQCD) factorization approach here. We not only calculate the usual factorizable
contributions, but also evaluate the nonfactorizable and annihilation type contributions. The pQCD
predictions for the CP-averaged branching ratios are BR�B0

s ! �0�� � 0:86� 10�7 and BR�B0
s !

�0�0� � 1:86� 10�7. The pQCD predictions for the CP-violating asymmetries are Adir
CP��

0�� �
�4:5%, Adir

CP��
0�0� � �9:1%, Amix

CP ��
0�� � �0:2%, and Amix

CP ��
0�0� � 27% but with large errors. The

above pQCD predictions can be tested in the forthcoming LHC-b experiments at CERN.
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I. INTRODUCTION

The experimental measurements and theoretical studies
of the two-body charmless hadronic B meson decays play
an important role in the precision test of the standard model
(SM) and in searching for the new physics beyond the SM
[1]. For these charmless B meson decays, the dominant
theoretical error comes from the large uncertainty in eval-
uating the hadronic matrix elements hM1M2jOijBi where
M1 and M2 are light final state mesons. The QCD factori-
zation (QCDF) approach [2] and the perturbative QCD
(pQCD) factorization approach [3,4] are the popular meth-
ods being used to calculate the hadronic matrix elements.

When the LHC experiment is approaching, the studies
about the decays of Bs meson draw much more attentions
then ever before. At present, some two-body charmless
hadronic Bs meson decays have been calculated, for ex-
ample, in both the QCDF approach [5] and/or in the pQCD
approach [6]. In this paper, we would like to calculate the
branching ratios and CP asymmetries for Bs ! �0��0�

decays by employing the low energy effective
Hamiltonian [7] and the pQCD factorization approach.
Besides the usual factorizable contributions, we here are
able to evaluate the nonfactorizable and the annihilation
contributions to these decays.

Theoretically, the two Bs ! �0��0� decays have been
studied in the naive and generalized factorization approach
[8,9] or in the QCD factorization approach [10]. On the
experimental side, only the poor upper limits for the
branching ratios are available now [11]

 BR �B0
s ! �0��0��< 1:0� 10�3; (1)

Of course, this situation will be improved rapidly when
LHC-b starts to run at the year of 2007.

For Bs ! �0��0� decays, the light final state mesons are
moving very fast in the rest frame of the Bs meson. In this
case, the short distance hard process dominates the decay

amplitude, while the soft final state interaction (FSI) is not
important for such decays. The FSI effect is in nature a
subtle and complicated subject. The smallness of FSI
effects for Bmeson decays into two light final state mesons
has been put forward by Bjorken [12] based on the color
transparency argument [13], and also supported by further
renormalization group analysis of soft gluon exchanges
among initial and final state mesons [14]. With the
Sudakov resummation, we can include the leading double
logarithms for all loop diagrams, in association with the
soft contribution.

This paper is organized as follows. In Sec. II, we calcu-
late analytically the related Feynman diagrams and present
the various decay amplitudes for the studied decay modes.
In Sec. III, we show the numerical results for the
CP-averaged branching ratios and CP asymmetries of
Bs ! �0��0� decays and compare them with the measured
values or the theoretical predictions in QCDF approach.
The summary and some discussions are included in the
final section.

II. PERTURBATIVE CALCULATIONS

For Bs ! �0��0� decays, the related weak effective
Hamiltonian Heff can be written as [7]

 H eff �
GF���

2
p

�
VubV�us�C1���Ou

1��� 	 C2���Ou
2����

� VtbV
�
ts

X10

i�3

Ci���Oi���
�
: (2)

The explicit expressions of the operators Oi can be found,
for example, in Refs. [15,16].

In the pQCD approach, the decay amplitude is concep-
tually written as the convolution,
 

A�Bs!M1M2� �
Z
d4k1d4k2d4k3 Tr
C�t��Bs�k1�

��M1
�k2��M2

�k3�H�k1; k2; k3; t��; (3)*Electronic address: xiaozhenjun@njnu.edu.cn
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where ki’s are momenta of light quarks included in each
mesons, and Tr denotes the trace over Dirac and color
indices. C�t� is the Wilson coefficient which results from
the radiative corrections at short distance. The function
H�k1; k2; k3; t� describes the four quark operator and the
spectator quark connected by a hard gluon whose q2 is in

the order of ��MBs , and includes the O�
�������������
��MBs

q
� hard

dynamics. Therefore, this hard partH can be perturbatively
calculated. The function �M is the wave function which
describes hadronization of the quark and antiquark to the
meson M. While the function H depends on the processes
considered, the wave function �M is independent of the
specific processes. Using the wave functions determined
from other well-measured processes, one can make quan-
titative predictions here.

Since the b quark is rather heavy we consider the Bs
meson at rest for simplicity. It is convenient to use light-
cone coordinate �p	; p�;pT� to describe the meson’s mo-
menta,

 p� �
1���
2
p �p0 � p3�; and pT � �p1; p2�: (4)

Using these coordinates the Bs meson and the two final
state meson momenta can be written as

 P1 �
MBs���

2
p �1; 1; 0T�; P2 �

MBs���
2
p �1; 0; 0T�;

P3 �
MBs���

2
p �0; 1; 0T�;

(5)

respectively, here the light meson masses have been ne-
glected. Putting the light (anti) quark momenta in Bs, �0

and ��0� mesons as k1, k2, and k3, respectively, we can

choose

 k1 � �x1P	1 ; 0;k1T�; k2 � �x2P	2 ; 0;k2T�;

k3 � �0; x3P�3 ;k3T�:
(6)

Then, the integration over k�1 , k�2 , and k	3 in Eq. (3) will
lead to
 

A�Bs ! �0��0�� �
Z
dx1dx2dx3b1db1b2db2b3db3

� Tr
C�t��Bs�x1; b1���0�x2; b2�

����0� �x3; b3�H�xi; bi; t�St�xi�e�S�t��;

(7)

where bi is the conjugate space coordinate of kiT , and t is
the largest energy scale in function H�xi; bi; t�. The large
double logarithms (ln2xi) on the longitudinal direction are
summed by the threshold resummation [17], and they lead
to St�xi�which smears the endpoint singularities on xi. The
last term, e�S�t�, is the Sudakov form factor which sup-
presses the soft dynamics effectively [14]. In numerical
calculations, we use �s � 4�=
�1 ln�t2=��5�QCD�� which is

the leading order expression with ��5�QCD � 193 MeV, de-

rived from ��4�QCD � 250 MeV. Here �1 � �33� 2nf�=3,
with the appropriate number of active quarks nf.

Similar to B! ���0� and B! ���0� decays, there are 8
type diagrams contributing to the Bs ! �0��0� decays, as
illustrated in Fig. 1. We first calculate the usual factorizable
diagrams 1(a) and 1(b). Operators O1, O2, O3, O4, O9, and
O10 are �V � A��V � A� currents, the sum of their ampli-
tudes is given as

 Fe� � 4
���
2
p
�GFCFf�m4

Bs

Z 1

0
dx1dx3

Z 1
0
b1db1b3db3�Bs�x1; b1�f
�1	 x3��A

��x3; b3� 	 �1� 2x3�rs���P
��x3; b3�

	�T
��x3; b3��� 
 �s�t

1
e�he�x1; x3; b1; b3� exp
�Sab�t

1
e�� 	 2rs��

P
��x3; b3��s�t

2
e�he�x3; x1; b3; b1� exp
�Sab�t

2
e��g;

(8)

where rs� � m�s�s
0 =mBs

1; CF � 4=3 is a color factor. The
function he, the scales tie and the Sudakov factors Sab are
displayed in the appendix.

The form factors of Bs to��0� decay, FBs!�
�0�

0;1 �0�, can thus
be extracted from Eq. (8), that is

 FBs!�
�0�

0;1 �q2 � 0� �
Fe��0����

2
p
GFf�M

2
Bs

: (9)

The operators O5, O6, O7, and O8 have a structure of
�V � A��V 	 A�. In some decay channels, some of these

operators contribute to the decay amplitude in a factoriz-
able way. Since only the axial-vector part of (V 	 A)
current contribute to the pseudoscaler meson production,
h�jV � AjBih�jV 	 Aj0i � �h�jV � AjBih�jV � Aj0i,
that is

 FP1
e� � �Fe�: (10)

For the nonfactorizable diagrams 1(c) and 1(d), all three
meson wave functions are involved. The integration of b3

can be performed using � function ��b3 � b2�, leaving
only integration of b1 and b2. For the �V � A��V � A�
operators, the result is

1The term m�s �s
0 is the chiral enhancement factor to be defined

lately in Eq. (25).
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Me� �
16���

3
p �GFCFm4

Bs

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2

��Bs�x1; b1��
A
��x2; b2�x3
�

A
��x3; b2�

� 2rs��T
��x3; b2�� 
 �s�tf�hf�x1; x2; x3; b1; b2�

� exp
�Scd�tf��: (11)

MP
e� is for the �S� P��S	 P� type operators, which are

from Fierz transformation for �V � A��V 	 A� operators:

 MP
e� � �Me�: (12)

For the nonfactorizable annihilation diagrams 1(e) and
1(f), again all three wave functions are involved. Here we
have two kinds of contributions.Ma� andMP

a� describe the
contributions from the �V � A��V � A� and �S� P��S	
P� type operators, respectively,

 

Ma� � �
16���

3
p �GFCFm

4
Bs

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�Bs�x1; b1�ffx3�

A
��x3; b2��

A
��x2; b2�

	 r�ru;d� 
x2��P
��x2; b2� ��T

��x2; b2�� 
 ��P
��x3; b2� ��T

��x3; b2�� 	 x3��P
��x2; b2� 	�T

��x2; b2�� 
 ��P
��x3; b2�

	�T
��x3; b2���g�s�t1f�h

1
f�x1; x2; x3; b1; b2� exp
�Sef�t1f�� � fx2�A

��x3; b2��A
��x2; b2�

	 r�ru;d� 
��x2 	 x3 	 2��P
��x2; b2� 	 �x2 � x3��T

��x2; b2���P
��x3; b2� 	 ��x2 � x3��P

��x3; b2�

	 �x2 	 x3 � 2��T
��x3; b2���T

��x2; b2��g�s�t2f�h
2
f�x1; x2; x3; b1; b2� exp
�Sef�t2f��g; (13)

 

MP
a� �

16���
3
p �GFCFm

4
Bs

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�Bs�x1; b1�ffx2�

A
��x3; b2��

A
��x2; b2� 	 r�r

u;d
� 
x3��

P
��x2; b2�

��T
��x2; b2�� 
 ��

P
��x3; b2� ��

T
��x3; b2�� 	 x2��

P
��x2; b2� 	�

T
��x2; b2�� 
 ��

P
��x3; b2�

	�T
��x3; b2���g�s�t

1
f�h

1
f�x1; x2; x3; b1; b2� exp
�Sef�t

1
f�� � fx2�

A
��x3; b2��

A
��x2; b2�

	 r�ru;d� 
��x2 	 x3 	 2��P
��x2; b2� 	 �x3 � x2��T

��x2; b2���P
��x3; b2� 	 ��x3 � x2��P

��x3; b2�

	 �x2 	 x3 � 2��T
��x3; b2���T

��x2; b2��g�s�t2f�h
2
f�x1; x2; x3; b1; b2� exp
�Sef�t2f��g: (14)

where ru;d� � m
�u �u;d �d

0 =mBs [for the definition of chiral enhancement factor m
�u �u;d �d

0 , see Eq. (25)].
The factorizable annihilation diagrams 1(g) and 1(h) involve only �0 and ��0� wave functions. There are also two kinds

of decay amplitudes for these two diagrams. Fa� is for �V � A��V � A� type operators, FPa� is for �V � A��V 	 A� type
operators:

 

B 0
s η( )

π 0

(a)

B 0
s η( )

π 0

(b)

B 0
s η( )

π 0

(c)

B 0
s η( )

π 0

(d)

B 0
s

π 0

η( )

(e)

B 0
s

π 0

η( )

(f )

B 0
s

π 0

η( )

(g)

B 0
s

π 0

η( )

(h)

FIG. 1. Diagrams contributing to the B0
s ! �0��0� decays [diagram (a) and (b) contribute to the Bs ! ��0� form factor FB

0
s!�

�0�

0;1 ].
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FPa� � Fa� � 4
���
2
p
�GFCFfBsm

4
Bs

Z 1

0
dx2dx3

Z 1
0
b2db2b3db3f
x3�

A
��x3; b3��

A
��x2; b2� 	 2r�r

u;d
� ��x3 	 1��P

��x3; b3�

	 �x3 � 1��T
��x3; b3���P

��x2; b2�� 
 �s�t3e�ha�x2; x3; b2; b3� exp
�Sgh�t3e�� � 
x2�A
��x3; b3��A

��x2; b2�

	 2r�ru;d� �P
��x3; b3���x2 	 1��P

��x2; b2� 	 �x2 � 1��T
��x2; b2��� 
 �s�t4e�ha�x3; x2; b3; b2� exp
�Sgh�t4e��g:

(15)

If we exchange the � and ��0� in Fig. 1, the correspond-
ing expressions of amplitudes for new diagrams will be
similar with those as given in Eqs. (8)–(15). The expres-
sions of amplitudes for new diagrams can be obtained by
the replacements,

 �A
�$�A

�; �P
�$�P

�; �T
�$�T

�; r�$ ru;d� :

(16)

For example, we find that

 Fa� � �Fa��0� ; FPa� � �FPa��0� : (17)

Now we are able to calculate perturbatively the form

factors FBs!�
�0 �

0 �0� and the decay amplitudes for the
Feynman diagrams after the integration over xi and bi.
Since we here calculated the form factors and amplitudes
at the leading order (one order of �s�t�), the radiative
corrections at the next order would emerge in terms of
�s�t� ln�m=t�, where m0s denote some scales, like
mBs; 1=bi; . . . , in the hard part H�t�. We select the largest
energy scale among m0s appearing in each diagram as the
hard scale t0s for the purpose of at least killing the large
logarithmic corrections partially,

 

t1e � at 
max�
�����
x3
p

mBs; 1=b1; 1=b3�;

t2e � at 
max�
�����
x1
p

mBs; 1=b1; 1=b3�;

t3e � at 
max�
�����
x3
p

mBs; 1=b2; 1=b3�;

t4e � at 
max�
�����
x2
p

mBs; 1=b2; 1=b3�;

tf � at 
max�
���������
x1x3
p

mBs;
���������
x2x3
p

mBs; 1=b1; 1=b2�;

t1f � at 
max�
���������
x2x3
p

mBs; 1=b1; 1=b2�;

t2f � at 
max�
����������������������������������������������������������
x1 	 x2 	 x3 � x1x3 � x2x3

p
�mBs;

���������
x2x3
p

mBs; 1=b1; 1=b2�;

(18)

where the constant at � 1:0� 0:2 is introduced in order to
estimate the scale dependence of the theoretical predic-
tions for the observables.

In Refs. [15,16], a brief discussion about the �� �0

mixing and the gluonic component of the �0 meson have
been given. Here we do not show it again.

Combining the contributions from different diagrams,
the total decay amplitude for B0

s ! �0� can be written as

 ���
6
p

M��0�� � Fe�f	u�C1 	
1
3C2� � 	t��

3
2C7 �

1
2C8

	 3
2C9 	

1
2C10�gF2�
p�

	Me�f	uC2 � 	t��
3
2C8 	

3
2C10�gF2�
p�

	 �Ma� 	Ma�� 
 f	uC2 � 	t
3
2C10gF1�
p�

� 	t�M
P
a� 	M

P
a��

3
2C8F1�
p�: (19)

The decay amplitudes for B0
s ! �0�0 can be obtained

easily from Eqs. (19) by the following replacements

 F1�
p� ! F01�
p� � cos
p 	
sin
p���

2
p ;

F2�
p� ! F02�
p� � cos
p �
���
2
p

sin
p:

(20)

Note that the possible gluonic component of �0 meson has
been neglected here.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Input parameters and wave functions

We use the following input parameters in the numerical
calculations

 ��f�4�

MS
� 250 MeV; f� � 130 MeV;

fBs � 230 MeV; m�d �d
0 � 1:4 GeV;

m�s�s
0 � 1:95 GeV; fK � 160 MeV;

MBs � 5:37 GeV; MW � 80:41 GeV:

(21)

For the CKM matrix elements, here we adopt the
Wolfenstein parametrization for the CKM matrix, and
take � � 0:22, A � 0:853, � � 0:20 and � � 0:33 [11].

For the Bs meson wave function, we adopt the model

 �Bs�x; b� � NBsx
2�1� x�2 exp

�
�
M2
Bs
x2

2!2
Bs

�
1

2
�!Bsb�

2

�
;

(22)

where !Bs is a free parameter and we take !Bs � 0:50�
0:05 GeV in numerical calculations, and NBs � 63:7 is the
normalization factor for !Bs � 0:50.

For the light meson wave function, we neglect the b
dependant part, which is not important in numerical analy-
sis. We use the wave functions of � meson (�A

��x�, �P
��x�

and �T
��x�) as given in Ref. [18]. For � meson’s wave

function, �A
�d �d

, �P
�d �d

and �T
�d �d

represent the axial vector,
pseudoscalar and tensor components of the wave function,
respectively, for which we utilize the result from the light-
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cone sum rule [19] including twist-3 contribution. For the
explicit expressions of the wave functions and the values of
related quantities, one can see Eqs. (50) and (51) of
Ref. [15].

We assume that the wave function of u �u is same as the
wave function of d �d. For the wave function of the s�s
components, we also use the same form as d �d but with
ms�s

0 and fy instead of md �d
0 and fx, respectively. For fx and

fy, we use the values as given in Ref. [20] where isospin
symmetry is assumed for fx and SU�3� breaking effect is
included for fy:

 fx � f�; fy �
���������������������
2f2

K � f
2
�

q
: (23)

These values are translated to the values in the two mixing
angle method, which is often used in vacuum saturation
approach as:

 f8 � 169 MeV; f1 � 151 MeV;


8 � �25:9���18:9��; 
1 � �7:1���0:1��;
(24)

where the pseudoscalar mixing angle 
p is taken as �17�

(� 10�) [21]. The parameters mi
0 �i � �d �d�u �u�; �s�s� are

defined as:

 m
�d �d�u �u�

0 � m�
0 �

m2
�

�mu 	md�
; m�s �s

0 �
2M2

K �m
2
�

�2ms�
:

(25)

We include full expression of twist-3 wave functions for
light mesons. The twist-3 wave functions are also adopted
from QCD sum rule calculations [22]. We will see later that
this set of parameters will give good results for Bs !
�0��0� decays.

B. Branching ratios

For Bs ! �0��0� decays, the decay amplitudes in
Eqs. (19) can be rewritten as

 M � V�ubVusT � V
�
tbVtsP � V�ubVusT
1	 ze

i��	���;

(26)

where

 z �
��������V

�
tbVts

V�ubVus

��������
��������PT

�������� (27)

is the ratio of penguin to tree contributions, � �

arg
�
VtsV�tb
VusV�ub

� is the weak phase (one of the three CKM

angles), and � is the relative strong phase between penguin
(P) and tree (T) diagrams. In the pQCD approach, it is easy
to calculate the ratio z and the strong phase � for the decay
in study. For Bs ! �0� and �0�0 decays, we find numeri-
cally that

 z��0�� � 38:3; ���0�� � �94�; (28)

 z��0�0� � 5:5; ���0�0� � �20�: (29)

The main error of the ratio z and the strong phase � is
induced by the uncertainty of !bs � 0:50� 0:05 GeV.

Using the wave functions and the input parameters as
specified in previous sections, it is straightforward to cal-
culate the branching ratios for the four considered decays.
The theoretical predictions in the pQCD approach for the
CP-averaged branching ratios of the decays under consid-
eration are the following
 

Br�B0
s ! �0�� � 
0:86	0:37

�0:24�!Bs�
	0:33
�0:21�ms�

	1:00
�0:09�at��

� 10�7; (30)

 

Br�B0
s ! �0�0� � 
1:86	0:76

�0:51�!Bs�
	0:63
�0:41�ms�

	1:46
�0:21�at��

� 10�7; (31)

for 
p � �17�, and
 

Br�B0
s ! �0�� � 
1:18	0:50

�0:33�!Bs�
	0:45
�0:29�ms�

	1:03
�0:12�at��

� 10�7; (32)

 

Br�B0
s ! �0�0� � 
1:54	0:63

�0:42�!Bs�
	0:52
�0:34�ms�

	1:19
�0:21�at��

� 10�7: (33)

for 
p � �10�. The main errors are induced by the un-
certainties of at � 1:0� 0:2,!Bs � 0:50� 0:05 GeV and
ms � 120� 20 MeV, respectively.

It is easy to see that (a) the errors of the branching ratios
induced by varying at in the range of at � 
0:8; 1:2� can be
significant for the penguin-dominated Bs ! �0��0� decays;
and (b) the variations with respect to the central values are
large for the case of at � 0:8, but very small for the case of
at � 1:2). This feature agrees with general expectations:
when the scale t become smaller, the reliability of the
perturbative calculation of the form factors in pQCD ap-
proach will become weak!

The pQCD predictions of the branching ratios as given
in Eqs. (30)–(33) agree well with the theoretical predic-
tions in the QCDF approach, for example, as given in
Ref. [5]:

 Br �B0
s ! �0�� � �0:75	0:35

�0:30� � 10�7;

Br�B0
s ! �0�0� � �1:1	0:24

�0:24� � 10�7;
(34)

where the individual errors as given in Ref. [5] have been
added in quadrature.

C. CP-violating asymmetries

Now we turn to study the CP-violating asymmetries for
B0
s ! �0��0� decays. For these neutral decay modes, the

effects of B0
s � �B0

s mixing should be considered.
For B0

s meson decays, we know that ��=�ms � 1 and
��=�� 1. The CP-violating asymmetry of B0

s� �B0
s� !

�0��0� decay is time dependent and can be defined as
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 ACP �
�� �B0

s��t� ! fCP� � ��B0
s��t� ! fCP�

�� �B0
s��t� ! fCP� 	 ��B0

s��t� ! fCP�

� Adir
CP cos��ms�t� 	 Amix

CP sin��ms�t�; (35)

where �ms is the mass difference between the two B0
s mass

eigenstates, �t � tCP � ttag is the time difference between
the tagged B0

s ( �B0
s) and the accompanying �B0

s (B0
s) with

opposite b flavor decaying to the finalCP-eigenstate fCP at
the time tCP. The direct and mixing induced CP-violating
asymmetries Adir

CP and Amix
CP can be written as

 A dir
CP �

j�CPj2 � 1

1	 j�CPj
2 ; Amix

CP �
2 Im��CP�

1	 j�CPj
2 ; (36)

where the CP-violating parameter �CP is

 �CP �
V�tbVtsh�

0��0�jHeffj �B
0
si

VtbV�tsh�0��0�jHeffjB0
si
� e2i� 1	 zei�����

1	 zei��	��
: (37)

Here the ratio z and the strong phase � have been defined
previously. In pQCD approach, since both z and � are
calculable, it is easy to find the numerical values of Adir

CP
and Amix

CP for the considered decay processes.
In Figs. 2 and 3, we show the � dependence of the

CP-violating asymmetry Adir
CP and Amix

CP for B0
s ! �0�

(solid curve) and B0
s ! �0�0 (dotted curve) decays for


p � �17�.
The pQCD predictions for the direct CP-violating asym-

metries of B0
s ! �0��0� decays are

 

Adir
CP�B

0
s ! �0�� � 
�4:5	1:2

�0:6���
	0:6
�0:4�!Bs� � 0:6�m�

0 �
	1:7
�1:8

� �ms�
	0:7
�0:2�at�� � 10�2; (38)

 

Adir
CP�B

0
s ! �0�0� � 
�9:1	2:8

�2:3���
	0:3
�0:6�!Bs� � 0:3�m�

0 �

� 1:9�ms�
	4:1
�1:5�at�� � 10�2; (39)

where the dominant errors come from the variations of
!Bs � 0:50� 0:05 GeV, m�

0 � 1:4� 0:3 GeV, at �
1:0� 0:2, ms � 120� 20 MeV and � � 60� � 20�.

As a comparison, we present the QCDF predictions for
Adir

CP�B
0
s ! �0�0� directly quoted from Ref. [5]

 A dir
CP�B

0
s ! �0�0� � �27:8	6:0	9:6	2:0	24:7

�7:1�5:7�2:0�27:2� � 10�2;

(40)

where the ‘‘default values’’ of the input parameters have
been used in Ref. [5], and the error sources are the same as
the first four input parameters in Eqs. (38) and (39).
Currently, no relevant experimental measurements for the
CP-violating asymmetries of B0

s ! �0��0� decays are
available.

The pQCD predictions for the mixing induced
CP-violating asymmetries of B0

s ! �0��0� decays are
 

Amix
CP �B

0
s ! �0�� � 
�0:2� 0:1���	2:5

�2:1�!Bs�
	1:2
�1:4�m

�
0 �
	4:4
�4:5

� �ms�
	26:3
�11:6�at�� � 10�2; (41)

 

Amix
CP �B

0
s ! �0�0� � 
27:0	4:8

�7:5���
	0:4
�0:7�!Bs�

	0:6
�0:5�m

�
0 �

� 0:2�ms�
	17:1
�8:3 �at�� � 10�2; (42)

where the dominant errors come from the variations of
!Bs � 0:50� 0:05 GeV, m�

0 � 1:4� 0:3 GeV, at �
1:0� 0:2, ms � 120� 20 MeV and � � 60� � 20�.

If we integrate the time variable t, we will get the total
CP asymmetry for B0

s ! �0��0� decays,

 ACP �
1

1	 x2 A
dir
CP 	

x

1	 x2 A
mix
CP ; (43)

where x � �ms=� � 26:5 for the B0
s � �B0

s mixing [23].
We found numerically that the magnitude of the total CP
asymmetry for (B0

s ! �0��0�) decays are smaller than 2%
in the whole considered parameter space.

 

FIG. 2. The direct CP asymmetry Adir
CP (in percentage) of Bs !

�0� (solid curve) and Bs ! �0�0 (dotted curve) as a function of
CKM angle � for the case of 
p � �17�.

 

FIG. 3. The mixing induced CP asymmetry Amix
CP (in percent-

age) of Bs ! �0� (solid curve) and Bs ! �0�0 (dotted curve)
as a function of CKM angle � for the case of 
p � �17�.
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D. Effects of possible gluonic component of �0

Now we consider the contributions to the considered
Bs ! ���0� decays induced by the possible gluonic com-
ponent of ��0� meson [21,24,25].

Among various mechanisms proposed to account for the
distinctive pattern of branching ratios of B! K�����0� de-
cays [26–30], the assumption of a nonzero gluonic com-
ponent of ��0� meson and its rule in interpreting the
anomalously large decay rate Br�B! K�0� have been
studied intensively [21,24,25,31,32]

In Ref. [21], Kou examined the contributions to the
gluon fusion process gg! �0. In his paper [21], the �
and �0 meson were written as

 j�i � X�j�qi 	 Y�j�si;

j�0i � X�0 j�qi 	 Y�0 j�si 	 Z�0 jgluoniumi;
(44)

where �q � �u �u	 d �d�=
���
2
p

and �s � s�s. From the experi-
mental data on the radiative light meson decays, such as
�! �0�, �0 ! ��;�; ��� and J=j ! �0� decays, the
author found that the gluonic component in �0 should be
less than 26%.

By employing the QCD factorization approach, Beneke
and Neubert [31] studied the B! K�����0� decays by con-
sidering systematically the flavor-singlet amplitudes.2

They estimated the flavor-singlet contributions to B!
K��0� branching ratios, including those from the b!
sgg! s��0� transition, from the hard or soft spectator
scattering contributions [29–31] (see Fig. 3 of Ref. [31]
for the relevant Feynman diagrams), and from the flavor-
singlet weak annihilation contribution. They also consid-
ered the leading two-gluon contribution to the B! ��0�

form factors and claimed that such contribution might be
significant for the form factor FB!�

0

0 , but small for FB!�0 .
In Ref. [32], by employing the pQCD factorization

approach, Charng, Kurimoto and Li calculated the flavor-
singlet contribution to the B! ��0� transition form factors
from the gluonic content of the ��0� meson, induced by the
Feynman diagrams with the two gluons emitted from the
light quark of the B meson (see Fig. 1 of Ref. [32]). They
firstly announced that the enhancement to the form factor
FB!�

0

0;1 can reach 10%–40%, but after removing an error in
their computer program,3 they found that the gluonic con-

tributions to both B! � and B! �0 form factors are less
than 5%.

In order to make a rough numerical estimate of the
gluonic effects on the decay modes under study, we here
follow the same procedure as being used in Ref. [32] to
estimate the gluonic contributions to the Bs ! ��0� transi-

tion form factors FBs!�
�0�

0;1 and in turn to the branching ratios
and CP violating asymmetries. Using the formulae as
given in Ref. [32], we found that the gluonic contributions
to the branching ratios are less than 4% for Bs ! �0�
decay, and around 20% for Bs ! ��0. The central values
are now

 Br �B0
s ! �0�� � 0:83� 10�7; (45)

 Br �B0
s ! �0�0� � 2:25� 10�7; (46)

for 
p � �17�, and

 Br �B0
s ! �0�� � 1:17� 10�7; (47)

 Br �B0
s ! �0�0� � 1:90� 10�7 (48)

for 
p � �10�.
As for the CP-violating asymmetries of Bs ! �0��0�

decays, the gluonic corrections are largely canceled in
the ratio and therefore negligible: less than 5% and 10%
for Bs ! �0� and Bs ! �0�0 decay, respectively.

The smallness of the gluonic corrections to the branch-
ing ratios can be understood as follows. First, the gluonic
correction to the form factors are small in size: �2% for
FBs!�0 , and around 13% for FBs!�

0

0 . Second, only the first
two diagrams Fig. 1(a) and 1(b) are affected by the gluonic
corrections to B! �0 form factor, while the contributions
from other six diagrams remain unchanged, the total ef-
fects are thus not large in size.

Although much progress have been achieved in recent
years, but frankly speaking, we currently still do not know
how to calculate reliably the contributions of the possible
gluonic component of ��0� meson. From our previous
works, as presented in Refs. [15,16] where only the domi-
nant contributions from quark contents of � and �0 were
taken into account, the pQCD predictions for the branching
ratios of B! ���0� and B! ���0� decays also show a very
good agreement with currently available data. It seems that
large gluonic contributions are unnecessary for these decay
modes. Latest calculations in this paper and in Refs. [32–
34] also show that the gluonic contributions to B! K��0�,
��0�� and Bs ! �0��0� decays are all small.

Of course, more theoretical studies about the gluonic
contributions to B meson two-body decays involving ��0�

meson as final state particles are clearly needed, and better
experimental measurements for the relevant decay modes
are also necessary to clarify this point.

2The flavor-singlet amplitude was defined as the one for
producing a q �q pair not containing the spectator quark in the
coherent flavor-singlet state (u �u	 d �d	 s�s) or a pair of gluons,
where the quark or gluon pairs will hadronize into an � or �0

meson.
3According to Li’s latest talk [33], the analytical formulae as

given in Eqs. (32–40) of Ref. [32] are correct, but the numerical
results about the gluonic contribution to B! �0 form factor as
presented in Ref. [32] are not correct because of an error in their
computer program.

BRANCHING RATIO AND CP ASYMMETRY OF . . . PHYSICAL REVIEW D 75, 034017 (2007)

034017-7



IV. SUMMARY

In this paper, we calculate the branching ratios and
CP-violating asymmetries of B0

s ! �0�, B0
s ! �0�0 de-

cays in the pQCD factorization approach.
Besides the usual factorizable diagrams, the nonfactor-

izable and annihilation diagrams are also calculated ana-
lytically. Although the nonfactorizable and annihilation
contributions are subleading for the branching ratios of
the considered decays, but they are not negligible.
Furthermore these diagrams provide the necessary strong
phase required by a nonzero CP-violating asymmetry for
the considered decays.

From our calculations and phenomenological analysis,
we found the following results:

(i) The pQCD predictions for the form factors are
FBs!�0;1 �0� � �0:276 and FBs!�

0

0;1 �0� � 0:278, which
agree well with those obtained from other methods.

(ii) For the CP-averaged branching ratios of the consid-
ered decay modes, the pQCD predictions for 
p �
17� are

 Br �B0
s ! �0�� � �0:86	1:12

�0:33� � 10�7;

Br�B0
s ! �0�0� � �1:86	1:76

�0:69� � 10�7;
(49)

here the various errors as specified in Eqs. (30) and
(31) have been added in quadrature. The pQCD
predictions are also well consistent with the results
obtained by employing the QCD factorization
approach.

(iii) For the CP-violating asymmetries, the pQCD pre-
dictions for Adir

CP�Bs ! �0��0�� and Amix
CP �Bs !

�0��0�� are generally not very large, while the time-

integrated CP asymmetries are less than 2% in
magnitude.

(iv) The major theoretical errors of the computed observ-
ables are induced by the uncertainties of the hard
energy scale tj’s, the parameters !Bs and ms, as well
as the CKM angle � for CP asymmetries.
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APPENDIX: RELATED FUNCTIONS

We show here the function hi’s, coming from the Fourier
transformations of H�0�,
 

he�x1; x3; b1; b3� � K0�
���������
x1x3
p

mBb1�

�b1 � b3�

� K0�
�����
x3
p

mBb1�I0�
�����
x3
p

mBb3�

	 
�b3 � b1�K0�
�����
x3
p

mBb3�

� I0�
�����
x3
p

mBb1��St�x3�; (A1)

 

ha�x2; x3; b2; b3� � K0�i
���������
x2x3
p

mBb3�

�b3 � b2�

� K0�i
�����
x3
p

mBb3�I0�i
�����
x3
p

mBb2�

	 
�b2 � b3�K0�i
�����
x3
p

mBb2�

� I0�i
�����
x3
p

mBb3��St�x3�; (A2)

 

hf�x1; x2; x3; b1; b2� � f
�b2 � b1�I0�MB
���������
x1x3
p

b1�K0�MB
���������
x1x3
p

b2�

	 �b1 $ b2�g 

K0�MBF�1�b1�; for F2

�1� > 0

�i
2 H�1�0 �MB

�����������
jF2
�1�j

q
b1�; for F2

�1� < 0

0
B@

1
CA; (A3)

 

h3
f�x1; x2; x3; b1; b2� � f
�b1 � b2�K0�i

���������
x2x3
p

b1MB�I0�i
���������
x2x3
p

b2MB�

	 �b1 $ b2�g 

�i
2

H�1�0 �
����������������������������������������������������������
x1 	 x2 	 x3 � x1x3 � x2x3

p
b1MB�; (A4)

 

h4
f�x1; x2; x3; b1; b2� � f
�b1 � b2�K0�i

���������
x2x3
p

b1MB�I0�i
���������
x2x3
p

b2MB�

	 �b1 $ b2�g 

K0�MBF�2�b1�; for F2

�2� > 0

�i
2 H�1�0 �MB

�����������
jF2
�2�j

q
b1�; for F2

�2� < 0

0
B@

1
CA; (A5)

where J0 is the Bessel function and K0, I0 are modified
Bessel functions K0��ix� � ���=2�Y0�x� 	 i��=2�J0�x�,
and F�j�’s are defined by

 F2
�1� � �x1 � x2�x3; (A6)

 F2
�2� � �x1 � x2�x3: (A7)

The threshold resummation form factor St�xi� is adopted
from Ref. [35]
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 St�x� �
21	2c��3=2	 c�����

�
p

��1	 c�

x�1� x��c; (A8)

where the parameter c � 0:3. This function is normalized
to unity.

The Sudakov factors used in the text are defined as
 

Sab�t� � s�x1mB=
���
2
p
; b1� 	 s�x3mB=

���
2
p
; b3�

	 s��1� x3�mB=
���
2
p
; b3�

�
1

�1

�
ln

ln�t=��

� ln�b1��
	 ln

ln�t=��

� ln�b3��

�
; (A9)

 

Scd�t� � s�x1mB=
���
2
p
; b1� 	 s�x2mB=

���
2
p
; b2�

	 s��1� x2�mB=
���
2
p
; b2� 	 s�x3mB=

���
2
p
; b2�

	 s��1� x3�mB=
���
2
p
; b2�

�
1

�1

�
2 ln

ln�t=��

� ln�b1��
	 ln

ln�t=��

� ln�b2��

�
; (A10)

 

Sef�t� � s�x1mB=
���
2
p
; b1� 	 s�x2mB=

���
2
p
; b2�

	 s��1� x2�mB=
���
2
p
; b2� 	 s�x3mB=

���
2
p
; b2�

	 s��1� x3�mB=
���
2
p
; b2�

�
1

�1

�
ln

ln�t=��

� ln�b1��
	 2 ln

ln�t=��

� ln�b2��

�
; (A11)

 

Sgh�t� � s�x2mB=
���
2
p
; b2� 	 s�x3mB=

���
2
p
; b3�

	 s��1� x2�mB=
���
2
p
; b2� 	 s��1� x3�mB=

���
2
p
; b3�

�
1

�1

�
ln

ln�t=��

� ln�b1��
	 ln

ln�t=��

� ln�b2��

�
; (A12)

where the function s�q; b� are defined in the Appendix A of
Ref. [36].
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