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Within the framework of the standard model plus one heavy Higgs triplet, we derive a full set of one-
loop renormalization group equations of the neutrino mass matrix and Higgs couplings in both full and
effective theories. The explicit RGEs of neutrino masses, flavor mixing angles and CP-violating phases
are also obtained, and their nontrivial running behaviors around the Higgs triplet mass threshold are
numerically illustrated.
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I. INTRODUCTION

To understand the origin of fermion masses and flavor
mixing is crucial and essential in modern particle physics.
Current neutrino experiments have provided very convinc-
ing evidence that neutrinos are massive and lepton flavors
are mixed [1–5]. However, it remains unclear why the
neutrino masses are quite suppressed compared to the other
fermion masses. Among various possible models, the see-
saw mechanism [6] should be one of the most favorite
mechanisms to explain the unnatural smallness of the
neutrino mass scale. In the usual Type-I seesaw mecha-
nism, heavy right-handed Majorana neutrinos are intro-
duced to generate the light neutrino masses. The lepton-
flavor-violating and lepton-number-violating processes,
which are forbidden in the standard model (SM), can
also take place through the exchanges of heavy right-
handed neutrinos.

Besides the Type-I seesaw scenario, the triplet seesaw
mechanism [7,8], which extends the SM with one Higgs
triplet � � ����; ��; �0�T with hypercharge 1, gives an-
other possible solution to the tiny light neutrino masses.
Such a Higgs triplet can be introduced in many Grand
Unified Theories (GUTs) or SU�2�L � SU�2�R theories.
Note that, in general the triplet seesaw model is more
predictive than the usual Type-I seesaw model, since there
is no unknown right-handed Majorana neutrino mass ma-
trix. The minimal version of the triplet seesaw models
contains only one triplet besides the SM particles. That is
very different from the Type-I seesaw model, in which at
least two heavy right-handed Majorana neutrinos are in-
troduced to give rise to at least two massive left-handed
neutrinos [9].

Taking into account that most of the realistic triplet
seesaw models are built at some energy scales MNP much
higher than the typical electroweak scale MZ � 91:2 GeV
[10], it is very meaningful to consider the radiative correc-

tions to the neutrino mixing parameters. In the energy
scales below the seesaw scale, the running of the
dimension-5 operator has been considered by many au-
thors [11] in the Type-I seesaw framework, and it has been
proved that there is no remarkable corrections in the SM or
minimal supersymmetric standard model (MSSM) with
small tan�. However, in the energy scales above the triplet
seesaw scale, the renormalization group equations (RGEs)
are quite different from those in the low energy effective
theory, and the RGE analyses are still lacking in that
energy scale. Since the RGE running may bring significant
corrections to the physical parameters, it is very important
for both model building and phenomenology to study the
running effects from the GUT scale (MGUT � 1016 GeV)
to the seesaw scale.

In this letter, we derive a full set of one-loop RGEs in the
framework of the SM extended with one heavy Higgs
triplet. The �-functions of Yukawa couplings are calcu-
lated in detail. The RGEs of the couplings between the
triplet and doublet Higgs are also obtained. Analytical and
numerical analyses based on our formulae are also given
for illustration. We show that there may be sizable radiative
corrections to the mixing parameters when the triplet
Higgs is involved.

The letter is organized as follows: In Sec. II, the basic
concepts of the triplet seesaw model is briefly discussed. In
Sec. III, we present the �-functions of Yukawa and Higgs
couplings in the model. Section IV is dedicated to the
numerical analyses of the running effects on mixing pa-
rameters. Finally, a summary is given in Sec. V.

II. THE TRIPLET SEESAW MODEL

The full Lagrangian of the triplet seesaw model is given
by [8]:

 L full � LSM �L�; (1)

where the first part represents the SM Lagrangian, and the
second part contains the interactions involving the Higgs
triplet. The most general form of L� is
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where� is the SM Higgs doublet with ~� � i�2�
	 and � is

a 2� 2 representation of the Higgs triplet field [12]:
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In Eq. (2), f and g are generation indices, and summation
over repeated indices is implied. ti are the three dimen-
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and Ĉ is defined as [13]:
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The covariant derivative D� reads

 D�� 
 @��� ig1YB��� ig2t �W��: (6)

As already mentioned in the first section, in order to
generate tiny light neutrino masses, the mass scale of
the Higgs tripletM� should be much higher than the typical
electroweak scale MZ. In this letter, we take M� �

1010 GeV. In the energy scale �� M�, the full
Lagrangian is taken into account. In the low energy limit
� M�, we should use the effective theory by integrating
out the heavy triplet field. The effective Lagrangian can be
defined by [14]:
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where D�i stands for functional integration over �i. Starting from Eq. (7), we can calculate the one-loop level effective
Lagrangian by using the steepest-descent method to integrate out the heavy scalar. Keeping only terms of order O�1=M2

��
through the whole calculation and neglecting all the operators with higher inverse powers of M�, we may get the effective
operators:
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where m, n, f and g run over 1, 2, 3. LHiggs has the same
form as the Higgs self-coupling in the SM. The four
fermion interaction L4�Fermi may contribute to the
lepton-flavor-violating processes. However, such processes
should be strongly suppressed due to the heavy mass of the
Higgs triplet. Thus we will neglect this four fermion cou-
pling in the following calculations. L��mass is in propor-
tion to the Majorana neutrino mass matrix. In analogy to
the Type-I seesaw model, we can also define the effective
dimension-5 operator

 L ��mass � �
1

4
�fg�l

C
L
f"���lgL"�� � H:c:; (9)

where � � �HY�=M�. After spontaneous symmetry break-
ing, neutrinos acquire masses and the neutrino mass matrix
is given by M� � Y�h�

0i with h�0i � �Hv
2=M�. Here

v ’ 174 GeV denotes the Higgs vacuum expectation
value. Since M� � v, the mass scale of neutrinos is then
suppressed, and this is the so-called triplet seesaw
mechanism.
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III. CALCULATIONS OF THE BETA-FUNCTIONS

In our calculations, we always use the dimensional regularization. For the one-loop wavefunction renormalization
constants Z above the seesaw scale, we find that
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For the vertex renormalization constants and the Higgs masses, we obtain
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The counterterms of the Higgs couplings ��, �C, �� and �T have also been calculated,
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By using the counterterms calculated above and the technique described in [11], we obtain the �-functions (�X �
� d

d�X) of Yukawa couplings and �H:
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and the anomalous dimensions (�m � �
1
m�

dm
d� ) of the Higgs masses:
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It should be noticed that in the triplet seesaw model the mass of the Higgs doublet suffers from the so-called hierarchy
problem, which can be prevented in some other supersymmetric models. We also calculate the �-functions of Higgs
couplings:
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The RGEs for the gauge couplings are changed in this
model, and we list the results below:
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Since the Higgs triplet field does not couple with quarks,
the RGEs of Yukawa couplings for quarks are the same as
those in the SM, and the corresponding results can be
found in the literature [15].

By calculating the relevant one-loop diagrams, we ob-
tain the �-function of the effective operator which de-
scribes the neutrino masses and mixing at the energy
scales below the seesaw scale:
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It should be mentioned that Eq. (17) has the same form as
that in the Type-I seesaw model, only up to a replacement
�! �� �yH�H.

IV. APPLICATIONS

To see the running behaviors of neutrino mixing parame-
ters in the triplet seesaw model, we carry out some nu-
merical analyses by using the �-functions derived above.
The lepton flavor mixing matrix, which comes from the
mismatch between the diagonalizations of the neutrino
mass matrix and the charged lepton mass matrix, is given
by V � Vye V�, where
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with �ye; y�; y�� and �y1; y2; y3� being the eigenvalues of Ye
and Y� respectively. In this letter, we adopt the following
parameterization [16]:
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where cij 
 cos�ij and sij 
 sin�ij (for ij � 12, 23 and 13).
For the typical choice h�0i �O�0:1 eV�, one can estimate that Y� �O�1�, which means that the relation Y� � Ye

holds, and the tiny Yukawa coupling Ye in the RGEs of Y� and Ye can be safely neglected in the hierarchical mass spectrum
case.1 Then we get the approximate equations of Yukawa couplings:

1When the neutrino mass spectrum is nearly degenerate m1 ’ m2 ’ m3, such an approximation may not be reasonable. However, in
our numerical calculations, we use the exact RGEs and do not make any approximations.
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Using the results above and taking into account the fact
that m� > m� � me, we neglect the tiny terms in propor-
tion to y2

e and arrive at the approximate analytical results of
three mixing angles:
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where �ij � y2
i � y

2
j with (i, j � 1, 2, 3). Note that, in

deriving Eqs. (22)–(24), we have adopted the the parame-
trization in Eq. (19). Such instructive expressions allow us
to do useful analyses of the running behaviors of mixing
angles. Because of the hierarchical charged lepton masses,
there is in general no enhanced factor compared with the
Type-I seesaw model [11]. However, nontrivial running
effects may also be acquired from the sizable Yukawa
coupling Y�. From Eqs. (22)–(24), one can immediately
conclude that the corrections to �12 and �13 should be
milder than that to �23 since the right-hand sides of
Eqs. (22) and (24) are in proportion to either �21 or �13.
In the limit �13 ! 0 and �21 ! 0, we can see from Eq. (23)
that _�23 / ��32. Thus �23 will get negative correction in
the normal hierarchy case. For illustration, we only show
the evolution of �23 with different �H�M�� in Fig. 1. We
can see that its running is quite sensitive to �H and a
decrease of several degrees may be acquired from the
RGE evolution.

Considering the smallness of �13, the evolution of the
Dirac CP-violating phase 	 is the same as those of two
Majorana phases ��;� at the leading order of s�1

13 ,
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This is an interesting feature: once three CP-violating
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FIG. 1 (color online). The evolution of �23. We take 	 � � �
 � 90� and �13 � 0:01� at the scale � � MZ.
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can be obtained for two Majorana phases � and .
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phases are same at certain energy scale, they will keep this
equality against the RGE running. We can also see that the
small sin�13 in the denominator of Eq. (25) dominates the
running ofCP phases. That means a fixed point [17] should
exist for extremely tiny �13. As an example, we plot the
evolution of 	 with different �13 in Fig. 2. Similar results
can be obtained for two Majorana phases � and .

By using Eq. (20), we obtain the RGEs of the eigenval-
ues of Y�

 �
dyi
d�
’

1

16
2

�
3

2
y3
i � ��yi

�
; (26)

with i � 1, 2, 3. Note that, for different signs of ��, the
corrections to yi may be either positive or negative.
However, in order to investigate the running of light neu-
trino masses, one should consider the RGEs of m� and �H
simultaneously. In Fig. 3, we present the typical evolution
of three light neutrino masses with �H�M�� � 5� 10�5.
We can see that their running effects are appreciable and
should not be neglected. A detailed numerical analysis of
the triplet seesaw model is worthwhile and the correspond-
ing work will be elaborated elsewhere.

V. SUMMARY

Working in the framework of the SM extended with one
heavy Higgs triplet, we have derived a full set of one-loop
RGEs for lepton Yukawa and Higgs couplings. Since the
triplet seesaw model involves more couplings than the
usual Type-I seesaw models, the results are also quite
different. Analytical and numerical analyses have been
given based on the RGEs we obtained. We find that non-
trivial corrections to the mixing parameters can be ac-
quired and they should not be neglected in general. It
provides us a possible way to connect the experimental
values of lepton flavor mixing parameters with some high
energy GUT theories. In conclusion, our formulae are very
important for both model building and phenomenological
analyses of the triplet seesaw models.
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New York, 1980), p. 707; R. N. Mohapatra and G.
Senjanoviç, Phys. Rev. Lett. 44, 912 (1980).

[7] G. B. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411
(1981); E. Ma, Phys. Rev. Lett. 80, 5716 (1998); T.
Hambye, M. Raidal, and A. Strumia, Phys. Lett. B 632,
667 (2006); F. R. Joaquim and A. Rossi, Phys. Rev. Lett.
97, 181801 (2006); G. Lazarides, Q. Shafi, and C.
Wetterich, Nucl. Phys. B181, 287 (1981); I. Dorsner and
P. F. Perez, Nucl. Phys. B723, 53 (2005).

[8] A. Strumia and F. Vissani, hep-ph/0606054.
[9] P. H. Gu, H. Zhang, and S. Zhou, Phys. Rev. D 74, 076002

 

10
0

10
5

10
10

10
15

10
20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
m

1
(µ)

m
2
(µ)

m
3
(µ)

m i (eV)

µ (GeV)

FIG. 3 (color online). The running behaviors of light neutrino
masses. Here we choose m1�MZ� � 0:01 eV and the normal
mass hierarchy m1 <m2 <m3. We take the same value of
�H�MZ� as that in Fig. 2 in our calculations.

WEI CHAO AND HE ZHANG PHYSICAL REVIEW D 75, 033003 (2007)

033003-6



(2006); N. Haba, N. Okamura, and M. Sugiura, Prog.
Theor. Phys. 103, 367 (2000); N. Haba, Y. Matsui, N.
Okamura, and M. Sugiura, Eur. Phys. J. C 10, 677 (1999);
T. Fukuyama and N. Okada, J. High Energy Phys.11
(2002) 011; E. Kh. Akhmedov and M. Frigerio, J. High
Energy Phys. 01 (2007) 043.

[10] W. M. Yao et al. (Particle Data Group), J. Phys. G 33, 1
(2006).

[11] P. H. Chankowski and Z. Pluciennik, Phys. Lett. B 316,
312 (1993); K. S. Babu, C. N. Leung, and J. Pantaleone,
Phys. Lett. B 319, 191 (1993); S. Antusch, M. Drees,
J. Kersten, M. Lindner, and M. Ratz, Phys. Lett. B 519,
238 (2001); 525, 130 (2002); S. Antusch, J. Kersten,
M. Lindner, M. Ratz, and M. A. Schmidt, J. High
Energy Phys. 03 (2005) 024; J. W. Mei, Phys. Rev. D
71, 073012 (2005); S. Luo, J. W. Mei, and Z. Z. Xing,
Phys. Rev. D 72, 053014 (2005); Z. Z. Xing, Phys. Lett. B

633, 550 (2006); Z. Z. Xing and H. Zhang, hep-ph/
0601106.

[12] J. F. Gunion, R. Vega, and J. Wudka, Phys. Rev. D 42,
1673 (1990).

[13] R. Godbole, B. Mukhopadhyaya, and M. Nowakowski,
Phys. Lett. B 352, 388 (1995).

[14] S. Weinberg, Phys. Lett. B 91, 51 (1980); K. G. Wilson
and J. G. Kogut, Phys. Rep. 12, 75 (1974); M. Bilenky and
A. Santamaria, Nucl. Phys. B420, 47 (1994).

[15] T. P. Cheng, E. Eichten, and L. F. Li, Phys. Rev. D 9, 2259
(1974); M. Machacek and M. Vaughn, Nucl. Phys. B236,
221 (1984).

[16] Z. Z. Xing, Int. J. Mod. Phys. A 19, 1 (2004).
[17] S. Antusch, J. Kersten, M. Lindner, and M. Ratz, Nucl.

Phys. B674, 401 (2003); S. Luo and Z. Z. Xing, Phys. Lett.
B 637, 279 (2006); J. A. Casas, J. R. Espinosa, A. Ibarra,
and I. Navarro, Nucl. Phys. B573, 652 (2000).

ONE-LOOP RENORMALIZATION GROUP EQUATIONS OF . . . PHYSICAL REVIEW D 75, 033003 (2007)

033003-7


