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We introduce the D � 4 twistorial tensionfull bosonic string by considering the canonical twistorial 2-
form in two-twistor space. We demonstrate its equivalence to two bosonic string models: due to Siegel
(with covariant world-sheet vectorial string momenta Pm���; ��) and the one with tensorial string momenta
P������; ��. We show how to obtain in mixed spacetime-twistor formulation the Soroka-Sorokin-Tkach-
Volkov (SSTV) string model and subsequently by harmonic gauge fixing the Bandos-Zheltukhin (BZ)
model, with constrained spinorial coordinates.
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I. INTRODUCTION

Twistors and supertwistors (see e. g. [1–3]) have been
recently widely used [4–8] for the description of (super)
particles and (super) strings, as an alternative to spacetime
approach. We stress also that recently large class of per-
turbative amplitudes in N � 4 D � 4 supersymmetric
Yang-Mills theory [9–11] and conformal supergravity
(see e.g. [12]) were described in a simple way by using
strings moving in supertwistor space. Such a deep connec-
tion between supertwistors and non-Abelian supersymmet-
ric gauge fields, from other perspective firstly observed
almost 30 years ago, should promote geometric investiga-
tions of the links between the spacetime and twistor de-
scription of the string model.

In this paper we derive fourlinear twistorial classical
string action, with target space described by two-twistor
space. Our main aim is to show that the twistorial master
action for several string models which all are classical
equivalent to D � 4 Nambu-Goto string model, can be
also described by the fundamental Liouville 2-form in
two-twistor space.

Recently also there were described inD � 4 two-twistor
space T�2� � T � T the models describing free relativistic
massive particles with spin [5,13–15]. The corresponding
action was derived by suitable choice of the variables from
the following free two-twistor oneform

 ��1� � ��1�1 ���1�2 (1)

where (A � 1; . . . 4, i � 1, 2; no summation over i):

 ��1�i � � �ZAidZAi � d �ZAiZAi� (2)

with imposed suitable constraints.
In this paper we shall study the following canonical

Liouville twoform in two-twistor space T�2�

 ��2� � ��1�1 ^��1�2 (3)

restricted further by suitable constraints. We shall show

that from the action which follows from (3) one can derive
various formulations of D � 4 bosonic free string theory.

We start our considerations from the first order formu-
lation of the tensionfull Nambu-Goto string in flat
Minkowski space which is due to Siegel [16,17]

 S �
Z
d2�

�
Pm�@mX

� �
1

2T
��h��1=2hmnP

m
�P

�n
�
: (4)

The kinetic part of the action (4) is described equivalently
by the twoform

 

~� �2� � P� ^ dX
� (5)

where P� � Pm��mnd�n, dX� � d�m@mX� i. e. in Siegel
formulation the pair �P0

�; P
1
�� of generalized string mo-

menta are represented by a oneform.
If we apply to (4) the string generalization of the Cartan-

Penrose formula on curved world sheet [18]

 Pm� _� � e~� _�	
m�� � eema ~�i_��	

a�
j
i��j: (6)

we shall obtain the SSTV bosonic string model [19]

 S �
Z
d2�e

�
~� _�	

m��@mX
_�� �

1

2T
���i��i��~�

j
_�
~� _�
j �

�

(7)

where
�������
�h
p

� e � det�eam� � �
1
2 �

mn�abe
a
me

b
n. Further

we shall discuss the local gauge freedom in the spinorial
sector of (7) and consider the suitable gauge fixing. We
shall show that by suitable constraints in spinorial space we
obtain the BZ formulation [20] which interprets the D � 4
spinors ��i, ��i_� as the spinorial Lorentz harmonics. Finally
we shall derive the second-order action for twistorial string
model described by the twoform (3).

Further we shall consider the bosonic string model with
tensorial momenta obtained from the Liouville twoform
[21,22]

 

~~� �2� � P��dX
� ^ dX�: (8)

Such a model is directly related with the interpretation of
strings as dynamical world sheets with the surface ele-*On leave from Ukr. Eng. Pedag. Academy, Kharkov, Ukraine
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ments

 dS�� � dX� ^ dX� � @mX�@nX��mnd2�: (9)

If we introduce the composite formula for P�
 � P���
��
�
,

�P _� _
 � �P���
��
_� _


in terms of spinors (see also [22]) by

passing to the first order action we obtain the mixed spinor-
spacetime SSTVand BZ string formulations. We see there-
fore that both bosonic string models, based on (5) and (8),
lead via SSTV to the purely twistorial bosonic string with
the null twistor constraints and the constraint determining
the string tension T

 P��P�� � �
T2

4
$ j��1�

�
2 j

2 �
T2

4
: (10)

If we wish to obtain the BZ formulation one should
introduce in place of (10) two constraints

 ��1��2 �
T
2
; ��1

_�
�� _�2 �

T
2

(11)

providing the particular solution of the constraint (10).

II. SIEGEL BOSONIC STRING

Equations of motion following from the action (4) are

 @mPm� � 0; (12)

 Pm� � �T��h�
1=2hmn@nX�; (13)

 Pm�P
n� �

1

2
hmnhklP

k
�P

l� � 0: (14)

If we solve half of the equations of motion (13) without
time derivatives

 P1
� � �	P� � �TX

0
� (15)

where P0
� � P� denotes the string momentum and � ������

�h
p

h11
, 	 � h01

h11
, the action (4) takes the form

 S �
Z
d2�

�
P� _X� � �

1

2
�T�1P2

� � TX02�� � 	P�X0�
�
:

(16)

It is easy to see that (16) describes the phase space for-
mulation of the tensionfull Nambu-Goto string

 S � �T
Z
d2�

������������
�g�2�

q
(17)

where g�2� is the determinant of the induced D � 2 metric

 gmn � @mX
�@nX�; (18)

T is the string tension, and the string Hamiltonian (see
(16)) is described by a sum of first class constraints gen-
erating Virasoro algebra.

By substitution of equations of motion (13) into the
Siegel action (4) one obtains the Polyakov action

 S � �
T
2

Z
d2���h�1=2hmn@mX�@nX�: (19)

Note that the Eqs. (14) describe the Virasoro first class
constraints.

III. SSTV STRING MODEL AND ITS RESTRICTION
TO BZ MODEL

In order to obtain from the action (4) the mixed spinor-
spacetime action (7) we should eliminate the fourmomenta
Pm� by means of the formula (6). We obtain that the second
term in string action (4) takes the form

 

1

2T
��h��1=2hmnPm�Pn� �

1

2T
e���i��i��~�

j
_�
~� _�
j � (20)

where we used Tr�	m	n� � 2hmn. Note that ~�i_� ~� _�
i �

��i_� �� _�
i .

Putting (6) and (20) in the action (4) we obtain the SSTV
string action (7) which provides the mixed spacetime-
twistor formulation of bosonic string. We stress that in
SSTV formulation the twistor spinors ��i are not con-
strained. Further, the algebraic field Eq. (14) after substi-
tution (6) is satisfied as an identity.

Calculating from the action (7) the momenta ��i, �� _�
i ,

p�e�ma conjugate to the variables ��i, ��i_�, eam one can in-
troduce the following two first class constraints

 F � ��i�
�i � ��i_� �� _�

i � 2eamp
�e�m
a 	 0; (21)

 G � i���i��i � ��i_� �� _�
i � 	 0 (22)

generating the following local transformations:

 �0�i � ei�b�ic���i; ��0i_� � e�i�b�ic� ��i_�;

e0am � e2ceam:

In particular one can fix the real parameters b, c in such a
way that we obtain the constraints (11). The relations (11)
can be rewritten in SU�2�-covariant way as follows (we
recall that T is real)

 A � ��i��i � T � 0; �A � ��i_� �� _�
i � T � 0: (23)

If we introduce the variables v�i �
���
2
T

q
��i, �vi_� �

���
2
T

q
��i_� we

get the orthonormality relations for the spinorial Lorentz
harmonics [20].

If we impose the constraints (11) the model (7) can be
rewritten in the following way

 S �
Z
d2�

�
eema ~�i_��	

a�i
j��j@mX _�� �

T
2
e��A� �� �A

�

(24)

where the spinors �, �� are constrained by the relations (23),
which are imposed additionally in (24) by the Lagrange
multipliers. It is easy to see that introducing the light cone
notations on the world sheet for the zweibein e��m � e0

m �
e1
m, e��m � e0

m � e1
m and following Weyl representation for
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Dirac matrices in two dimensions we obtain string action in
the form used by Bandos and Zheltukhin (BZ model)
[20,23,24].

IV. PURELY TWISTORIAL FORMULATION

Let us introduce second half of twistor coordinates � _�
i ,

���i by employing Penrose incidence relations generalized
for string

 � _�
i � X _����i; ���i � ��i_�X

_��: (25)

Incidence relations (25) with real spacetime string posi-
tion X _�� imply that the twistor variables satisfy the con-
straints

 Vji 
 ��i ���j �� _�
i

��j_� 	 0 (26)

which are antiHermitian (� �Vji � � �V
i
j).

Let us insert the relations (25) into (24). Using

 Pm� _�@mX
_�� �

1

2
eema �~� _�	

a@m�
_� � ~��	a@m��� � c:c:

we obtain the first order string action in twistor formulation
 

S �
Z
d2�

�
1

2
eema �~� _�	a@m� _� � ~��	a@m�� � c:c:�

�
T
2
e��A� �� �A��j

i���i ���j �� _�
i

��j_��
�

(27)

where �, ��, �j
i are the Lagrange multipliers (� ��j

i� �

��i
j).

The variation with respect to zweibein eam of the action
(27) gives the equations (we use that eema � ��ab�mnebn)

 eam � �
1

T
�~� _�	

a@m�
_� � ~��	a@m��� � c:c:: (28)

For compact notation we introduce the string twistors

 ZAi � ���i; �
_�
i �; �ZAi � � ���i;� ��i_��;

~ZAi � �ZAj�	0�ij:

Then

 eam � �
1

T
�@m ~ZAi�	a�i

jZAj � ~ZAi�	a�i
j@mZAj� (29)

and the constraints (26) can be rewritten as

 Vji � ZAi �ZAj 	 0: (30)

Substituting (29) and (30) in the action (27) we obtain
our basic twistorial string action:

 S �
Z
d2�

�
1

4T
�mn�ab�@m ~ZAi�	a�i

jZAj

� ~ZAi�	a�i
j@mZAj��@n ~ZBi�	b�i

jZBj

� ~ZBi�	b�i
j@nZBj� ��A� �� �A��j

iVi
j
�
: (31)

Using explicit form of D � 2 Dirac matrices we can see
that the first term in the action (31) equals to

 

1

T
�mn�@m �ZA1ZA1 � �ZA1@mZA1��@n �ZB2ZB2 � �ZB2@nZB2�

i.e. the action (31) is induced on the world-sheet by the
canonical 2-form (3) with supplemented constraints (23)
and (26).

V. FROM SSTV ACTION TO TENSORIAL
MOMENTUM FORMULATION

The zweibein eam can be expressed from the action (7) as
follows (���� 
 ��i��i, � �� ��� 
 ��i_� �� _�

i )

 eam �
2T

����� �� ���
~�i_��	

a�
j
i��j@mX

_�� (32)

Substitution of the relation (32) in the action (7) pro-
vides the following string action

 S � T
Z
d2������� �� �����1�ab�~� _�	

a���

� �~� _
	
b�
��

mn@mX
_��@nX

_

 (33)

Using identities for D � 2 Dirac matrices and the rela-
tion

 �mn@mX
_�
�@nX

_


 � �mn@mX

� _�
��@nX

_
�

� � �

mn@mX
� _�
��@nX

_
�

�

after contractions of spinorial indices we obtain the action

 S �
���
2
p Z

d2��mn�P�
@mX
_��@nX



_� � �P _� _
@mX

_��@nX
_

� �

(34)

where the composite second rank spinors

 P�
 �

���
2
p
T

����
�1
���

2

�; �P _� _
 �

���
2
p
T

� �� ���
��1
� _�

��2
_
�
: (35)

satisfy the constraints

 P�
P�
 � �
T2

4
; �P _� _
 �P _� _
 � �

T2

4
: (36)

Using fourvector notation the relations (36) take the form

 P��P�� � �
T2

4
; P�� ~P�� � 0 (37)

where ~P�� �
1
2 ����	P

�	.
The action (34) is the Ferber-Shirafuji form of the string

action with tensorial momenta

 S�
���
2
p Z

d2�
�
P��@mX�@nX��mn��

�
P��P���

T2

4

��
:

(38)

Expressing P�� by its equation of motion, we get
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 P�� �
1

2�
���; ��� 
 �mn@mX�@nX�: (39)

After substituting (39) in the action (38) we obtain the
second-order action (see e.g. [25])

 S �
1

2
���
2
p

Z
d2����1������ ��T2�: (40)

Eliminating further � and using that (see also (18))

 ������ � 2 det�gmn� (41)

we obtain the Nambu-Goto string action (17).
It is important to notice that the solution (39) satisfies the

constraint P�� ~P�� � 0 as an identity. We see therefore
that in the action (38) it is sufficient to impose by the
Lagrange multiplier only the first constraint (37).

VI. CONCLUSIONS

We have shown the equivalence of five formulations of
D � 4 tensionfull bosonic string:

(i) two spacetime formulations, with vectorial string
momenta (see (4)) and tensorial ones (see (38));

(ii) two mixed twistor-spacetime SSTV (see (7)) and BZ
(see (24)) models;

(iii) the generic pure twistorial formulation with the ac-
tion given by the formula (31).

Following the massive relativistic particle case (see [13–
15]) the main tools in the equivalence proof are the string
generalizations of Cartan-Penrose string momenta (see (6)
and (35)) and the incidence relations (25). The action (27)
in conformal gauge eam � am is the commonly used bi-
linear action for twistorial string.

We would like to stress that the model (31) is substan-
tially different from the one proposed by Witten et al. [9–
11]. In Witten twistor string model described by CP�3j4�
(N � 4 supertwistor) �-model the targed space is de-
scribed by a single supertwistor, and the Penrose incidence
relation, introducing spacetime coordinates appears only
after quantization, as the step permitting the spacetime
interpretation of holomorphic twistorial fields. In our ap-
proach composite spacetime variables enter already into
the formulation of classical string model, in a way enforc-

ing the complete equivalence of classical twistorial string
and Nambu-Goto action provided that we treat the space-
time target coordinates as 2-twistor composites.

In this paper we restricted the presentation to the case of
D � 4 bosonic string. The generalization to D � 6 is
rather straightforward; the extension to D � 10 requires
clarification how to introduce the D � 10 conformal spin-
ors, i.e. D � 10 twistors. Other possible generalizations
are the following:

(i) If we quantize canonically the model (27) one can
show that the PB of the constraints Vji satisfy the
internal U�2� algebra (see [26]). One can introduce,
contrary to (26), nonvanishing Vji . The degrees of
freedom described by Vji can be interpreted (see also
[2,14,15]) as introducing on the string the local
density of covariantly described spin components
and electric charge;

(ii) We presented here the links between various bosonic
string models. Introducing two-supertwistor space
and following known supersymmetrization tech-
niques (see [23,24]) one can extend the presented
equivalence proofs to the relations between different
superstring formulations with manifest world-sheet
supersymmetry which involved the twistor variables
(see e.g. [18,27–29]).

(iii) Particularly interesting would be the twistorial for-
mulation of D � 4 N � 4 Green-Schwarz super-
string, which should be derivable by dimensional
reduction from D � 10, N � 1 Green-Schwarz su-
perstring. Such twistorial D � 4, N � 4 supersting
model could be in our formulation the counterpart of
twistorial N � 4 superstring considered in [9–11].
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