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The interacting instanton liquid model (IILM) is used to explore the role of instanton-induced dynamics
in hadron structure. To support the validity of this model in the chiral regime, the quark mass
dependencies of several properties are shown to agree with chiral perturbation theory, including the
density of eigenmodes of the Dirac operator and the mass of the pion. A quark mass m� � 80 MeV
emerging naturally from the model is shown to specify the mass scale above which the fermion
determinant is suppressed, the zero modes become subdominant, and the density of quasizero modes
become independent of the quark mass.
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I. INTRODUCTION

The goal of this work is to gain insight into the mecha-
nism by which the structure of hadrons arises from QCD.
Although lattice field theory provides a powerful tool for
solving nonperturbative QCD and is now beginning to
successfully calculate experimental observables with dy-
namical quarks in the chiral regime, the physical mecha-
nism by which hadron structure arises and the dominant
degrees of freedom are not directly evident. Hence, in this
work, we explore the complementary insight that can be
obtained from a model that focuses on what we believe to
be the dominant degrees of freedom relevant to hadron
structure. In nonperturbative QCD, the way in which glu-
ons interact with quarks depends dramatically on the quark
mass. In the limit of large mass, heavy quarks move
adiabatically in a flux tube potential, whereas in the limit
of light mass, a variety of evidence suggests that the
instanton-induced ’t Hooft quark interaction plays an im-
portant role and provides the mechanism for spontaneous
chiral symmetry breaking. To understand the structure of
hadrons containing light up and down quarks, we therefore
seek to explore the role of instantons and their associated
zero modes in hadron structure, and do so in the context of
the interacting instanton liquid model (IILM).

In the IILM, the QCD path integral over all gluons is
replaced by an effective theory in which instantons are the
effective degrees of freedom, and the gauge fields of the
theory are those generated by integrating over the posi-
tions, color orientations, and sizes of instantons. In the
context of this model, we would like to understand the
mass range in which instanton mediated chiral dynamics is
manifested and the extent to which it is described by chiral
perturbation theory. In particular, we would like to know
the mass scale or scales at which the continuum fermion

determinant is suppressed, at which zero modes become
subdominant, and at which the density of quasi zero modes
becomes independent of quark mass.

In the present paper, we set-up the formalism to use the
IILM [1] to address these questions. The instanton picture
(for recent reviews see [2,3]) was originally introduced as a
model for the QCD vacuum based on semiclassical argu-
ments [4]. It was shown that instantons lead to spontaneous
chiral symmetry breaking by introducing strong nonper-
trubative correlations between fermionic zero-modes lo-
calized around the instanton positions. Specific features of
the instanton picture have been observed in a number of
lattice studies [5–9] and there is evidence that chiral
symmetry breaking is correlated with smooth lumps of
topological charge, whose profile is consistent with that
of singular-gauge instantons [10,11]. In addition,
instanton-induced correlations in hadrons have been
studied in a number of phenomenological model calcula-
tions, where it was shown that the Instanton Liquid Model,
(ILM), provides a good description of the mass and the
electro-weak structure of pions, nucleons and hyperons
[12–21].

Before trusting the IILM to provide useful insight into
the role of instantons and their associated zero modes, it is
important to verify several essential properties. One key
issue is to verify the chiral behavior of the spectrum of the
Dirac operator. By analyzing the dependence on the quark
mass of the density of eigenvalues of the Dirac operator,
����. we show that, in the chiral limit, the IILM results are
consistent with the well-known chiral perturbation theory
(�pt) result [22]:

 lim
�!0

lim
mq!0

���� � Const�O��2� �Nf � 2�: (1)

In addition, we check that at small but-finite quark masses,
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the IILM generates mass corrections to the Dirac spectrum
that are consistent with those predicted by �pt. To do so,
we show that from the structure of the IILM Dirac spec-
trum computed at different quark masses, one can predict
the power-law infrared divergence in the quark mass of the
scalar three-point correlator:

 Kabc �
Z

d4xd4yd4zh0jSa�x�Sb�y�Sc�z�j0i /
1

mq
; (2)

 Sa�x� � �q�z��aq�x�: (3)

This result agrees with the prediction of �pt [22]:

 Kabc �
B3�N2

f � 12�

64�2m2
�Nf

dabc �O�p4� /
1

mq
: (4)

A second important test is verifying that the IILM
effective theory can be used to calculate hadron masses
and that these masses have the dependence on the quark
mass expected from �pt. Since correlation functions in the
nucleon and pion channels receive contributions from a
single instanton whereas in the � and � channels the
leading contribution occurs for two instantons, the nucleon
and pion masses depend on the instanton density to first
order while the � and � are only affected in second order.
Hence, we focus here on the nucleon and pion masses.
Since we have replaced the functional integral over all
gluon fields by a sum over instanton fields, a key task is
to verify that the effective theory is an adequate approxi-
mation to the full functional by showing that the correla-
tion function decays at large Euclidean time like a pure
exponential, as it must in a field theory with a transfer
matrix, and that spontaneous chiral symmetry breaking
occurs as it would in the full field theory. In the case of
the pion, we demonstrate very clear asymptotic decay as a
single exponential and use the slope to obtain an accurate
measurement of the pion mass at each quark mass. These
data not only have a quark mass dependence consistent
with the form expected from chiral perturbation theory, but
we show that they yield low-energy constants consistent
with those known from QCD. The nucleon is slightly more
problematic, in the sense that with the Monte Carlo statis-
tics accessible to us, the combined systematic and statisti-
cal errors are somewhat larger than in the pion case. We
show that these data are completely consistent with recent
lattice QCD calculations.

Having carefully verified the consistency of the IILM
results with lattice results and with the behavior expected
from �pt, we conclude that the low-energy effective theory
indeed gives a useful approximation to the QCD path
integral and hence use this model to explore the role of
instanton-induced dynamics. An essential quantity in the
IILM is the overlap matrix Tij specifing the probability that
a quark hops from instanton i to instanton j, and we find
that a value of the quark mass m� defined to be equal to an
average value of Tij is a key parameter in characterizing the

quark mass dependence of low-energy QCD. In the IILM,
m� � 80 MeV, corresponding to m� � 600 MeV, and
characterizes the scale for three transitions. It is the mass
scale above which the fermion determinant is suppressed,
the zero modes become subdominant, and the density of
quasizero modes becomes independent of quark mass. The
significance of these transitions is discussed in the text.

The paper is organized as follows. In the next section,
we review some of the basic aspects of the IILM. In
Sec. III, we present our analysis of the Dirac spectrum
and compare our results with chiral perturbation theory
predictions. In Sec. IV, we present the details of our
calculations of hadron masses and compare our results
with lattice data. In Sec. V, we perform chiral extrapola-
tions of the pion masses and compare the effective parame-
ters of the low-energy chiral perturbation theory of the
IILM with those of QCD. In Sec. VI, we analyze how in
the IILM the chiral dynamics is incorporated in the struc-
ture of the quark propagator and in the fermionic determi-
nant, and we define and compute the mass scale m? that
sets the boundary of the chiral regime. All results are
summarized in Sec. VII.

II. THE INTERACTING INSTANTON LIQUID
MODEL

In the IILM, the QCD path-integral over the gauge field
configurations is replaced by a sum over the configurations
of a grand-canonical statistical ensemble of instantons and
anti-instantons:

 Z QCD ’ ZILM

�
X

N�;N�

1

N�!N�!

�
Z YN��N�

i

d�id��i�e�Sint

YNf
i

det�i 6D� imf�:

(5)

Here, d�i � dUid
4zid�i is the measure in the space of

collective coordinates, color orientation, position and size,
associated with the single instantons. Quantum fluctuations
are included in Gaussian approximation, through the semi-
classical instanton amplitude d��i�. In what follows we
will work in the thermodynamical limit and adopt the
canonical formulation with N� � N� � N=2.

Since instanton-instanton interactions are important to
remove large-sized instantons from the vacuum [4], the
partition function (5) describes an interacting liquid, rather
than a dilute gas of pseudoparticles. The corresponding
interaction action is defined as

 Sint � Stot � �N� � N��S0; (6)

where Stot is the total classical action corresponding to a
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given ensemble configuration and S0 �
8�
g2 is the individual

single-instanton action in the dilute-gas limit.
In the IILM, the interaction action is approximated by a

pure two-body instanton-anti-instanton term, which only
depends on the relative coordinates of two pseudoparticles:

 Sint �
1

2

XN=2

I�J

Sint�I; J� (7)

Such a two-body action is calculated classically, by first
determining the total action Stot from the gauge potential
A��I; A� corresponding to the instanton-anti-instanton pair
and then subtracting the free contribution 2S0. Since no
exact instanton-anti-instanton pair solution A��I; A� to the
classical Yang-Mills equations of motion is known, we rely
on the streamline construction, in which the classical ac-
tion is minimized in all the directions except along the
collective coordinate describing the separation between the
two instantons [23]. The analytic instanton–anti-instanton
gauge potential in the streamline Ansatz is given by

 Aa� � 2�a��
x�

x2 � �2�
� 2Rab�b��

�2

�
1

x2�x2 � �2=��
(8)

where � is the streamline conformal parameter defined by

 � �
R2 � �2

I � �
2
A

2�I�A
�

�
�R2 � �2

I � �
2
A�

2

4�2
I�

2
A

� 1
�

1=2

R � jzI � zAj

(9)

and

 Rab � 1
2 Tr	Uy�aU�b
 (10)

represents the relative color orientation of the two
instantons.

A major shortcoming of the streamline construction is
that, in the most attractive color orientation channel, the
interaction action smoothly approaches Sint � �2S0 at
short distances. This means that the instanton-anti-
instanton pair tends to annihilate. The resulting gauge field
configuration is characterized by a vanishing topological
charge and a weak gauge field potential, and therefore it
corresponds to a perturbative fluctuation. Since perturba-
tive contributions cannot be treated consistently in the
present approach, Shuryak and Schäfer [1] suggested re-
moving them by introducing a purely phenomenological
short-range repulsive core:

 Score �
A

�4 juj
2; (11)

where u is a color orientational factor. Such a term pro-
vides a cut-off to the momentum that can be exchanged
through the instanton field, hence restricting the region of
applicability of the approach to the nonperturbative sector
characterized by momenta of the order p < 1= ��, where ��
is the average instanton size. In the language of effective

field theory, this repulsive core plays the role of a counter-
term, parametrizing the ultraviolet physics. However, it
should be stressed that our hard-core is not derived from
a systematic contruction and therefore introduces model
dependence in the calculation. The coefficient A in (11)
controls the strength of the repulsion and is the only
phenomenological parameter of the model. In our calcu-
lations we adopted the value A � 128 suggested by
Schäfer and Shuryak [1].

Once the interaction action is defined, it is possible to
compute the main properties of the ensemble, the instanton
density n, and instanton size distribution d���, by minimiz-
ing the ensemble’s free energy numerically. One can then
calculate arbitrary Euclidean Green functions by perform-
ing Monte Carlo averages over instanton configurations,
using the Metropolis algorithm. As in analogous lattice
QCD calculations, one must set the scale in physical units
by matching one dimensionful quantity.

In order to compute correlation functions involving
quark field operators, we follow the same prescription
adopted in lattice simulations, i.e. we first explicitly inte-
grate out the fermion fields and then compute Monte Carlo
averages of the resulting Wick contractions. Such averages
are performed using configurations which are obtained by
an accept/reject Metropolis algorithm in which the contri-
bution of the fermionic determinant is included in the
Bolzmann weight, corresponding to unquenched
simulations.

Unlike in lattice QCD simulations, where the fermionic
determinant and the quark propagators are evaluated using
a purely numerical algorithm, in the IILM these quantities
have a semianalytic representation. This property allows us
to identify the physical content of each term and establish a
connection with the corresponding nonperturbative quark
dynamics [2]. The fermionic determinant in a given in-
stanton gauge field A� background is factorized into a
contribution of near-zero modes and a contribution arising
from nonzero modes:

 det A� 6D�mq� � detAzm � det0Anzm: (12)

The contribution of near-zero modes can be determined
exactly, by expanding the Dirac operator on the basis of
zero-modes of individual instantons:

 det Azm � det�T �mq�; (13)

where TIJ �
R
d4z 0y

I �z�iD�	� 
0
j �z� is the overlap ma-

trix which represents the probability amplitude for quarks
to ‘‘hop’’ from the instanton I to the instanton J. The
nonzero mode part of the fermionic determinant is approxi-
mated with the product of the nonzero mode contributions
of each individual instanton:

 det 0Azm �
YN��N�
i

�1:34mq�i� (14)
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Simlarly, the quark propagator consists of a zero-mode
part and a nonzero mode part:

 S�x; y�A � Szm�x; y�A � Snzm�x; y�A: (15)

The zero-mode part of the propagator Szm�x; y�A dominates
in the low-energy regime and encodes the information on
the physics of chiral symmety breaking and axial anomaly
saturation. It is constructed by representing the Dirac
operator in the basis of zero-mode wave functions  0�x�
of the individual instantons and reads:

 Szm�x; y�A �
X
IJ

 0
I �x� 

0y
J �y�

�
1

T̂ � imq

�
IJ
: (16)

The non-zero-mode part is approximated as the sum of the
non-zero-mode propagators in the field of the invidual
instantons [2].

III. THE SPECTRUM OF THE DIRAC OPERATOR
AND THE CHIRAL REGIME IN THE IILM

In the previous section, we have seen that the main
approximation of the IILM consists in replacing the QCD
path integral with a statistical sum over a classical en-
semble of pseudoparticles. In this section, we address the
question of whether such an approximation provides a
realistic description of the nonperturbative quark-gluon
dynamics associated with the spontaneous breaking of
chiral symmetry in QCD. To this end we focus on the
low-virtuality sector of the spectrum of the Dirac
Operator 6D, which encodes information about the dynam-
ics associated with the spontaneous breaking of chiral
symmetry. Such a connection is made explicit in the
Banks-Casher relation which relates the density of eigen-
values with small virtuality to the quark condensate:

 h �qqi � ����� � 0�; (17)

We recall that this relation holds in a infinite-volume
system and in the chiral limit. Our goal is to explore
finite-mass corrections to the Banks-Casher relation in
the instanton model and check if such corrections are
consistent with predictions derived from �pt.

In order to set the framework of our analysis, it is useful
to briefly review how the Banks-Casher relation (17) was
obtained. The quark propagator S�x; y�A in the fixed back-
ground A� is expanded in terms of the eigenvalues � and
eigenvectors  � of the Dirac operator as

 S�x; y�A �
X
n

 n�x� 
y
n �y�

mq � i�n
: (18)

Chiral symmetry implies that for every nonzero eigenvalue
� with eigenvector  � there is another eigenvalue��with
eigenvector 	5 �. Hence, setting x � y and using the
orthonormality of the basis of eigenfunctions of  � we
obtain

 

1

V

Z
d4xTr	S�x; x�
A �

2mq

V

X
�n>0

1

m2
q � �2

n
(19)

Introducing the spectral density ���� � h
P
n
��� �n�i

we can rewrite (19) as

 h �qqi � �2mq

Z 1
0

d�
����

m2
q � �2 (20)

At this point we take the limit V ! 1 and m! 0. We
notice that the order in which the two limits are taken is
crucial since we only have a finite quark condensate in the
thermodynamic limit:

 h �qqi � lim
mq!0

lim
V!1

�2mq

Z 1
0

d�
����

m2
q � �2 � ����� � 0�:

(21)

Equation (17) can be interpreted as the lowest-order
term in the Taylor expansion of ���� near the origin, in
the chiral limit. The next order in � was derived by Smilga
and Stern [22] using �pt:

 ���� � �
1

�
Bf2

0 �
B2�N2

f � 4�

32�2Nff2
0

j�j �O���; (22)

where Nf is the number of flavors, B and f0 are the
constants that appear in the lowest-order �pt Lagrangian

 L � f2
0

�
1
4 Tr	@�U@�Uy
 � 2BTr	MUy �UMy


�
;

U � exp�i ��x�f0
�, and M is the diagonal quark mass matrix.

We stress the fact that the result (22) is valid only in the
limit in which the quark mass is much smaller than the
typical eigenvalue saturating the spectral integral (20),
mq � �. If the quark mass is of the order of the typical
eigenvalue �, then mass-dependent corrections to the spec-
tral density profile are expected to appear. Hence, the
question arises if there exists a range of masses for which
the �pt predictions are accurate, yet mass corrections to
(22) become important. In order to address this question,
Smilga and Stern considered the 3-point scalar correlator:

 Kabc �
Z
d4xd4yd4zh0jSa�x�Sb�y�Sc�z�j0i; (23)

where Sa�x� is the scalar density operator, Sa�x� �
�q�x��aq�x�. By proceeding in the same way as for the
quark condensate they obtained an expression for Kabc in
terms of the density of eigenvalues, ����:

 Kabc � �dabcmq

Z 1
0
����

�m2
q � 3�2�

�m2
q � �

2�3
d�: (24)

In the limit in which all mass corrections to (22) can be
neglected, one can obtain a prediction for the 3-point scalar
correlator by substituting the expansion of ���� given in
(22) in (24) and performing the integral. The constant term
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in ���� does not contribute, while the linear term gives rise
to a power-law singularity in the pion mass:

 Kabc �
B2�N2

f � 4�

64�2Nf

1

mq
/ 1=�m2

��: (25)

On the other hand, evaluating the same correlator to
lowest-order in �pt one finds:

 Kabc �
B3�N2

f � 12�

64�2m2
�Nf

dabc: (26)

Note that, although in both cases one finds the same
power-law dependence on the pion mass, the numerical
coefficient turns out to be different

 N2
f � 4 � �N2

f � 12�=2 (27)

The explanation of the mismatch is that the characteristic
eigenvalues, �, saturating the power divergent integral (24)
are of order mq, so we are out of the range of validity of
(22). In order to reproduce the correct �pt prediction for
the scalar 3-point correlator such mass corrections have to
be included.

It is particularly interesting to consider the case Nf � 2,
for which the linear term in (22) vanishes and the distribu-
tion of eigenvalues near the origin is flat. In this case, the
power-law divergence in the pion mass predicted by �pt
must arise entirely from mass corrections. This observation
can be used to check the consistency of the IILM with �pt.
We have performed simulations of the Dirac spectrum at
different values of the quark mass, ranging from 0 to
400 MeV. The contribution of the near-zero-mode zone
to theNf � 2 spectral density of the positive eigenvalues is
presented in Fig. 1.

Some comments on these results are in order. When the
quark mass approaches zero, our results become consistent
with the flat trend predicted by (22):

 lim
mq!0

lim
�!0

���� � Const�O��2�: (28)

The value of the constant depends on the normalization of
the spectrum and can be fixed by imposing the condition
(17). This case has been already considered in previous
studies of Shuryak and Verbaarschot [24,25]. On the other
hand, as the quark mass increases, the structure of the
spectrum changes appreciably. The flatness near � � 0
disappears and a peak near the origin develops. In Fig. 1
we see that for small �, all curves at different masses are
very well fitted with functions of the form ���� � ��0� /
m��1��. If this form is introduced in the spectral repre-
sentation of the scalar three-point function (25), the inte-
gral can be carried out analytically leading to results
proportional to the inverse quark mass.

To directly compare the �pt formula for Kabc with the
results of IILM calculations, it is convenient to consider the
combination mq

Kabc
�m�0�0�

. In fact, using the Gell-Mann Oaks

Renner and Banks-Casher relations, we find the simple �pt
prediction

 mq lim
mq!0

Kabc

�mq�0�0�
�
B�N2

f � 12�

128�f2
0Nf

� const: (29)

On the other hand, from the spectral representation (24)
we find

 mq
Kabc

�mq�0�0�
� �m2

q

Z
d�

�mq
���

�mq�0�0�

�m2
q � 3�2�

�m2
q � �

2�3
dabc;

which can be computed directly from our IILM points.
The results are plotted in Fig. 2, and we observe that the

expected constant behavior with m is obtained for mq <
80 MeV. Thus, in this case, the IILM reproduces the
structure of the Dirac spectrum dictated by chiral
symmetry.

IV. PION AND NUCLEON MASS IN THE IILM

In this section we present our IILM calculation of the
nucleon and pion masses performed at different values of
the quark masses and we compare with the available lattice
results. Exploratory estimates of the nucleon and pion

 

0.1 0.2 0.3 0.4 0.5

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0.02 0.04 0.06 0.08 0.1 0.12
λ GeV

λ GeV

1

1.2

1.4

1.6

1.8

2

ρ
λ

ρ
λ

mq 410 MeV
mq 210 MeV
mq 110 MeV
mq 50 MeV
mq 21 MeV
mq 0 MeV

FIG. 1. Spectral density of the Dirac operator for Nc � 3 and
Nf � 2. The lower panel shows an enlargement of the upper
panel in the region 0 � � � 0:3 and the solid lines represent best
fits using ���� � c1 � c2 �m�

q���1.
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masses in the IILM were performed at a relatively large
quark mass in [26]. However, such calculations were based
on the analysis of short-range point-to-point Euclidean
correlators and relied on a specific assumption for the
spectral density (i.e. pole-plus-continuum parametriza-
tion). In the present work, we have chosen to avoid any a
priori assumption on the spectral density. Instead, we have
performed the effective-mass plot analysis, which is rou-
tinely used to extract the lowest-lying hadron masses from
lattice QCD simulations.

To compute the mass of the pion, we have evaluated the
correlation function:

 G���� �
Z

d3xh0jT	j5�x; �� �j5�0; 0�j0i; (30)

where j5�x� is the pseudoscalar density operator

 ja5�x� � �q�x�	5�aq�x�: (31)

To compute the nucleon mass we have evaluated the cor-
relation function

 GN��� �
Z

d3xh0jT	jN�x; �� �jN�0; 0�P�j0i; (32)

where P� �
1�	4

2 is the positive-parity projector and

 jaN�x� � "abcua�x�C	5db�x�uc�x�: (33)

The integration over the final position x in (30) and (32)
ensures projection onto zero-momentum states. The mass
of these hadrons can then be extracted from the plateau in
the large Euclidean time limit of the effective mass, i.e.
using

 M�=N � lim
�!1

Meff
�=N��� (34)

 Meff
�=N��� �

1

��
ln

G�=N���

G�=N��� ���
: (35)

The point-to-point correlation functions in (30) and (32)
were computed by performing Monte Carlo averages over

instanton ensemble configurations, as described in Sec. II.
The momentum-projection integrals in (30) was carried out
using an adaptive Monte Carlo routine (VEGAS) with two
iterations of 6000 points. For the momentum-projection of
the nucleon 2-point function (32) we combined the results
of VEGAS with those obtained using a cubic grid with grid
spacing 0.1 fm. Statistical errors over ensemble averages
were obtained using the jackknife technique, with a bin
size of 10 configurations. We have used five sets of 250
independent configurations corresponding to quark masses
ranging from 20 to 90 MeV. In order to reduce finite
volume artifacts, we performed our computations in two
boxes of size 3:453 � 5:9 fm4 —for the two lightest quark
masses—and 2:963 � 5:9 fm4 —for the other masses—.
We have checked that with such a choice the condition
m�L> 5 was always satisfied.

All simulations where performed using the 1TFlop/s
ECT* cluster, for a total computational time of
30000 cpu hours. In Fig. 3 we present pion and nucleon
effective-mass plots for the different values of quark mass.
We observe that the all pion effective-mass plots display a
very clean plateau, from which it is possible to unambig-
uously read-off the pion mass from a correlated chi-square
fit. On the other hand, the interpolation of the effective-
mass plots of the nucleon is somewhat more problematic.
In fact, not only statistical errors are larger, but also some
of the plots are consistent with a slight slope, in the large
Euclidean time regime. Hence, one necessarily needs to
account for the systematic errors, which can be estimated
from the smallest and largest mass compatible with the
effective-mass plot, in the nearly flat region � * 1 fm.

We recall that in the instanton model, the average in-
stanton size �� is the parameter determining the ultraviolet
cut-off and playing the role of the lattice spacing a in
lattice gauge theory. Hence, we have expressed all dimen-
sional quantities in units of �� and then determined it from a
matching condition. For simplicity, we have chosen the
condition that the IILM prediction for the nucleon mass
should match the CP-PACS lattice result at the pion mass
m� � 525 MeV. The values of the nucleon masses for
m� < 500 MeV are therefore predictions of the model.
The choice of the matching point was motivated by the
fact that the pion mass ’ 500 MeV represents an upper
bound for the mass regime of QCD where the dynamics of
chiral symmetry breaking is expected to play an important
role.

In Fig. 4 we present the results of our calculations for the
nucleon mass as a function of the pion mass squared for
different choices of the cut-off ��. Comparing these IILM
data at different �� with the lattice data collaborations
[27,28] clearly shows that agreement between IILM and
lattice QCD predictions is obtained only for a unique value
of the cut-off scale, corresponding to an average instanton
size of 0.32 fm, in excellent agreement with the early
phenomenological estimate �� ’ 1=3 fm [4] and recent
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lattice results [6,29–32]. The complete set of values of
masses extracted from our IILM calculations is presented
in Table I.

In Fig. 5 we can see that the IILM extracted nucleon
masses are compatible with the available Lattice date for
the pion mass range considered.

 

FIG. 3. Pion and nucleon effective-mass plots in the IILM at different quark masses.
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V. CHIRAL EFFECTIVE PARAMETERS IN THE
IILM

In the previous sections, we have shown that the IILM
provides a realistic description of the microscopic dynam-
ics responsible for chiral symmetry and that it contains

pions as low-energy vacuum excitations. Thus, we con-
clude that the effective theory approximates the path in-
tegral sufficiently well that the IILM can be described by
chiral perturbation theory, and we therefore ask the next
question of how similar the low-energy constants are to
those arising in QCD. Hence, we determine the quark
condensate and the pion decay constant from the depen-
dence of the pion mass on the quark mass. Note that the
numerical value of the quark mass in QCD depends on the
renormalization scale. In the IILM we do not have this
freedom since the ultraviolet cut-off scale is provided by
the inverse instanton size 1= �� ’ 600 MeV. Chiral pertur-
bation theory to O�p4� predicts a dependence of the form:

 m2
� � 2mqB0

�
1�

2mqB0

32�2f2
0

ln
�
2mB0

�2

��
: (36)

The chiral scale � is set at the � vector meson mass, which
in this model is found to be independent on the quark mass,
with the valueM� � 1 GeV [35]. Then, using the value for
B0

f2
0
� 340 GeV�1 which was extracted from the analysis of

the Dirac spectrum (29), one can extract B0.
The results of the chiral fit to the numerical IILM

calculations are shown in Fig. 6. The corresponding low-
energy chiral coefficients calculated in our model are

 f0 � 0:085
 0:003 GeV; (37)

 B0 � 2:43
 0:02 GeV; (38)

corresponding to a chiral condensate of

 h �qqi � ��0:259 GeV�3: (39)

The fact that these quantities are rather close to the corre-
sponding values extracted in QCD implies that the low-
energy effective theory of the IILM is indeed not far from
that of QCD. Note that a recent analysis of the quark mass
dependence of the chiral condensate in the instanton vac-
uum leading to comparable results can be found in [36].
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tively, and the star represents the physical point.

 

FIG. 4. Comparison between nucleon masses obtained with the
IILM for three different choices of the average instanton size ��
and those calculated on the Lattice by the CP-PACS [27] and
MILC [28] collaborations.

TABLE I. Pion and nucleon masses fitted by effective-mass
plot with �2=ndf � 1. The quark masses are determined at a
scale 2 GeV as in [33,34].

mq [GeV] Pion [GeV] Nucleon [GeV]

0.021 0:300
 0:004 1:11�0:05
�0:05

0.03 0:360
 0:004 1:15�0:01
�0:07

0.05 0:460
 0:004 1:20�0:02
�0:02

0.07 0:530
 0:004 1:28�0:01
�0:01

0.09 0:600
 0:004 1:35�0:02
�0:1
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FIG. 6. Chiral extrapolation of the pion mass, obtained in the
IILM using O�p4� �pt.
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A similar analysis could in principle be carried out also
in the nucleon sector, where several approaches to chiral
extrapolation have been proposed, for example, see [37–
41] and references therein. However, we prefer to avoid
such an analysis, because the validity of the one-loop chiral
extrapolation formulas for pion masses * 200 MeV has
been questioned [41] and is presently under debate.

VI. INSTANTON-INDUCED DYNAMICS IN THE
CHIRAL REGIME

Having established that for m� & 500 MeV the IILM
agrees at a qualitative and even quantitative level with
several QCD predictions obtained from �pt and lattice
calculations, we can now use the physical insight from
that model concerning the instanton-induced correlations
to explore the dynamical mechanisms involved in the
transition into the chiral regime.

From (16), it follows that the nonperturbative dynamics
associated with the instanton-induced near-zero modes
becomes parametrically small for quark masses much
larger than the typical value of the overlap matrix element
TIJ. In Fig. 7 we have plotted the distributions of the
maximum overlap matrix elements TIA obtained at different
values of the quark mass. We note that such distributions
are peaked around the value m? ’ 80 MeV. The value m?

plays a central role in specifying the scale for instanton-
induced chiral symmetry breaking in the IILM. Physically,
we expect that for mq � m?, corresponding to m� �

500 MeV, the interactions associated with chiral dynamics
become subleading. We note that this number is consistent
with the phenomenological estimate derived in [42], using
the single-instanton approximation. To further illustrate
this transition, in Fig. 8 we show the point-to-point pseu-
doscalar correlation function evaluated in the IILM in the
zero-mode approximation (zma) in which

 S�x; y� � Sfree�x; y� � Szm�x; y�: (40)

We normalize this full correlation function to the corre-
sponding correlation computed in the free massless theory,

 

���;mq�

�0���
�
h0jj5���j

y
5 �0�j0iIILM�free�zm

4�4=�6
(41)

 j5�x� � �u�x�	5d�x�; (42)

evaluated at a typical nonperturbative scale � � 1 fm for
different quark masses, and compare it to the free massless
theory without zero-mode contributions. We observe that
for small quark masses, the contribution of the zero-mode
part of the propagators completely saturates the propagator
and is more than an order of magnitude larger than the free
contribution. On the other hand, as the quark mass in-
creases, the zero-mode contribution is gradually sup-
pressed and for mq ’ 200 MeV it is only a few times
larger than the free contribution.

As the quark mass gets larger and larger, the quark loop
contribution to QCD correlation functions becomes more
and more suppressed. Interestingly, in the IILM, the scale
m? also determines the regime where the quenched ap-
proximation is expected to become reliable. In fact, from
Eqs. (12)–(14), we see that for quark masses mq �

max	TIJ
 ’ m?, the contribution of the overlap matrix
elements to the fermionic determinant becomes negligible.
On the other hand, in this model, the mass contribution to
the ultraviolet sector of the spectrum factorizes and there-
fore cancels out in all ensemble averages.

The numerical results presented in the previous section
reveal two interesting features of the Instanton Model:
(i) for mq & m? the density of quasizero-modes increases
as the quark mass decreases and (ii) for mq * m? the near-
zero-mode part of the spectrum becomes practically inde-
pendent on the quark mass. These two nontrivial dynami-
cal effects are in fact related and can be explained as
follows. Quark loops are known to generate strong non-
local correlations between pseudoparticles of opposite to-
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pological charge. Such correlations tend to suppress con-
figurations in which one or more pseudoparticles are lo-
cated far from all others. Hence, the contribution of the
fermionic determinant leads to a reduction of the density of
nearly zero-modes, as completely isolated instantons are
known to have exact zero-modes. As the quark mass gets
larger, such a topological screening becomes less and less
effective and the population of near exact zero-modes
increases, explaining the rise of the peak of eigenvalue
density near the origin. On the other hand, we have seen in
Sec. II that for mq * m?, the contribution of the fermionic
determinant is suppressed and fermion-induced topologi-
cal screening completely disappears. As a result, the low-
virtuality sector of the Dirac spectrum stops depending on
the quark mass. These are interesting predictions of the
instanton liquid model that can be checked with un-
quenched lattice calculations.

We conclude this section by emphasizing that the exis-
tence of a single mass scale m� at which chiral symmetry
breaking begins to diminish and at which the quenched
approximating begins to become valid is a characteristic
prediction of the instanton model. In principle, in full QCD
we expect the scales for such transitions to be implicit
functions of the only dimensional parameters of the theory,
�QCD andmq and there is no a priori reason for which they
should coincide, unless they are driven by a common
dynamical mechanism.

VII. CONCLUSIONS

In this work we have used the IILM to investigate the
dynamical mechanisms that drive the dynamics and the
structure of hadrons in the light-quark sector of QCD. To
this end, we have checked that the model’s predictions are
consistent with QCD in the pion mass regime & 500 MeV,
where we expect chiral dynamics to play an important role.
By computing the nucleon mass and pion mass at different
values of the quark mass we have shown that the IILM is
consistent with the existing lattice data in the range m� �
300–600 MeV. We have observed that the best agreement
with lattice QCD data in this region is obtained for a value
of the average instanton size �� � 0:32 fm, which is close
to Shuryak’s earlier phenomenological estimate. On the
other hand, the calculated instanton density n � 3 fm�4 is
considerably larger than in earlier phenomenological esti-
mates and closer to lattice results. By studying the depen-
dence on the quark mass of the density of eigenvalues of
the Dirac operator, we have shown that the model also
contains the correct dynamics to reproduce predictions of
�pt in the small quark mass regime where such a theory is

applicable and finite-order calculations are reliable. We
have shown that, in the chiral limit, our simulations con-
verge to the Nf � 2 prediction: lim�!0�

0��� � 0. We have
studied the modification of the Dirac spectrum induced by
small quark masses and found that they are proportional to
m�
q�1��, a functional form that generates a 1=mq power-

law divergence in the quark mass dependence of the scalar
three-point correlators as predicted by �pt [22]. We have
discussed how the qualitative structure of such mass cor-
rections has a simple physical interpretation in terms of
quark-loop-induced instanton-anti-instanton correlations.
It would be very interesting to check if the corrections
predicted in the IILM are observed in full lattice QCD
simulations.

From a chiral extrapolation of the pion mass, we com-
puted the effective chiral parameters f� and B and showed
that they are comparable to those in QCD.

Having checked that chiral dynamics is correctly incor-
porated in the instanton model, we have exploited our
analytic understanding of instanton-induced correlations
to study the dynamical mechanisms involved in the tran-
sition into the chiral regime at a microscopic level. We
have identified a mass scale m? � 80 MeV above which
we do not expect QCD correlators to be dominated by
chiral dynamics and above which quenched calculations
should begin to approximate full QCD.

If the computational technology is developed to the
point that the present statistical and systematic errors on
the nucleon mass are significantly improved, this frame-
work could represent a complementary tool to perform
direct chiral extrapolation of a variety of observables of
interest, such as moments of DIS and generalized parton
distributions, magnetic moments and form factors. Another
interesting development would be to investigate if unstable
light-quark resonances that receive contribution at order n2

level in the instanton density, such as the �-meson and
�-isobar, can also be well described by the ’t Hooft inter-
action. In this context it would also be interesting to
investigate the effect of confinement on the hadron masses,
extending the pseudoparticle ensemble to include both
regular and singular-gauge instantons [43].
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