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We consider an action for an Abelian gauge field for which the density is given by a power of the
Maxwell Lagrangian. In d spacetime dimensions this action is shown to enjoy conformal invariance if the
power is chosen as d=4. We take advantage of this conformal invariance to derive black hole solutions
electrically charged with a purely radial electric field. Since we are considering a power of the Maxwell
density, the black hole solutions exist only for dimensions which are multiples of four. The expression for
the electric field does not depend on the dimension and corresponds to the four-dimensional Reissner-
Nordström field. Using the Hamiltonian action we identify the mass and the electric charge of these black
hole solutions.
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I. INTRODUCTION

The fundamental paradigm of general relativity is the
nontrivial interaction between matter and geometry which
is mathematically encoded through the Einstein equations.
These later relate the geometry of the spacetime with the
matter source which depends explicitly on the metric, and
hence the complexity of the Einstein equations is consid-
erably increased. In general, the Einstein equations, with a
matter source possessing the conformal invariance, can be
simplified. Indeed, in absence of the cosmological con-
stant, a traceless energy-momentum tensor implies that the
scalar curvature is zero restricting the possible spacetimes.
A well-known example is given by the so-called BBMB
black hole in four dimensions for which the matter is
described by a scalar field nonminimally coupled to gravity
with the conformal coupling (and also with an electric
field) [1,2]. In this example, the conformal character of
the matter source has been crucial since the solution has
been derived using the machinery of conformal transfor-
mations applied to minimally coupled scalar fields [2].
Unfortunately, the hope that the conformal symmetry of
the scalar field matter source was behind the existence of
black hole solutions in the case of static spherically sym-
metric spacetimes has been ruined by Xanthopoulos and
Dialynas [3] and Klimčı́k [4]. They have shown that in
higher dimensions, a scalar field conformally coupled to
gravity do not exhibit black hole solutions.

Conformal symmetry of the matter source can also be
useful for gravity in the presence of a cosmological con-
stant. In this case, the traceless character of the source
imposes the spacetime to be of constant scalar curvature.
However, in this case there does not exist a no-hair theorem

that rules out regular black hole solutions on and out of the
event horizon. In fact, black hole solutions with nonvan-
ishing cosmological constant have been obtained in the
case of a conformally and self-interacting coupled scalar
field in three dimensions [5,6] and in four dimensions [7,8].

The first black hole solution derived for which the matter
source is conformally invariant is the Reissner-Nordström
solution in four dimensions. Indeed, in this case the source
is given by the Maxwell action which enjoys the conformal
invariance in four dimensions. The Reissner-Nordström is
an electrically charged but nonrotating black hole solution
and, is the unique spherically symmetric and asymptoti-
cally flat solution of the Einstein-Maxwell equations.
Later, this solution has been extended in higher dimensions
where the Maxwell action does not possess the conformal
symmetry [9].

A legitimate question to ask is whether there exists an
extension of the Maxwell action in arbitrary dimension that
possesses the conformal invariance. The answer is positive
and the conformally invariant Maxwell action is given by

 IM � ��
Z
ddx

�������
�g
p

�F��F���d=4; (1)

where F�� � @�A� � @�A� is the Maxwell tensor, and �
is a constant. It is simple to see that under a conformal
transformation which acts on the fields as g�� ! �2g��
and A� ! A�, the action (1) remains unchanged [10]. Note
that in four dimensions, the conformal action (1) reduces to
the Maxwell action as it should be. The energy-momentum
tensor associated to IM is given by

 T�� � 4�
�
d
4
F��F�

�F�d=4��1 �
1

4
g��F

d=4

�
(2)

where F � F��F
�� is the Maxwell invariant, and the

conformal invariance of the action is encoded by the trace-
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less condition T�� � 0. Note that there exists another con-
formally invariant extension of the Maxwell action in
higher dimensions for which the Maxwell field is replaced
by a d=2-form with d even [11]. The black hole solutions of
this theory were discussed in [12].

In what follows, we are going to consider the action (1)
as the matter source of the Einstein equations. The idea is
to take advantage of the conformal symmetry to construct
the analogues of the four-dimensional Reissner-Nordström
black hole solutions in higher dimensions. The Ansatz for
the Maxwell tensor is restricted to be given by a non zero
electric field radial Ftr. Because of the form of the energy-
momentum tensor (2), the Ansatz on the Maxwell tensor
automatically restricts the possible dimensions to be only
multiples of four. For these dimensions, we derive the most
general black hole solutions in the static and spherically
symmetric case. The metric solution depends on two con-
stants which are related to the mass and to the electric
charge of the black hole. Moreover, as shown below, the
extended version of the Maxwell equations imposes the
electric field to have the same expression independently of
the dimension. Finally, from a Hamiltonian action we
derive the mass and the electric charge for these solutions,
expressed as surface integrals.

II. CHARGED BLACK HOLES SOLUTIONS

In dimension d � 4� 4p with p 2 N, we consider the
Einstein action with an extended Maxwell action given by

 I�g��; A�� �
Z
d4�4px

�������
�g
p

�
R
2�
� ��F��F���p�1

�
;

(3)

where R is the scalar curvature and � is the gravitational
constant. The field equations obtained by varying the met-
ric and the gauge field A� read respectively
 

G�� � 4��
�
�p� 1�F��F��Fp �

1

4
g��Fp�1

�
; (4a)

1�������
�g
p @��

�������
�g
p

F��Fp� � 0: (4b)

We are looking for a static and spherically symmetric
spacetime geometry whose line element is given by

 ds2 � �N2�r�f2�r�dt2 �
dr2

f2�r�
� r2d�2

4p�2; (5)

where d�2
4p�2 � �ijd�id�j is the line element of the unit

�4p� 2�-dimensional sphere, and we will use later on the
notation � � det��ij�. As it was mentioned in the intro-
duction, we are looking for a purely radial electric solution
that means that the only nonvanishing component of the
Maxwell tensor is given by Ftr. Because of the conformal
invariance of the matter action, the scalar curvature is zero
and the Einstein equations are given by

 

Rtt � �
��Nf�0f�0

N
� �4p� 2�

�Nf�0f
rN

� �2p� 1�U (6a)

Rrr � �
��Nf�0f�0

N
� �4p� 2�

f0f
r
� �2p� 1�U (6b)

R�i�i � �
�Nf�0f
rN

�
f0f
r
�

4p� 1

r2 �1� f2� � �U (6c)

for i � 1; � � � ; 4p� 2, with U � ��Fp�1 and the prime
denotes derivative with respect to the radial coordinate r.
Subtracting Eqs. (6a) and (6b) we obtain that N�r� is a
constant, which can be set to 1 without loss of generality.
Now, since the scalar curvature vanishes, R � 0, we can
get from this equation the metric function f2�r�, which is
given by

 f2�r� � 1�
A

r4p�1 �
B

r4p�2 ; (7)

where A is a constant proportional to the mass and B is a
constant which is related to the electric charge as it will be
shown later.

The extended Maxwell Eq. (4b) implies that the electric
field Ftr is given by

 Ftr �
C

r2 ; (8)

where C is a constant. It is interesting to note that the
expression of the electric field does not depend on the
dimension and its value coincides with the Reissner-
Nordström solution in four dimensions. The expression
of the electric field (8) is compatible with the Einstein
Eqs. (4a) provided the constants B and C are related
through

 B � ��1�p2p�1C2p�2��: (9)

Few remarks must be made to ensure that the metric
describes a black hole. Firstly, one can choose the sign of
the coupling constant � such that the energy density (the
T0̂ 0̂ component of the energy-momentum tensor in the
orthonomal frame) is positive. This means that sign��� �
��1�p and hence, the constant B is positive for all the value
of p. In this case, in order to have real roots for f2�r�, the
constant A must be positive and the constant B must be
chosen in the range

 0<B< �4p� 1�
�

A
4p� 2

�
�4p�2�=�4p�1�

: (10)

Under these conditions, we have two roots: r� 2 �0; b�,
and r� 2 �b;1�, where

 b �
�

A
4p� 2

�
1=�4p�1�

:

Finally, if A is positive and B is chosen as

 B � �4p� 1�
�

A
4p� 2

�
�4p�2�=�4p�1�

;

we have a double root of f2�r� at
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 r� �
�

A
4p� 2

�
1=�4p�1�

producing an extreme black hole.
The black hole solutions discussed here have a single

curvature singularity, which is located at r � 0. In what
follows, we will see that the Hamiltonian action provides
us a simple manner of identifying the mass and the electric
charge for the previous black holes solutions.

A. Hamiltonian action

Here we are interested only in the static, spherically
symmetric case without magnetic field, and hence it is
enough to consider a reduced action principle. The class
of metrics to be considered are given by (5) and the
electromagnetic field has only an electric radial component
given by Pr, which corresponds to the momentum conju-
gate to radial component of the gauge field Ar. The reduced
action is decomposed in three pieces as

 Ired � Ired
grav � Ired

M � K; (11)

where
 

Ired
grav � ��t2 � t1�Ad�2

d� 2

2�

Z
drNrd�2

	

�
�f2�0

r
�
d� 3

r2 �1� f2�

�
(12)

comes from the gravitational part of (3), while the reduced
Hamiltonian version of the generalized Maxwell action (1)
is given by
 

Ired
M � �t2 � t1�Ad�2

Z
dr

	

�
’P 0 �

�d� 2��N��2�d=�2�d�2��P d=�d�2�

2��d�d=�d�2�r2

�
: (13)

In the above expression, we have defined ’ 
 At and

 P 
 ��1=2Pr � �dNFd=4�1rd�2Frt

is the rescaled radial momentum. The symbol Ad�2 is a
short to denote the area of the �d� 2�-dimensional unit
sphere. The last term in (11), K, is a surface term that will
be adjusted below.

Varying the reduced action (11) with respect to N, f2, P
and ’, the following equations are found

 

�f2�0

r
�
d� 3

r2 �1� f2� � ��
��2�d=�2�d�2��P d=�d�2�

��d�d=�d�2�rd
;

(14)

 N0 � 0; (15)

 ’0 �
�dN��2�d=�2�d�2��P 2=�d�2�

2��d�d=�d�2�r2
; (16)

 P 0 � 0; (17)

whose general solutions in d � 4�p� 1� dimensions read

 f2 � 1�
A

r4p�1 �
����1�p2p�1C2p�2

r4p�2 ; (18)

 N � N1; (19)

 ’ �
N1C
r
� ’1; (20)

 P � P 0; (21)

where C � ��1�p�2�pP 0���4p� 4���1�1=�2p�1�. Note
that Eq. (14) corresponds to the Hamiltonian constraint
and Eq. (17) to the Gauss law. This general solution, which
coincides exactly with the previous one obtained from the
Einstein equations, has four integrations constants given by
A, P 0,N1,’1. As we will show below, the values ofN and
’ at infinity, N1 and ’1, are conjugates to A and P 0

respectively.

B. Mass and electric charge

The surface term K present in (11) is determined requir-
ing the action has an extremum, i.e., 	I � 0 within the
class of fields considered here [13]. This implies that the
variation of the boundary term is given by

 	K � �t2 � t1�A4p�2��2p� 1���1Nr4p�1	f2 � ’	P �

(22)

for r! 1. Since r4p�1	f2 � �	A�O�r�1� and 	P �
	P 0, we then get that

 	K � �t2 � t1�A4p�2���2p� 1���1N1	A� ’1	P 0�:

(23)

The term K is the conserved charge associated to the
‘‘improper gauge transformations’’ produced by time evo-
lution [14]. In our case, we have two transformations. The
first one corresponds to time displacements for which the
corresponding charge is the mass (M), and the second ones
are the asymptotically constant gauge transformations of
the electromagnetic field, where the electric charge (Q) is
the corresponding charge. In term of the variation of the
surface term, this is expressed as

 	K � �t2 � t1���N1	M� ’1	Q�: (24)

where �N1;M� and �’1; Q� are conjugate pairs. The com-
parison between (23) and (24) allows to identify the con-
served charges

 	M � A4p�2�2p� 1���1	A; (25)

 	Q � A4p�2	P 0: (26)

Finally, the integration of these variations yields
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 M � A4p�2�2p� 1���1A; (27)

 Q � A4p�2P 0: (28)

up to some additive constants which can be are fixed to
zero in order that the Minkowski space has vanishing
charges.

III. DISCUSSION

In this paper we have presented an extension of the
Maxwell action that enjoys the conformal symmetry in
arbitrary dimension. We have take advantage of this sym-
metry to derive the equivalent of the electrically charged
Reissner-Nordström black hole solutions in higher dimen-
sions. These solutions only exist for dimensions which are
multiples of four. The restriction on the dimension arises
because we have restricted ourselves to the conformal case
with a purely radial electric field. Using weaker hypothe-
sis, in particular, considering as a source an arbitrary power
of the Maxwell invariant (not necessarily the conformal
one), black holes solutions can be obtained [15] in any
dimension.

The black holes presented here differ from the standard
higher-dimensional solutions [16] since (a) the spacetimes
have vanishing scalar curvature, and (b) the electric charge
term in the metric coefficient goes as r��d�2� and in the
standard case is r�2�d�3�.

As it is well-known, the Kerr-Newman metric represents
the most general stationary, axisymmetric asymptotically
flat solution of Einstein equations in the presence of an
electromagnetic field in four dimensions. This spacetime
geometry described a charged rotating black hole which
reduces to the Reissner-Nordström solution at the vanish-
ing angular momentum limit. It is natural to ask whether

the extended Maxwell action considered here can act as a
source for a Kerr-Newman like metric in dimensions
higher than four.

The clue of the conformal invariance lies in the fact that
we have considered power of the Maxwell invariant. This
idea has been applied in the case of scalar field for which it
has been shown that particular power of the massless
Klein-Gordon Lagrangian exhibits conformal invariance
in arbitrary dimension [17]. It would be interesting to see
whether black hole solutions can also be obtained in this
case. Empathizing on the conformal character of the matter
source, one can consider as the conformal source of the
Einstein equations in arbitrary dimension, the conformal
electromagnetic action (1) together with a scalar field non-
minimally and conformally coupled to gravity. This prob-
lem has already been solved in four dimensions [1,2] and,
the solution has been shown to admit a generalization
which possesses magnetic monopole [18]. One can also
explore the possibility of considering as the conformal
source, the conformal power of the Klein-Gordon action
[17] together with the action (1).

Finally, it is also be desirable to study the geometric
properties, the causal structures as well as the thermody-
namics properties of the black hole solutions derived here.
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