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An updated version of the PNJL model is used to study the thermodynamics of Nf � 2 quark flavors
interacting through chiral four-point couplings and propagating in a homogeneous Polyakov loop
background. Previous PNJL calculations are extended by introducing explicit diquark degrees of freedom
and an improved effective potential for the Polyakov loop field. The mean field equations are treated under
the aspect of accommodating group theoretical constraints and issues arising from the fermion sign
problem. The input is fixed exclusively by selected pure-gauge lattice QCD results and by pion properties
in vacuum. The resulting �T;�� phase diagram is studied with special emphasis on the critical point, its
dependence on the quark mass and on Polyakov loop dynamics. We present successful comparisons with
lattice QCD thermodynamics expanded to finite chemical potential �.
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I. INTRODUCTION

Reconstructing the phase diagram and thermodynamics
of QCD in terms of field theoretical quasiparticle models is
an effort worth pursuing in order to interpret lattice QCD
results [1–7] and extrapolate into regions not accessible by
lattice computations. A promising ansatz of this sort is the
PNJL model [8–11], a synthesis of Polyakov loop dynam-
ics with the Nambu & Jona-Lasinio model, combining the
two principal nonperturbative features of low-energy
QCD: confinement and spontaneous chiral symmetry
breaking. This paper extends our previous PNJL calcula-
tions [10,11] in several directions. First, diquark degrees of
freedom are explicitly included. Diquark condensation at
large quark chemical potential is explored in the presence
of a Polyakov loop background. Secondly, in comparison
with our previous work, the effective potential which con-
trols the thermodynamics of the Polyakov loop field is
improved such that group theoretical constraints are im-
plemented, following Ref. [8]. Issues of the mean field
approximation in the context of the fermion sign problem
are discussed in comparison with previous work.

The aim of the present paper is to investigate the phase
diagram resulting from this approach. Of special interest is
the location of the critical point, its dependence on the
quark mass and the role of the Polyakov loop as indicator
of the deconfinement transition. Predictions for the leading
coefficients in a Taylor expansion of the pressure in powers
of the quark chemical potential will turn out to be remark-
ably successful in comparison with corresponding lattice
QCD results.

II. THE PNJL MODEL

The two-flavor PNJL model (now including diquark
degrees of freedom) is specified by the Euclidean action

 S E� ; 
y; �� �

Z ��1=T

0
d�

Z
d3x� y@� 

�H � ; y; ��� � �SE��; T�; (1)

with the fermionic Hamiltonian density1:

 H � �i y� ~� � ~r� �4m0 ��� �V � ; y�; (2)

where  is the Nf � 2 doublet quark field and m0 �

diag�mu;md� is the quark mass matrix. The quarks move
in a background color gauge field � 	 A4 � iA0, where
A0 � ��0gA

�
a ta with the SU�3�c gauge fields A�

a and the
generators ta � �a=2. The matrix valued, constant field �
relates to the (traced) Polyakov loop as follows:

 � �
1

Nc
Tr
�
P exp

�
i
Z �

0
d�A4

��
�

1

3
Trei�=T: (3)

In a convenient gauge (the so-called Polyakov gauge), the
matrix � is given a diagonal representation

 � � �3�3 ��8�8; (4)

which leaves only two independent variables, �3 and �8.
The piece �SE �

V
TU of the action (1) controls the ther-

modynamics of the Polyakov loop. It will be specified later
in terms of the effective potential, U��; T�, determined
such that the thermodynamics of pure gauge lattice QCD is
reproduced for T up to about twice the critical temperature
for deconfinement. At much higher temperatures where
transverse gluons begin to dominate, the PNJL model is
not supposed to be applicable.

The interaction V in Eq. (2) includes chiral SU�2� 

SU�2� invariant four-point couplings of the quarks acting in
pseudoscalar-isovector/scalar-isoscalar quark-antiquark
and scalar diquark channels:

1 ~� � �0 ~� and �4 � i�0 in terms of the standard Dirac �
matrices.
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V � �
G
2
�� �  �2 � � � i�5 ~� �2� �

H
2
�� � C�5�2�2

� T�


 � T�5�2�2C ��; (5)

where C is the charge conjugation operator. We can think of
Eq. (5) as a subset in the chain of terms generated by Fierz-
transforming a local color current-current interaction be-
tween quarks,

 L int � �Gc� � ��ta �� � ��ta �:

In this case the coupling strengths in the quark-antiquark
and diquark sectors are related by G � 4

3H, the choice we
adopt. The minimal ansatz (5) for V is motivated by the
fact that spontaneous chiral symmetry breaking is driven
by the first term while the second term induces diquark
condensation at sufficiently large chemical potential of the
quarks. Additional pieces representing vector and axial-
vector q �q excitations as well as color-octet diquark and q �q
modes are omitted here. We have checked that their effects
are not important in the present context.

The NJL part of the model involves three parameters: the
quark mass which we take equal for u- and d-quarks, the
coupling strength G and a three-momentum cutoff �. We
take those from Ref. [10]

 mu;d � 5:5 MeV; G �
4

3
H � 10:1 GeV�2;

� � 0:65 GeV;

which were fixed to reproduce the pion mass and decay
constant in vacuum and the chiral condensate as m	 �
139:3 MeV, f	 � 92:3 MeV and h � u ui���251 MeV�3.

The effective potential U��; T� which controls the dy-
namics of the Polyakov loop has the following properties.
It must satisfy the Z�3� center symmetry of the pure gauge
QCD Lagrangian. In the low-temperature (confinement)
phase U��; T� has an absolute minimum at � � 0.
Above the critical temperature for deconfinement (T0 ’
270 MeV according to pure gauge lattice QCD results)

the Z�3� symmetry is spontaneously broken and the mini-
mum of U��; T� is shifted to a finite value of �. In the
limit T ! 1 we have �! 1.

In our previous Ref. [10] the simplest possible polyno-
mial form was chosen for U. In the present work an
improved expression, guided by Ref. [8], replaces the
higher order polynomial terms in �, �� by the logarithm
of J���, the Jacobi determinant which results from inte-
grating out six nondiagonal Lie algebra directions while
keeping the two diagonal ones, �3;8, to represent �. This
suggests the following ansatz for U:
 

U��; T�

T4 � �
1

2
a�T����� b�T� ln�1� 6���

� 4���3 ��3� � 3�����2�; (6)

with

 a�T� � a0 � a1

�
T0

T

�
� a2

�
T0

T

�
2
; b�T� � b3

�
T0

T

�
3
:

(7)

With its logarithmic divergence as �, �� ! 1, this ansatz
automatically limits the Polyakov loop � to be always
smaller than 1, reaching this value asymptotically only as
T ! 1. Following the procedure as in [10], a precision fit
of the parameters ai and b3 is performed in order to
reproduce lattice data for pure gauge QCD thermodynam-
ics and for the behavior of the Polyakov loop as a function
of temperature. The critical temperature T0 for deconfine-
ment in the pure gauge sector is fixed at 270 MeV in
agreement with lattice results.

The results of this combined fit are shown in Fig. 1 and
the dotted line of Fig. 2. The corresponding parameters are

 a0 � 3:51; a1 � �2:47;

a2 � 15:2; b3 � �1:75:

The fit was constrained by demanding that the Stefan-
Boltzmann limit is reached within the model at T ! 1
and by enforcing a first-order phase transition at T0. The
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FIG. 1. Left: Fit to scaled pressure, entropy density and energy density as functions of the temperature in the pure gauge sector,
compared to the corresponding lattice data taken from Ref. [5]. Right: Resulting effective potential (6) that drives spontaneous Z(3)
symmetry breakdown at T � T0.
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first constraint determines a0 �
16	2

45 � 3:51. The second

constraint fixes b3 � �0:108�a0 � a1 � a2�. The two re-
maining parameters a1 and a2 were determined using a
mean square fit. In this fit the Polyakov loop data set [6]
was given a stronger weight than the pressure, energy
density and entropy [5]. This was done in order to counter-
balance the smaller number of Polyakov loop data points
against the larger number of data sets for pressure, energy
density and entropy. The resulting uncertainties are esti-
mated to be about 6% for a1 and less than 3% for a2. These
independent errors propagate to b3 giving an uncertainty of
about 2%.

Next, the PNJL action is bosonized and rewritten in
terms of the auxiliary scalar and pseudoscalar fields
�
; ~	�, and diquark and antidiquark fields ��;���. The
thermodynamic potential of the model is evaluated as
follows:

 

� �U��; T� �
T
2

X
n

Z d3p

�2	�3
Tr ln��~S�1�i!n; ~p��

�

2

2G
�

���

2H
; (8)

where the sum is taken over Matsubara frequencies !n �
�2n� 1�	T. The inverse Nambu-Gor’kov propagator in-
cluding diquarks is

 

~S�1�i!n; ~p� �
i�0!n � ~� � ~p�m� �0��� i�� ��5�2�2

����5�2�2 i�0!n � ~� � ~p�m� �0��� i��

� �
: (9)

Just as in the standard NJL model, quarks develop a
dynamical (constituent) mass through their interaction
with the chiral condensate

 m � m0 � h
i � m0 �Gh �  i: (10)

With the input parameters previously specified one finds
m � 325 MeV at T � 0.

Note that introducing diquarks (and antidiquarks) as
explicit degrees of freedom implies off-diagonal pieces in
the inverse propagator (9). As a consequence, the traced
Polyakov loop field � and its conjugate �� can no longer
be factored out when performing the Tr ln� ln det opera-
tion in the thermodynamic potential (8), unlike the simpler
case treated in our previous Ref. [10]. The explicit evalu-
ation of energy eigenvalues now involves �3 and �8 as
independent fields. The final result for � is then given as:
 

� �U��; T� �

2

2G
�

���

2H

� 2Nf
Z d3p

�2	�3
X
j

�
T ln�1� e�Ej=T� �

1

2
�Ej

�
: (11)

The difference ��T� ���T � 0� is to be used in the
actual calculations. The quasiparticle energies Ej, denoted
by indices j running from 1 to 6, have the following

explicit expressions with "� ~p� �
������������������
~p2 �m2

p
:

 E1;2 � "� ~p�  ~�b;

E3;4 �
������������������������������������������
�"� ~p� � ~�r�

2 � j�j2
q

 i�3;

E5;6 �
������������������������������������������
�"� ~p� � ~�r�

2 � j�j2
q

 i�3;

(12)

with

 ~�b � �� 2i
�8���

3
p ; ~�r � �� i

�8���
3
p : (13)

In Eq. (11), �Ej � Ej � "�� is the difference of the
quasiparticle energy Ej and the energy of free fermions
(quarks), where the upper sign applies for fermions and the
lower sign for antifermions. It is understood that for three-
momenta j ~pj above the cutoff � where NJL interactions
are ‘‘turned off’’, the quantities 
 and �, �� are set to zero.

The thermodynamical potential (11) involves the bo-
sonic field variables 
, �, �3 and �8. In the mean field
theory the integration over all field configurations
f
;�; �3; �8g in the calculation of the partition function
is approximated by a single field configuration,
f
;�; �3; �8gm:f:. For a purely real action the optimal
mean field configuration is the one which determines a
minimum of � � ��
;�; �3; �8�. The necessary condi-
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FIG. 2. Using the fit of the Polyakov loop (dotted line) to
lattice results taken from Ref. [6] in the pure gauge sector (empty
symbols), the PNJL model predicts the Polyakov loop behavior
as a function of temperature in the presence of dynamical quarks
(solid line). This prediction is compared to lattice data in two
flavors (full symbols) taken from Ref. [7].
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tion for this is

 

@�

@�
;�; �3; �8�
� 0:

Here the action is treated in analogy with a Landau effec-
tive action which identifies the fields with approximate
order parameters. In case of the PNJL model, however,
the thermodynamical potential � is complex in the pres-
ence of the Polyakov loop background and at nonzero
chemical potential �. A minimization of a complex func-
tion as such is void of meaning. This is the so-called
fermion sign problem in the present context. However,
even for a complex Euclidean action SE, one can still
search for the configuration with the largest weight in the
path integral and refer to this as the mean field configura-
tion. An analysis of the phase and the absolute value of the
weight e�SE immediately shows that this mean field con-
figuration maximizes je�SE j and consequently minimizes
Re�. The mean field equations derived from � are

 

@Re�

@�
;�; �3; �8�
� 0; (14)

the condition we adopt.
In previous publications [10,12,13], the last two mean

field equations, @�
@�3
� @�

@�8
� 0, were replaced by @�

@� �
@�
@�� � 0. These relations are in principle equivalent, given
that � � ���3; �8� and �� � ����3; �8� as implied by
Eq. (3). The constraint under which such a change of
variables can be done is that the temporal gauge fields
remain real quantities: �3, �8 2 R.

Abandoning this constraint would introduce different
chemical potentials for quarks of different colors.2 Using
Eq. (3) it can easily be derived that in the case where �3 2
R and �8 2 R, � and �� genuinely have to be the com-
plex conjugate of each other.

The (thermal) expectation values h�i and h��i of the
conjugate Polyakov loop fields must be real quantities as
argued in [14]. This applies to the PNJL model as well, in
the sense that the mean field action SMF changes into its
complex conjugate under charge conjugation. Enforcing
h�i 2 R and h��i 2 R means � � �� for the mean field
configurations that satisfy Eq. (14). With the constraint of
�3 and �8 being real, this implies �8 � 0 leaving only �3

as an independent variable.
In previous work [10,12,13] h�i and h��i have been

treated as independent real quantities in the minimization
of �. This procedure, without the constraints imposed by
�3, �8 2 R, tends to overestimate the difference between
h�i and h��i. While this unphysical feature has only
marginal consequences for global properties such as the
pressure, it does have a visible influence on more detailed
quantities as discussed in Sec. III A.

Within the present mean field context defined by
Eq. (14), fluctuations beyond mean field are at the origin
of h�i � h��i for � � 0. This paper deals with self-
consistent solutions and predictions of the mean-field
Eqs. (14). While further extensions including quantum
fluctuations [15] will be subject of a forthcoming publica-
tion [16], we can already anticipate one of the results,
namely, that the effects of fluctuations, leading to h�i �

h��i at finite chemical potential, turn out not to be of major
qualitative importance in determining the phase diagram.
This forthcoming publication will present a way to deal
with the fermion sign problem in the context of the PNJL
model. Discussions of the fermion sign problem in other
models can be found in [14,17].

III. RESULTS

Solution of the mean-field Eqs. (14) yields the chiral
condensate, h �  i � 
=G, the color-antitriplet diquark
condensate, �, and the Polyakov loop exponent �3 as
functions of T, �. The resulting prediction for the traced
Polyakov loop � at � � 0 (where the diquark condendate
vanishes, � � 0) is shown in Fig. 2 (continuous line) in
comparison with the corresponding lattice data taken from
Ref. [7] (full symbols). The agreement is quite remarkable.
The improvement in comparison to previous calculations is
primarily due to the improved ansatz for the Polyakov loop
potential. In the presence of quarks, the deconfinement
transition is no longer first-order as in pure gauge QCD.
It becomes a smooth crossover when quarks couple to the
Polyakov loop field. The critical temperature for decon-
finement is now decreased from 270 MeV to a smaller
value3 around 215 MeV (not evident from Fig. 2 where the
results are plotted as functions of T=Tc). In Fig. 3 we show
in addition the predicted temperature dependence of the
two-flavour chiral condensate h �  i in comparison with
lattice data [18].

A. Finite chemical potential

Lattice results at finite quark chemical potential are
obtained as Taylor expansions of the thermodynamical
quantities in the parameter �=T around zero chemical
potential. Here we perform the same kind of expansion in
the PNJL model and compare with Taylor coefficients
deduced from lattice data. Examples are the coefficients
in the expansion of the pressure p � ��:

 

p�T;��

T4
�
X1
n�0

cn�T�
�
�
T

�
n

with

cn�T� �
1

n!

@n�p�T;��=T4�

@��=T�n

����������0

(15)

2This can formally be seen when using the simple prescription
�! �� i��3�3T ��8�8T� to do the transition from the NJL-
to the PNJL-Nambu-Gor’kov propagator.

3Note that the critical temperature in full lattice QCD reported
in [7] is Tc � 202 MeV.
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and even n. Specifically

 c2�
1

2

@2�p=T4�

@��=T�2

����������0
; c4�

1

24

@4�p=T4�

@��=T�4

����������0
;

c6�
1

720

@6�p=T4�

@��=T�6

����������0
; c8�

1

40320

@8�p=T4�

@��=T�8

����������0
:

(16)

Results for these coefficients are shown in Fig. 4. We
notice, in particular, the remarkably good agreement be-
tween the calculated ‘‘susceptibility’’ c4 and the lattice
data. This quantity has recently been computed in
Ref. [12] using the previous version of our PNJL model,
Ref. [10], with a less satisfactory outcome. Now, with the
improved effective potential U as described in Eq. (6), the
agreement is significantly better. We suspect that previous
calculations did not approach the Stefan-Boltzmann limit
in an acceptable way [19], due to the large gap between �
and ��, that persisted up to rather high temperatures. As
discussed above this large split occurs when not properly
keeping all constraints on �3 and �8 under control.

B. Phase diagram

We now turn to the phase diagram in the �T;�� plane as
derived from this updated version of the PNJL model. The
left panel of Fig. 5 shows the phase diagrams in the
�T;��-plane computed using the PNJL model in compari-
son with the NJL model (the limiting case in which � 	
1). Of particular interest is the location of the critical
endpoint at which the chiral and deconfinement crossover
transitions at lower� turn into a first-order phase transition
above some critical �. The crossover is not a phase tran-
sition. Therefore there exist several ways to locate the
position of a crossover transition. In the present calcula-
tions the crossover line is determined using the order
parameters in the chiral limit (the chiral condensate) and
the pure gauge theory (the Polyakov loop), respectively.
Since these order parameters show their strongest changes
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FIG. 4. Second, fourth, sixth and eighth moments of the pressure difference with respect to the chemical potential, plotted as
functions of the temperature. (Note that the temperature scales of the upper and lower graphs are different.) We compare to lattice data
(diamonds with errorbars) taken from Ref. [4].
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FIG. 3. The spontaneous chiral symmetry breaking mechanism
of the PNJL model generates a temperature dependent chiral
condensate h �  i (solid line), which is compared here to lattice
QCD results in two flavors shown in Ref. [18].
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as functions of temperature along the crossover transition
lines, we determine their position by local maxima of
d
=dT and d�=dT.4

The crossover transition lines fixed by either the suscep-
tibilities of 
 and � or by maximal changes with tempera-
ture, i.e. zeros of d2
=dT2 or d2�=dT2, do coincide with
the critical point for our PNJL model in the absence of
diquarks (see lower panel of Fig. 5). This is a consequence
of the divergences in these quantities at the critical point.
However, when including diquarks, a coincidence of criti-
cal point and crossover transition line is not guaranteed.

One finds that the critical endpoint depends sensitively
on the degrees of freedom involved. From its position in
the restricted NJL case (see also [20]) this point is shifted
to higher T by both, the effective Polyakov loop potential,
and by the presence of diquark degrees of freedom. Near
the critical endpoint not including diquarks, d


dT diverges
together with the chiral susceptibility. This extreme behav-
ior is not observed in the case with inclusion of diquarks.
The region where this critical behavior would appear is
now already located in the diquark dominated phase.

Thus there is a qualitative difference of the critical
endpoints in these two compared cases: not including
diquarks the critical endpoint lies on top of the merging

chiral and deconfinement crossover transition lines, while
in the case including diquarks the critical endpoint is
shifted away from this line. The critical endpoint now
lies on the second order transition line bordering the di-
quark dominated phase (see lower panel of Fig. 5), i.e. the
endpoint is not at the junction of all three transition lines
and therefore is not a tricritical point but still a critical
point.

Next we use the PNJL model including diquark degrees
of freedom to study the dependence of the position of the
critical endpoint on the bare (current) quark mass. The
upper right panel of Fig. 5 shows phase diagrams in the
chiral limit, for current quark masses m0 � 5:5 MeV and
m0 � 50 MeV. The change of the critical endpoint with
varying quark mass mainly reflects the dependence of the
critical chemical potential on the quark mass. The presence
of the diquark dominated phase appears to stabilize the
temperature of the critical endpoint at rather high values.

Generally, the PNJL model generates the critical end-
point at a temperature which is significantly higher than the
one found with the standard NJL model, i. e. ignoring
Polyakov loop dynamics. The reason is that the diquark
phase as well as the chiral phase is stabilized by the
confinement emulation via the effective Polyakov loop
potential. The size of the gap � is strongly influenced by
the Polyakov loop. The detailed dependence of the gap on
the Polyakov loop is displayed in Fig. 6. The systematics of
this effect becomes evident when the Polyakov loop is held
at fixed values and varied. The gap resulting from this
calculation is then compared to the gap in the PNJL model
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FIG. 5. Upper left panel: comparison of the phase diagrams of NJL and PNJL model. The crossover of the chiral condensate is drawn
solid, first-order lines are dashed and second order lines dotted. Upper right panel: comparison of the phase diagram at different current
quark masses with inclusion of diquark degrees of freedom. (Note the scale on the temperature axis.) Lower panel: comparison of the
PNJL model with and without inclusion of diquarks.

4Other frequently used and closely related criteria for the
definition of crossover transition lines involve chiral or
Polyakov loop susceptibilities. This does not lead to any signifi-
cant differences for the phase diagram in comparison with the
method applied here.
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(with self-consistent determination of �) and in the NJL
model. The case where the Polyakov loop is fixed to � � 1
(i. e. complete deconfinement) coincides with the NJL
calculation.

The presence of the Polyakov loop restricts the phase
space available for quarks in the vicinity of their Fermi
surface where Cooper pair condensation takes place.
Hence a higher temperature is effectively required to break
the pairs. This is the primary reason for the difference in
behavior of the gap � when comparing NJL and PNJL
results in Fig. 6.

C. Speed of sound

The velocity of sound vs, determined by

 v2
s � �

1

CV

@�

@T

��������V
; (17)

with the specific heat CV � �T�@2�=@T2�V , shows a
pronounced dip near the chiral and the deconfinement
transition. This local minimum of the speed of sound
becomes deeper in the vicinity of the critical endpoint of
the first-order phase transition line, separating the chiral
phase at low chemical potential (� & 1:5Tc) from the
diquark phase at high chemical potential (� * 1:5Tc).
When neglecting diquark degrees of freedom the speed
of sound vanishes at the critical endpoint (solid curve in the
central panel of Fig. 7).

Correspondingly, the specific heat diverges at this point.
When diquark degrees of freedom are included in the
calculation the critical endpoint is shifted such that the
region of vanishing speed of sound would already be
placed within the diquark dominated phase. This is why
a vanishing speed of sound is not observed in the model
including explicitly diquark degrees freedom (dashed
curve in the central panel of Fig. 7). The discontinuity at
higher temperatures is generated by the second order phase
transition separating the diquark dominated phase from the
high temperature phase. Above this transition the two
versions of the PNJL model (with and without explicit
diquarks) become equivalent.

IV. CONCLUDING REMARKS AND OUTLOOK

We have pointed out that an updated version of the PNJL
model over and beyond the one used in [10,12] leads to
significantly better agreement with lattice data [4,7], espe-
cially when extrapolating to finite chemical potential �.
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Polyakov loop. The solid lines are the solutions to the self
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The combination of only two principal ingredients: chiral
symmetry restoration and an effective potential ansatz for
the confinement order parameter, appears to be sufficient to
reproduce the available full QCD lattice computations to
an astonishingly high accuracy, at least for temperatures T
up to about 2Tc. The improvements shown in this paper in
comparison with previous results [10,12] originate in a
better representation of the Polyakov loop part of the
PNJL model. Taking into account the proper SU�3� con-
straints is crucial for an effective description of the ther-
modynamical implications of confinement.

Incorporating explicit diquark degrees of freedom influ-
ences the position and the nature of the critical endpoint in
the �T;�� phase diagram. The critical endpoint in the
presence of diquarks is the connecting point between the
chiral crossover transition line and the second order tran-

sition bordering the diquark dominated phase, while in the
absence of diquarks it is the junction point of the chiral and
deconfinement crossover transition. The critical point in
the PNJL model with diquarks turns out not to coincide
with the critical (diverging) behavior of susceptibilities
related to the chiral condensate and the Polyakov loop.

Further developments now aim for an extension of the
present framework to Nf � 3 in order to explore the rich
structure of color superconducting (diquark) phases with
three quark flavours and the additional effects of Polyakov
loop dynamics.

ACKNOWLEDGMENTS

This work was supported in part by BMBF, GSI and
INFN.

[1] P. de Forcrand and O. Philipsen, Nucl. Phys. B642, 290
(2002); B673, 170 (2003).

[2] Z. Fodor and S. D. Katz, J. High Energy Phys. 03 (2002)
014; Z. Fodor, S. D. Katz, and K. K. Szabo, Phys. Lett. B
568, 73 (2003).

[3] C. R. Allton et al., Phys. Rev. D 66, 074507 (2002); 68,
014507 (2003).

[4] C. R. Allton et al., Phys. Rev. D 71, 054508 (2005).
[5] G. Boyd et al., Nucl. Phys. B469, 419 (1996).
[6] O. Kaczmarek, F. Karsch, P. Petreczky, and F. Zantow,

Phys. Lett. B 543, 41 (2002).
[7] O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510

(2005).
[8] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[9] P. N. Meisinger and M. C. Ogilvie, Nucl. Phys. B, Proc.

Suppl. 47, 519 (1996); Phys. Lett. B 379, 163 (1996).
[10] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73,

014019 (2006); nucl-th/0604025.
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