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The various decay modes of the type B! �D� are dynamically different. In general, there are
factorized contributions of pole and nonpole type, and pseudoscalar exchange contributions at meson
level. The purpose of this paper is to point out that the decay modes B0

d;s ! �D�0 have small contributions
from such mechanisms, in contrast to the decay modes B0

d;s ! �D�0 and B� ! �D��s;d . On the other hand,
there are nonfactorizable 1=Nc suppressed contributions from colored four quark operators obtained from
Fierz transformations of the standard four quark operators. Such 1=Nc suppressed terms involving
emission of soft gluons are calculated within a heavy-light chiral quark model, and they are found to
dominate the amplitudes for the decay modes B0

d;s ! �D�0. We estimate the branching ratio for these
modes in the low velocity regime, i.e. in the heavy quark limit, both for the b and the c quarks. In this limit
we obtain a value ’ 1� 10�5 for B0

d ! �D�0, and ’ 6� 10�7 for B0
s ! �D�0. We expect substantial

corrections to these numbers because the energy gap between the b- and c-quark masses are significantly
bigger than 1 GeV. However, we expect that our estimates of the amplitudes for B0

d;s ! �D�0 give the
right order of magnitude because other mechanisms are numerically suppressed in this special case.

DOI: 10.1103/PhysRevD.75.034015 PACS numbers: 12.39.St, 12.39.Fe, 12.39.Hg

I. INTRODUCTION

There is presently great interest in decays of B-mesons,
due to numerous experimental results coming from BABAR
and Belle. Later LHC will provide data for such processes.
B-decays of the type B! �� and B! K�, where the
energy release is big compared to the light meson masses,
has been treated within QCD factorization and soft col-
linear effective theory (SCET) [1]. In these cases the
amplitudes factorize into products of two matrix elements
of weak currents in the high energy limit, and nonfactor-
izable corrections of order �s can be calculated
perturbatively.

The decays B! ��, K� are typical heavy to light
decays. It was pointed out in previous papers [2] that for
various decays of the type �B! D �D, which are of heavy to
heavy type, the methods of [1] are not expected to hold
because the energy release is of order 1 GeVonly. (Here �B,
D, and �D contain a heavy b, c, and anti-c quark, respec-
tively.) In this paper we consider decay modes of the type
B! �D�. Such modes have been studied in the literature
[3–5] for some time. We restrict ourselves to processes
where the b-quark decays. This means the quark level
processes b �q! �c �u, b �q! �u �c, and b �u! �c �q, where
q � d or q � s. Processes where the anti-b-quark decays
proceed analogously.

Formally, decays of the type B! �D are heavy to
heavy transitions in the heavy quark limits �1=mb� ! 0
and �1=mc� ! 0, and in Refs. [4,5] the decay of a charged
B-meson was studied within heavy quark effective theory
(HQEFT) [6] and heavy-light chiral perturbation theory
(HL�PT) [7]. This framework was also used to study the

Isgur-Wise function for the B! D transition currents,
which is also a heavy to heavy transition where chiral
loops (in terms of HL�PT) and 1=mb;c corrections (in
terms of HQEFT) have been added [8]. In the present
paper, we will also stick to this framework, although it is
not expected to hold for precise numerical estimates be-
cause the energy gap between the b- and the c-scale is
substantial, namely, about 3 times the chiral symmetry
breaking scale. However, for B! �D there is no ideal
framework. The other extreme would be to consider the
limit where the c-quark is light as the u, d, s-quarks. Still
our framework can be used as a classification scheme. And
we will use it for estimating B0

d;s ! �D�0 where only the
soft gluon mechanism described in Sec. III is expected to
give the dominant contribution.

Classifying decay modes of the type B! �D�, they
might have substantial factorized contributions, of pole
or nonpole type. Second, there are also meson exchange
contributions. These will be chiral loop contributions in the
HQEFT limit (for both b and c-quarks). Such meson
exchange diagrams, which are nonfactorizable and 1=Nc
suppressed, are significant for the decay modes B0

d;s !

�D�0 and B� ! �D��s;d . They could be handled with dis-
persion relations if the decays B! DM (M �
light meson) were known in more detail.

The purpose of this paper is first to point out that the
decay modes B0

d;s ! �D�0 have almost zero contributions
from factorized and meson exchange amplitudes. Second,
these decay modes have significant contributions from soft
gluon emission [9]. Such nonfactorizable (color sup-
pressed �1=Nc) contributions to B� �B mixing [10], B!
D �D [2], and B! D�0 [11] decays have been calculated in
terms of the (lowest dimension, model dependent) gluon
condensate within a recently developed heavy-light chiral
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quark model (HL�QM) [12], which is based on the
HQEFT [6] and HL�PT [7]. At this point we extend the
framework of [4,5] in order to estimate the coefficients of
1=Nc suppressed terms within HL�PT. Soft gluon emis-
sion has also been considered within the chiral quark
model in the pure light sector to estimate K � �K mixing
and K ! 2� decays [13]. We estimate the branching ratios
for B0

d;s ! �D�0 in the heavy b- and c-quark limits. Note

that the decay modes B0
d;s ! �D�0 and B0

d;s ! �D�0 pro-
ceed differently. In the last case there are significant meson
exchange contributions.

In Sec. II we present the weak four quark Lagrangian
and its factorized and nonfactorizable matrix elements. In
Sec. III we present the framework of HQEFT, HL�PT, and
HL�QM. In Sec. IV we calculate explicitly factorizable
contributions, and more important for the purpose of this
letter, the nonfactorizable matrix elements due to soft
gluons expressed through the (model dependent) quark
condensate. In Sec. V we give the results and conclusion.

II. THE WEAK QUARK LAGRANGIAN AND ITS
MATRIX ELEMENTS

Based on the electroweak and quantum chromodynam-
ical interactions, one constructs an effective nonleptonic
Lagrangian at quark level in the standard way:

 LW �
X
i

Ci���Qi���; (1)

where all information of the short distance (SD) loop
effects above a renormalization scale � is contained in
the Wilson coefficients Ci. In our case there are four
relevant operators,

 Q1 � 4� �qL�
�bL�� �cL��uL�;

Q2 � 4� �cL��bL�� �qL��uL�;
(2)

 Q3 � 4� �qL�
�bL�� �uL��cL�;

Q4 � 4� �uL��bL�� �qL��cL�;
(3)

for q � d, s. This effective Lagrangian is based on the
interactions in Fig. 1 and hard gluon corrections to these
diagrams. Operators obtained from penguin diagrams have

small Wilson coefficients and will be omitted in the present
paper. The coefficients C1;2 and C3;4 have different
Kobayashi-Maskawa (KM) quark mixing structures. We
may write

 Ci � �
GF���

2
p �VcbV

�
uq�ai; Cj � �

GF���
2
p �VubV

�
cq�aj; (4)

for i � 1, 2 and j � 3, 4, respectively. Here the ‘‘reduced’’
Wilson coefficients ai (for i � 1, 2, 3, 4) are dimensionless
numbers. (In practice, a1 � a3 and a2 � a4.) Furthermore,
in terms of the Wolfenstein parameter �, we have
VcbV�ud �O��2�. For q � s the KM factors VcbV�us and
VubV

�
cs are both �O��3�, while VubV�cd �O��4�. At the

scale � � MW , when perturbative QCD is switched off,
one has a1;3 � 0 and a2;4 � 1. At the scale� � mb, a1;3 �
10�1 and negative, and a2;4 are slightly bigger than one
[14]. Extrapolating the Wilson coefficients down to ��
�� � 1 GeV, which is the matching scale between short
and long distance effects within our framework [2,10,11],
we obtain a2;4 ’ 1:17 and a1;3 ’ �0:37 [11]. Alternatively,
one might perform perturbative QCD corrections within
HQEFT as done in [15] and used in [2] for B! D �D, but
numerical differences will be small.

For B! D�, one may also think of operators like

 eF��� �qL�
�bL�� �cL�

�uL�;

e� �qL	�
F�
��bL�� �cL��uL�:
(5)

However, such operators are of dimension eight, and domi-
nated at low momenta which make a short distance treat-
ment dubious.

In the factorized limit, where there are no strong inter-
actions between the two quark currents inQi, we obtain the
amplitude for B0

q ! �D�0 from (1)–(3):

 h�D�0jLW jB0
qiF � 4

�
C1 �

C2

Nc

�
�hD�0jcL��uLj0i

� h�jqL��bLjB
0i

� h�D�0jcL��uLj0ih0jqL��bLjB
0i�;

(6)

where the subscript Fmeans ‘‘factorized.’’ ForB0
q ! �D�0

we obtain the same expression with C1;2 replaced by C3;4

and with c and u interchanged. Thus, the neutral decays
have small factorized contributions proportional to anf �
�a1;3 � a2;4=Nc�, which is �10�2.

 

(a) (b)

FIG. 1. Tree level W-exchange leading to the effective
Lagrangian in Eq. (1). The left diagram (a) gives rise to Q1;2,
and the right diagram (b) gives rise to Q3;4.
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For the charged case B� ! �D��q we obtain

 h�D��q jLW jB�iF � 4
�
C4 �

C3

Nc

�
�hD��q jqL��cLj0i

� h�juL��bLjB
�i

� hD��q �jqL��cLj0i

� h0juL��bLjB
�i�: (7)

The charged decays have substantial factorized contribu-
tions proportional to af � �a4 � a3=Nc� � 1. These are
visualized in Fig. 2.

In order to study nonfactorizable contributions at quark
level, we use the following relation between the generators
of SU�3�c (i, j, l, n are color indices running from 1 to 3):

 �ij�ln �
1

Nc
�in�lj � 2taint

a
lj; (8)

where a is the color octet index. Then the operators Q1;2

may, by means of a Fierz transformation, be written in the
following way:

 Q1;3 �
1

Nc
Q2;4 � 2 ~Q2;4; Q2;4 �

1

Nc
Q1;3 � 2 ~Q1;3;

(9)

where the operators with the ‘‘tilde’’ contain color matri-
ces:

 

~Q 1 � 4� �qL�
�tabL�� �cL��t

auL�;

~Q2 � 4� �cL��tabL�� �qL��tauL�:
(10)

 

~Q 3 � 4� �qL��tabL�� �uL��tacL�;

~Q4 � 4� �uL��tabL�� �qL��tacL�:
(11)

Note that the Ci=Nc terms in (6) and (7) stem from the
1=Nc terms in (9).

The nonfactorizable amplitude for B0
q ! �D�0, with one

gluon emission obtained from the colored operators in (10)
and (11), might be written in a quasifactorizable way in
terms of octet gluonic intermediate states (jGi):

 h�D�0jLW jB0
qiNFG � 8C2h�D�0j ~Q1jB0

qi

� 8C2�hD
�0jcL��t

auLjGi

� hG�jqL��tabLjB0
qi

� h�D�0jcL��t
auLjGi

� hGjqL��t
abLjB

0
qi�: (12)

This amplitude is visualized in Fig. 3. It has to be calcu-
lated within some framework describing long distance
gluonic effects. In our case we have chosen the HL�QM
[12].

The nonfactorizable amplitude for B0
q ! �D�0 with one

gluon emission obtained from the colored operators is the
same as above with C2 ! C4 and with u and c-quarks
interchanged. The nonfactorizable amplitude for B� !
�D��q with gluon emission from the colored operator ~Q4

is proportional to a3 and therefore relatively small.
We observe the following generic pattern: Some decay

modes have substantial factorizable contributions propor-
tional to the favorable Wilson coefficient linear combina-
tion af 	 �a2;4 � a1;3=Nc�, which is close to 1. In this case
there are contributions from the colored operators ~Q1;3

proportional to a1;3 of minor importance. For other modes
there might be factorized matrix elements proportional to
the nonfavorable coefficient anf 	 �a1;3 � a2;4=Nc� which
is close to zero (of order 10�2 or smaller) at our matching
scale � � ��. In these cases there are significant contri-
butions proportional to a2;4 � 1 from the operators ~Q1;3,
involving color exchange.

In terms of the B-meson pseudoscalar field �, the
D�-meson vector field V�, and the electromagnetic field
tensor F��, we can write down the effective Lagrangian to
first order in the photon momentum, consistent with the
heavy quark limits:

 L eff � A���i����
�F��V�v
b � A
����F��V�v�b;

(13)

where the positive and negative parity amplitudes A�
�

depend on hadronic parameters, and the meson masses
MB;D.

 

DBDB

(a) (b)

FIG. 3. Nonfactorizable contributions to B! �D from the
colored operators ~Qi within a quasifactorized approximation.
The curly lines represent soft gluon emission ending in vacuum
to make a gluon condensate. (a) With additional photon emission
from the B-meson. (b) With additional photon emission from the
D-meson.

 

DBDB

(a) (b)

FIG. 2. Factorized contributions for B! �D�. The combined
dashed and full lines represent heavy mesons, the double lines
represent heavy quarks, and the single lines light quarks. The
wavy line is a photon. (a) Emission of a photon from the
B-meson. (b) Emission of a photon from the D-meson.
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III. HEAVY-LIGHT CHIRAL LAGRANGIANS FOR
B! D TRANSITIONS

Our calculations will be based on HQEFT [6], which is a
systematic 1=mQ expansion in the heavy quark mass mQ.
Each of the heavy quark fields Q�� b; c �c� are replaced
with a reduced field Q���v for a heavy quark (b or c), and
Q���v for a heavy antiquark (in the case of �c). The
Lagrangian for heavy quarks is

 L HQEFT � 
Q
�
�
v iv �DQ�
�v �O�m�1

Q �; (14)

where v is the velocity of the heavy quark, and D� is the
covariant derivative containing the gluon and the photon
fields. In [10], the 1=mQ corrections were calculated for
B� �B-mixing. In this paper such corrections will not be
considered.

Integrating out the heavy and light quarks, the effective
Lagrangian (the HL�PT terms) up to O�m�1

Q � can be
written as [7,12]

 L � �Tr
H�
�a iv �DbaH
�
�
b �

� gA Tr
H�
�a H�
�b ���5A
�
ba� � � � � ; (15)

where the ellipses denote terms not relevant in this paper.
The indices a, b � 1, 2, 3 correspond to the quark flavors
u, d, s, and H�
�a is the heavy meson field containing a spin
zero and spin one boson, and A� is an axial field:

 H�
�a 	 P
�P
�
�
a� �� � iP

�
�
a5 �5�;

A� 	 �
i
2
�
y@�
� 
@�
y�;

(16)

where P
 are projecting operators P
 � �1
 � � v�=2,
and v is the velocity of the heavy quark. Moreover, 
 	
exp�i�=f�, where f is the bare pion coupling, and � is a 3
by 3 matrix which contains the Goldstone bosons �, K, �
in the standard way. The axial chiral coupling is gA ’ 0:6.
Equations (15) and (16) are used for the chiral loop con-
tributions within HL�PT. The covariant derivative is given
by iD�

ba � i�ba@� � e� ~Q
�baA�, where ~Q
 � 
Q
yR�

yQ
L, A� is the photon field, and Q �
diag��2=3;�1=3;�1=3� is the electric charge matrix.
Further, L and R are the left- and right-handed projection
matrices acting in Dirac space.

The relevant Lagrangian term for electromagnetic tran-
sition between B�0�� and B�1�� mesons [and similarly
between D�0�� and D�1�� mesons] is given by [5,16,17]

 L 
 �
e

4

Tr
 �HH	 � F ~Q
�; (17)

where F is the electromagnetic tensor. The constant 
 is
due to radiation from the light quark in the heavy meson. It
is not determined within HL�QM alone, but within various
quark models it is of order 1=m, where m is the constituent

light quark mass. There is also a similar term �1=mQ for
radiation from the heavy quark in the heavy meson.

The simplest way to calculate the matrix element of four
quark operators like Q1�4 in Eq. (1) is by inserting vacuum
states between the two involved currents, as shown in
Eqs. (6) and (7). This is the factorized limit. The matrix
elements of the weak currents correspond to the bosonized
version of these currents. Based on the symmetry of
HQEFT, the bosonized current for decay of the b �q system
is, to lowest order in the chiral expansion [7,12],

 qL�
�Q���bv !

�H
2

Tr

y��LH���bq �; (18)

where Q���bv is a heavy b-quark field, v � vb is its velocity,
and H���bq is the corresponding heavy meson field for �Bq.
This bosonization has to be compared with the matrix
elements defining the meson decay constants fH�H �
B;D�. Before perturbative QCD corrections for scales�<
mQ and chiral loop corrections have been considered, one
has �H � fH

��������
MH
p

(see [6,12]). For the W-boson materi-
alizing to a D or �D mesons, we obtain the bosonized
current similar to (18):

 Q���cv ��qL !
�H
2

Tr
��L
H���cq �

qL��Q
���
cv !

�H
2

Tr

y��LH���cq �;
(19)

where v is the velocity of the heavy c or �c quarks (v � vc
or v � v �c), and H�
�cq is the corresponding field for the Dq

or the �Dq meson.
Up to KM-factors and Wilson coefficients (including

Fermi’s coupling), the chiral Lagrangian piece for the
virtual B! D transition is now given by the product of
the weak currents in (18) and (19). This Lagrangian com-
bined with the term in Eq. (17) is the basis for the pole
model calculations in [4,5], where the B or D-meson
radiates a photon. Further, there are also direct terms
involving the electromagnetic field, for instance occurring
as 	��F�� inside one of the traces in (18) or (19). (Here
	�� � i
��; ���=2 as usual.) Also color suppressed terms
may occur. Many terms allowed by the symmetry can be
written down, but their coefficients are unknown. One way
to generate such terms, and to estimate their coefficients, is
by means of the HL�QM recently developed in [12],
which we will describe shortly in the following.

The HL�QM is especially useful for calculations of
matrix elements and chiral Lagrangians for the quark
operators in (1) beyond the factorized limit. For this case,
this model incorporates emission of soft gluons modeled
by a gluon condensate. See also [18,19]. The Lagrangian
for the HL�QM is

 L HL�QM � LHQEFT �L�QM �LInt: (20)

The first term is given in Eq. (14). The light quark sector is
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described by the chiral quark model (�QM), having a
standard QCD term and a term describing interactions
between quarks and (Goldstone) mesons:

 L �QM � �
���iD� � �5A�� �m��� � � � ; (21)

where the ellipses denote terms which are irrelevant here.
Here m is the SU�3� invariant constituent light quark mass
of order 2–300 MeV, and � is the flavor rotated triplet
quark field given by �L � 
yqL, �R � 
qR, where the
standard triplet light quark field is given by qT �
�u; d; s�. The left- and right-handed projections qL and qR
are transforming after SU�3�L and SU�3�R, respectively.
The covariant derivative D� in (21) contains both the
photon field and the soft gluon field forming gluon con-
densates. The gluon condensate contributions are calcu-
lated by Feynman diagram techniques as in [10–13,20,21].

The bosonization (binding) of a heavy quark (heavy
antiquark) and light antiquark (light quark) is performed
by means of the following interaction Lagrangian [12,19]:

 L Int � �GH
�aH
�
�
a Q�
�v �Q�
�v H�
�a �a�: (22)

Here GH is a coupling constant satisfying G2
H � 2m�=f2

�,
where � is a hadronic parameter of order one. In [12] it was
shown how (15) could be obtained from the HL�QM.
Performing this bosonization of the HL�QM, one encoun-
ters divergent loop integrals which will be quadratic, linear,
and logarithmic divergent [12]. In order to obtain (15), (the
regularized version of) these integrals has to be related to
GH, the pion coupling f�, the constituent quark light mass
m, and the gluon condensate. Similarly, in the light sector
[13] the quadratic and logarithmic divergent integrals are
related to the quark condensate and f�, respectively.

To calculate the factorized contributions in (6) and (7)
corresponding to Fig. 2 within our framework, we need the
bosonized currents in (18) and (19), and in addition the
bosonized currents involving emission of a photon from
the B- or the D-meson. For photon emission from the
B-meson we have (for v � vb)
 

�qL��Q
���
bv �� ! �

GHe
32�

F�� Tr
�

y��LH���qb

~Q


�

�
	�� �

2�f2
�

m2Nc
f	��; � � vg

��
; (23)

where F and ~Q
 are given as in Eq. (17). For emission from
the D-meson there is a similar expression. This structure is
quite general, although the coefficients in front of the two
terms are model dependent. A chiral Lagrangian piece
corresponding to the diagram in Fig. 2(a) will be the
product of this expression and one of the currents in
Eq. (19).

Bosonizing currents with one gluon emission from a
colored current occurring in the operators of (11) for
instance to be used in the left part in Fig. 3(b)], one obtains

 

�qLta��Q
���
bv �G ! �

GHgs
64�

Ga
�� Tr

�

y��LH���bq

�

�
	�� �

2�f2
�

m2Nc
f	��; � � vg

��
; (24)

where Ga
�� is the octet gluon tensor, and H���bq represents

the heavy �Bq-meson fields. Similarly the (heavy) D- and
�D-mesons are represented byH���c andH����c corresponding

to a heavy quark field Q���vc and heavy antiquark field Q����v ,
respectively, where vc and �v � v �c are the velocities of the
c and �c quarks, respectively. The symbol f ; g denotes the
anticommutator.

For one gluon and one photon emission from the
�Bq-meson appearing in left part in Fig. 3(a)], one obtains
an expression of the form
 

�qLt
a��Q���vb �G� ! GHgseF��G

a
	� Tr

y��LH���bq

� ~Q
R
��	��; (25)

where the tensor R contains products of Dirac matrices
(originating from vertices and propagators with momen-
tum integrated out). Multiplying the currents for each
vertex, for instance those in Eqs. (24) and (25), and using
the prescription,

 g2
sG

a
��G

a
�
 ! 4�2

�
�s
�
G2

�
1

12
�g��g�
 � g�
g���;

(26)

we obtain the bosonized version for the operator ~Q1 in
Eqs. (10) and (11) (with one extra photon field) as the
product of two traces. The expression may be simplified by
using the Dirac algebra, but we do not enter these details
here.

As a more simple example, multiplying (24) for a decay-
ing b-quark with the corresponding expression for creation
of a c (or �c)-quark, and using (26), we obtain 1=Nc sup-
pressed HL�PT terms for the virtual B! D transitions.
Using some Dirac algebra inside the traces, we retain some
color suppressed chiral Lagrangian term proportional to
the dominant term being proportional to the product of the
current in Eq. (18) and one of the currents in Eq. (19).
Thus, such terms contribute to the weak transition coeffi-
cient 
0W of Ref. [5]. Also, some new 1=Nc terms occur, for
instance

 Tr fH���c 
R	��g � Trf	��L

yH���b g; (27)

 Tr fH���c 
R	��g � Trf	��� � tL

yH���b g; (28)

 Tr fH���c 
R� � t	��g � Trf	��L

yH���b g; (29)

where t 	 vc � vb. Such terms have also to be considered
when calculating pole diagrams. Note that the two last
terms vanish in the low velocity limit ! 	 vb � vc ! 1.
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IV. AMPLITUDES FOR B! �D�

Considering simple quark diagrams only, we observe
that in terms of the Wolfenstein parameter �, the ampli-
tudes for B� ! �D��d and B0

d ! �D�0 are O��4� and
small. In contrast, the amplitude for B0

d ! �D�0 is
O��2�, and is KM nonsuppressed compared to other B!
�D� modes. For q � s, all the amplitudes are O��3�.
However, strong interactions in terms of meson exchange
might make this simple picture more complicated.

At mesonic level there are pole diagrams obtained from
the bosonized currents in (18) and (19) combined with
photon emission [16,17]. Here the B� ! D��s;d factorized
transitions are proportional to the favorable coefficient
af � �a2;4 � a1;3=Nc� � 1, while the nonfactorizable con-
tributions proportional to 2a1;3 due to colored operators are
relatively small. For the decays B� ! �D�d;s, we obtain
from the pole diagrams in Fig. 4,

 A���pole � ��C4 � C3=Nc��
2
H

e
MB

M2
B �M

2
D

�QB
q �!Q

D
q0 �;

(30)

whereQB
q andQD

q0 are the charges of the light quarks within
the B and D mesons, respectively. For the processes B� !
�D�d;s, we have QB

q � 2=3 and QD
q0 � �1=3. To obtain a

parity violating pole term, the intermediate heavy meson(s)
must have positive parity [5]. We find that within our
framework, B� ! �D�d has a partial branching ratio ’
2� 10�7 from the diagram in Fig. 4.

For the decays B0
d;s ! �D�0, there is a delicate balance

between different amplitudes, and it is hard to conclude
anything within our framework. For the decays B� !
�D�d;s, the factorized contributions dominate, and from
the diagrams in Fig. 2 alone we obtain

 A�
�F � ��C4 � C3=Nc�
eNcGH�H

16�
Y�
�; (31)

where

 Y��� � QB
q �QD

q0 �1� k� k!y�; (32)

which within our framework is roughly 4 times the pole
contribution. For the parity violating case, one has

 Y��� � �QB
q �1� 2k� �QD

q0 �1� k!y�: (33)

We find that within our framework, B� ! �D�d has a

partial branching ratio ’ 5� 10�7 from the ‘‘direct’’ fac-
torizable diagram in Fig. 2, i.e. slightly bigger than our
pole contribution.

As mentioned above, there are some meson exchange
decay mechanism contributions. In the heavy quark limit
these are identical to chiral loop contributions. These are
shown in Fig. 5. For the process B� ! �D��s;d there is an

intermediate B0
d ! D�0 transition accompanied with emis-

sion and reabsorption of ��, or an intermediate B0
s ! D�0

transition accompanied with emission and reabsorption of
K�. For the process B0

d ! �D�0 there is an intermediate
B� ! D��d transition accompanied with emission and re-
absorption of ��. For B0

s ! �D�0 there is an intermediate
B� ! D��s transition accompanied with emission and re-
absorption of K�. Because the transitions B� ! D��d;s are

nonsuppressed in the factorized limit, the decays B0
d;s !

�D�0 are semisuppressed, having meson exchange ampli-
tudes reducing to chiral loops in the HQEFT limits
1=mb ! 0, and 1=mc ! 0. Taking both these limits, the
meson exchange amplitudes are, in the leading logarithmic
approximation, proportional to

 ��M� �
�
gAmM

4�f�

�
2

ln
�

�2
�

m2
M

�
; (34)

for exchange of light mesons M � K, � respectively. Here
gA is the light meson axial coupling to heavy mesons and
�� ’ 1 GeV. Numerically, ��K� ’ 0:09 and ���� ’ 0:02.
We have not estimated these meson exchange diagrams,
neither in the low velocity limit as chiral loops nor in other
ways (for instance, some form factor damping is expected).
We just state that (34) should give the order of magnitude
for meson exchanges. For the processes B0

d;s ! �D�0 there
are only Zweig-forbidden and SU�3�F violating neutral
meson exchange which give small contributions.

For the processes B0
d;s ! �D�0 the nonfactorizable am-

plitudes A�
� corresponding to the diagrams in Fig. 3 are of
the form

 

DBDB

FIG. 4. Pole contributions for B! �D. The combined full and
dashed lines are the heavy mesons, and the wavy lines represent
photons.

 

DBDB

FIG. 5. Meson exchange diagrams which would be chiral
loops in the low velocity limit. The combined full and dashed
lines are the heavy mesons, and the single dashed lines represent
light pseudoscalar mesons.
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 A�
�G � �
eC2

28�
G2
H

�
�s
�
G2

�
�QB

qZ
�
�
B �QD

q0Z
�
�
D �: (35)

For the processes B0
d;s ! �D�0 we have QB

q � �1=3 and
QD
q0 � 2=3. The quantities Z�
� are of order one and given

by [22]
 

Z���B �

�
89�
288
�

13

18

�
k!y�

�
7�
144
�

5

18

�
k!2

�

�
11

18
�

13�
96

�
k�

�
2

3
�
�
18

�
; (36)

 Z���B � �
5�
9
k!y�

��� 2�

9
k!2 �

�
�
9
�

4

3

�
k

�
��� 8�

9
; (37)

 

Z���D � �

�
11�
288
�

17

36

�
k!y�

�
1

36
�

53�
288

�
k

�

�
�
64
�

7

72

�
!y�

�
41�
576
�

23

72

�
; (38)

 Z���D � �

�
�
3
�

4

9

�
k�

�
2

9
�
�
18

�
!y�

4

3
k!y�

�
2

9
�
�
18

�
;

(39)

where the dimensionless parameters k,!, and y are defined
as

 k�
2�f2

�

Ncm
2 ; !� vb �vc �

M2
B�M

2
D

2MBMD
; y�

MB

MD
:

(40)

For MD we have used the mass of D�. Using [12,17] m �
230 MeV, � � 1:1, and h�s� G

2i1=4 � 310 MeV, we obtain

 BR �B0
d ! �D�0� ’ 1� 10�5 and

BR�B0
s ! �D�0� ’ 6� 10�7:

(41)

V. CONCLUSION

We have considered and classified six decay modes of
the type B! �D generated by three (main) mechanisms:

(a) Factorized contributions of pole and nonpole type.
These are proportional to the favorable Wilson co-
efficient combination af � 1 for decays of charged
B-mesons. However, for decays of neutral
B-mesons, they are proportional to the nonfavorable
coefficient combination anf of order 10�2, and are
unimportant.

(b) Nonfactorizable contributions due to meson ex-
changes, that is, some intermediate B! D transi-
tion accompanied with an emission and
reabsorption of a pseudoscalar boson (� or K).
Such contributions are suppressed (Zweig-
forbidden) for B0

d;s ! �D�0.

(c) Nonfactorizable contributions due to the ‘‘colored
quark operators’’ in Eqs. (10) and (11), obtained
from Fierz transformations of the standard four
quark operators. Within the HL�QM, these are cal-
culated as in terms of emission of soft gluons,
forming a (model dependent) gluon condensate.
These contributions are proportional to the small
Wilson coefficients a1;3, and play a minor role for
decays of charged B-mesons. For decays of neutral
B-mesons, they are proportional to the favored co-
efficients a2;4 � 1, and are important, and forB0

d;s !

�D�0 they dominate.
In the heavy quark effective field theory (HQEFT) lim-

its, the mechanisms (b) and (c) are formally 1=Nc sup-
pressed. However, they play an important role for the
neutral decay modes. Contributions to the various B!
�D� modes are classified in Table I.

The present analysis is performed within HQEFT and
heavy-light chiral perturbation theory (HL�PT), both for
the b- and the c-quark. Formally, the modes B! �D� are
‘‘heavy to heavy’’ transitions, but for precise estimates our
framework is not ideal [4] because the energy gap between
the b- and the c-quark are significantly bigger than 1 GeV,
which is the scale of HL�PT and the heavy-light chiral
quark model (HL�QM). Therefore large 1=mQ corrections
(especially 1=mc corrections) must be expected. Phrased in
another way, damping form factors are expected to be
present, and our estimates might be overestimates. A very
recent study [5] shows that positive parity resonances in
pole diagrams might even give slightly bigger amplitudes
than obtained in the present paper. The difference between
the paper [5] and the present paper is that we do not
consider positive parity intermediate resonances. But
they will anyway not contribute to the nonfactorizable
amplitudes which are the main task of this paper. More
important is that in [5] the Wilson coefficients at the
renormalization scale ��MW are used, while we have
used the Wilson coefficients at the matching scale ��
�� ’ 1 GeV. This has dramatic consequences for the color
suppressed amplitudes. We have an effective Wilson coef-
ficient anf of order 10�2 for the factorized amplitudes,
while Ref. [5] uses an effective Wilson coefficient anf �
1=Nc � 1=3. With this big value of anf, the authors of [5]

obtain pole contributions for B0
d;s ! �D�0 of the same

TABLE I. A classification of contributions to processes of the
type B! �D�.

Process Factorized Soft gluon Meson exchange

B� ! �D��d af�4 a3�4 anf�4�����
B� ! �D��s af�

3 a3�
3 anf�

3��K��
B0
d ! �D�0 anf�

4 a4�
4 af�

4�����
B0
s ! �D�0 anf�

3 a4�
3 af�

3��K��
B0
d ! �D�0 anf�

2 a2�
2 Zweig-forbidden

B0
s ! �D�0 anf�

3 a2�
3 Zweig-forbidden
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order of magnitude as we obtain from the colored quark
operators.

Alternative estimates, based on other frameworks, for
instance considering the charm quark as ‘‘light,’’ might be
performed. Still, we expect that we have obtained ampli-
tudes of the right order of magnitude for B0

d;s ! �D�0.
Namely, the matrix element of the colored operators in (10)
and (11) are in general nonzero and give an important
contribution to B0

d;s ! �D�0.

It should be noted that our framework will be better
suited to describe the processes B! D�� [5], where !
might be as low as ’ 1:2 if the two photons come out back
to back, in contrast to ! ’ 1:6 in our case.
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