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One of the simplest time-dependent solutions of M theory consists of nine-dimensional Euclidean space
times 1� 1-dimensional compactified Milne space-time. With a further modding out by Z2, the space-
time represents two orbifold planes which collide and re-emerge, a process proposed as an explanation of
the hot big bang [J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522
(2001).][P. J. Steinhardt and N. Turok, Science 296, 1436 (2002).][N. Turok, M. Perry, and P. J. Steinhardt,
Phys. Rev. D 70, 106004 (2004).]. When the two planes are near, the light states of the theory consist of
winding M2-branes, describing fundamental strings in a particular ten-dimensional background. They
suffer no blue-shift as the M theory dimension collapses, and their equations of motion are regular across
the transition from big crunch to big bang. In this paper, we study the classical evolution of fundamental
strings across the singularity in some detail. We also develop a simple semiclassical approximation to the
quantum evolution which allows one to compute the quantum production of excitations on the string and
implement it in a simplified example.
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I. INTRODUCTION

Recently, an M theory model of a big crunch/big bang
transition has been proposed. The model consists of two
empty, parallel orbifold planes colliding and re-emerging.
Close to the collision, the spectrum of the theory splits into
two types of states. The light states are winding M2-branes
describing perturbative string theory, including gravity.
The massive states, corresponding to higher Kaluza-
Klein modes associated with the M theory dimension, are
nonperturbative D0-brane states whose masses diverge as
the collision approaches. In Ref. [1], it was shown that the
equations of motion of the winding M2-branes are regular
at the brane collision and yield an unambiguous classical
evolution across it. Since these states describe gravity in
quantized string theory, the suggestion is that gravity is
better-behaved in this situation than it is in general rela-
tivity. If this is true then, rather than seeding a gravitational
instability, the massive Kaluza-Klein states may simply
decouple around the collision. Provided their density is
negligible in the incoming state, as it is in the ekpyrotic and
cyclic models [2–4], then the entire transition may be
describable using the perturbative string theory states
alone.

In this paper, we will assume the massive states can be
neglected and focus on the evolution of the fundamental
string states across a big crunch/big bang transition of this
type. By solving the string evolution equations numerically
we show how the higher string modes become excited in a
well-defined way as strings cross the transition. We also
develop a simple approximation whereby quantum produc-
tion of excited modes on the string may be computed in a
semiclassical manner. Related work may be found in

Ref. [5]. Earlier work on strings in cosmological back-
grounds is reviewed in Ref. [6].

The background space-time we are interested in is most
simply understood in 11-dimensional terms. Near the orbi-
fold plane collision, the line element reduces to that for a
Z2-compactified Milne universe times R9, namely

 ds2 � �dt2 � t2d�2 �
X9

i�1

�dxi�2; (1)

where 0 � � � �0, and a Z2 reflection is imposed about
each end point. For t < 0 (t > 0), the two orbifold planes
approach (recede) with relative rapidity �0. Away from the
singularity at t � 0 the space-time is flat and hence an
automatic solution of any theory governed by field equa-
tions involving purely geometrical terms [7]. At t � 0 the
metric degenerates and the equations of general relativity
become singular. Nevertheless, one can analytically con-
tinue the background solution through t � 0. As men-
tioned, the equations governing the winding M2-branes
are regular at t � 0, so the M2-branes evolve smoothly
across the big crunch/big bang transition.

The winding M2-branes reduce to fundamental strings
when the M theory dimension is small, so one can also
describe the situation in ten-dimensional terms. In string
frame, the dimensionally-reduced metric takes the form
g�� � jt=tsj���, with a time-dependent dilaton, � � 3

2 �

lnjt=tsj. Here e� is the string coupling and ts is by defini-
tion the time when the string coupling is unity [8]. For
jtj � ts, stringy interactions are weak and one can, to a
first approximation, treat the strings as free. For jtj greater
than or of order ts, however, the string theory is at strong
coupling and one must switch to an 11-dimensional super-
gravity description [9,10]. Recently, techniques for solving
the relevant higher-dimensional Einstein equations have
been developed [11], which can be applied to this situation.
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As long as one is considering long-wavelength cosmologi-
cal perturbations, evolving classically, the transition from
the supergravity regime to the string theory (�0 expansion)
regime appears unproblematic: the 11-dimensional
Einstein equations should reduce to the appropriate ten-
dimensional Einstein-dilaton effective theory as the branes
become near. In this paper, our main focus is on the
classical dynamics of the string near t � 0. In a companion
paper we provide a complementary treatment, studying the
stringy � function equations in the usual �0 expansion to
see whether higher order corrections are significant when
the string scale crosses the Hubble radius [12].

In the 11 dimensional picture, there is no dilaton field.
The unique mass scale is set by the M2-brane tension�2 	
M3

11, where M11 is the 11-dimensional Planck mass [13].
Winding membranes, of length �0jtj behave like strings
with a time-dependent tension, �1 � M3

11�0jtj, in
Minkowski space-time. One can equally well view the
strings as having a fixed tension, �1 � M3

11�0jtsj, but
living in a string-frame background metric, gs�� �
jt=tsj���. The string coupling constant is set by the size
of the M theory dimension in 11-dimensional Planck units:
e� � �M11�0jtj�3=2 	 jt=tsj3=2.

Starting well away from the collision, at large times jtj
the system is described by 11-dimensional supergravity. As
one approaches the collision the string coupling falls below
unity, when jtj falls below

 ts � ��1
0 M�1

11 : (2)

When jtj � ts, the string mass scale is M11 and the string
length is ls 
M�1

11 
 �0ts. For small �0, ls is far smaller
than the Hubble horizon scale ts so the characteristic
oscillations of the string are little affected by the expansion
of the universe. Corrections due to the background space-
time curvature are small and the usual �0 expansion holds
good. However, as jtj decreases further, the physical size of

an oscillating string remains approximately constant while
the physical Hubble radius falls as jtj�jtj=ts�1=2. The string
length crosses the Hubble radius at a time

 tX 
 �
2=3
0 ts � ���1=3�

0 M�1
11 : (3)

Thereafter, the string tends towards an ultralocal evolution
in which the curvature of the string is unimportant and each
bit of the string evolves independently. This is the regime
of the 1=�0 expansion discussed in Ref. [1]. Figure 1
illustrates the three regimes: from strong to weak coupling
at ts 
 ��1

0 M�1
11 and from flat space to ultralocal evolution

at tX 
 �
��1=3�
0 M�1

11 . For small �0, as we shall assume
throughout this paper, these times are well-separated.

In this paper, we wish to study the weak coupling
regime, jtj< ts, during which the strings cross the singu-
larity. In this regime, for jtj< tX, the usual �0 expansion
fails and we must replace it with an expansion in the string
tension, proportional to 1=�0. Our ultimate goal is to
compute a ‘mini S-matrix’, evolving weakly-coupled in-
coming string states from an initial time just after �ts to a
final time just before �ts. In this paper we shall make
modest progress towards this goal by computing the ‘mini
S-matrix’ in a first, classical approximation.

Any classical solution of the string equations also solves
the Heisenberg operator equations for the string field
x���;	�, to leading order in @. For highly excited string
states, involving large occupation numbers, the classical
approximation should be reasonable. However, to describe
gravity we are really more interested in the low-lying
states. For these states, quantum corrections are likely to
be significant and there is less we can say with precision.

Nevertheless, there are arguments which suggest that
quantum corrections may be manageable in the relevant
regime. The usual �0 expansion is based on approximating
space-time as locally flat, and solving the string equations

 

FIG. 1. Three phases of an orbifold plane collision, with rapidity �0 < 1. Cosmological perturbations are created when the effective
theory is the low energy limit of M theory in 11 dimensions. After the orbifolds get closer and the string coupling (gs 
 jt=tsj3=2) falls
below unity, the system is better described in terms of perturbative string theory and the usual expansion in �0. A second transition
occurs when the string scale leaves the Hubble radius. Here the string tension becomes dynamically subdominant and the theory is
better described by an expansion in 1=�0. In this regime the string is better-described as a collection of independent ‘‘bits’’ whose
evolution across the singularity is smooth. After t � 0 the string tension is reconstituted and the system runs back through the two
above-mentioned transitions.
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of motion in an expansion in the space-time curvature. This
approximation clearly fails to describe even the classical
motion of the fundamental strings near t � 0. Hence the
failure of the �0 expansion in the quantum theory does not,
on its own, imply that quantum corrections to the string
evolution are large [14]. Second, the key phenomena rele-
vant to the small time regime take place when the back-
ground curvature length (i.e. the Hubble radius) falls below
the string scale. The string dynamics becomes ultralocal in
this regime: in cosmological terms, the string is ‘super-
horizon’ and hence may be expected to evolve in a classical
manner.

In flat space-time, the most dramatic consequence of
quantizing the string is that the first excited states of the
string are massless instead of massive as a classical treat-
ment would suggest. This is due to quantum mechanical
renormalization of the mass squared operator, m2 �
�p0�2 � ~p2, where p� is the string’s center of mass mo-
mentum. The renormalized mass squared operator is low-
ered by one quantized unit relative to the normal ordered
classical expression, and this lowering causes the first
excited states to become massless. As a result, the string
center of mass trajectory x�cm � q� � p�� is altered from
the classical expression by �p0�2 ! �p0�2 �M2 with M a
constant so that the quantum corrected trajectory is null
instead of spacelike. Note, however, that this shift in the
energy p0 merely alters the time coordinate of the center of
mass of the string and it does not affect the string spatial
coordinates and momenta, which obey exactly the same
equations as in the classical theory. Again, this discussion
suggests that quantum effects may be relatively modest in
the situation we are interested in.

In this paper, we focus on the classical evolution of the
string across t � 0. Starting at a time t of order �ts, we
expect the string to oscillate nearly adiabatically and with
almost fixed physical size until the string scale crosses the
Hubble radius at time t � �tX. For small �0, ts � tX,
hence there is a large range of time over which adiabatic
evolution holds. This allows us to clearly identify the
incoming and outgoing states in terms of the usual flat
space-time modes. As we have already mentioned, the
natural size scale for the incoming states we are interested
in (i.e. the graviton, dilaton or antisymmetric tensor states)
is the string scale at ts,

 �x
M�1
11 
 �0ts: (4)

By the same token, the natural measure for the spatial
momentum of the string state at this time is

 P
M11 
 ��0ts�
�1; (5)

and we shall always measure the momentum of the incom-
ing string in this basic units.

One of the nice features of the problem at hand is that the
string tends to simple flat-space evolution at large asymp-
totic times:

 x���; 	� ! �in�x���; 	� t!�ts; (6)

and

 x���; 	� ! �out�x���; 	� t! �ts; (7)

where inx���;	� and outx���; 	� are free string fields
evolving adiabatically in the usual flat-space string modes.
The limits should, strictly speaking, be expressed in terms
of a tc < ts so that we are always studying times for which
the string coupling is smaller than unity. In practice this
will not be an important distinction since as long as �0 is
small, the string states we study tend to their asymptotic
behavior at times tX � ts.

In a linear field theory in a time-dependent background,
where the field tends to the usual Minkowski evolution in
the asymptotic past, all of the information regarding quan-
tum amplitudes may be obtained from real solutions of the
classical field equations (see e.g. [15]). One simply ex-
presses the incoming field as a linear combination of
creation and annihilation operators, defined by their action
on the incoming vacuum state, multiplied by the appropri-
ate positive and negative frequency modes. The classical
field equations then determine the quantum Heisenberg
field for all time. Using the time-dependent field, one can
then compute any correlation function of interest, eval-
uated in any incoming state expressed in terms of incoming
creation operators acting on the incoming vacuum.

The main difference in our situation is that the string
evolution is nonlinear. Nevertheless, the nonlinearity turns
out to be of a very simple form, where one can apply a
semiclassical approximation in a self-consistent way. One
can follow a similar procedure to that in the linear case to
compute the quantum production of string excitations due
to passage across the singularity. We shall explain this
calculation, for a specially simple case—a circular
loop—in the final section of this paper. The calculation
may be generalized to higher modes of the string and we
shall do so in a future publication.

The outline of this paper is as follows. In Sec. II we
present the equation governing winding membranes, dis-
cuss their adiabatic solutions and define various quantities
of interest. In Sec. III we study the classical evolution of a
circular loop, representing the dilaton and its massive
counterparts. In Sec. IV we study the classical evolution
of a rotor, representing the modes of maximal spin (for
example, the graviton), at each mass level. Section V
describes the classical evolution of a state of intermediate
angular momentum, representing an antisymmetric tensor
state and massive analogs. Section VI gives an example of
a quantum transmutation amplitude computed for an in-
coming dilatonlike state. In Sec. VII we give a brief
summary with future proposals. In Appendix A we give
an analytic solution method for the classical string equa-
tions, representing an expansion in powers of the string
tension, i.e., inverse powers of �0, which accurately de-
scribes the passage of a circular loop across the singularity.
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Intriguingly, in this regime polylogarithm functions enter,
perhaps hinting at some deeper analytic solution yet to be
found. We also present an analytic solution to second order
in 1=�0 for a more general string configuration. Finally,
Appendix B is devoted to some numerical checks on the
right/left mover decomposition for the special case of a
classical rotor.

II. EQUATIONS OF MOTION FOR A WINDING
MEMBRANE

Our starting point is the Nambu-Goto action for a mem-
brane,

 S � ��2

Z
d3	

�����������������������
� det�G�3�ab�

q
; (8)

where 	a (a � 0, 1, 2) are the three world-volume coor-
dinates, Gab 	 @ax

A@bx
BgAB is the induced metric on the

world-volume, xA � �t; ~x; y� are the space-time embedding
coordinates and�2 is the membrane tension. For a winding
membrane in its lowest Kaluza-Klein state, we can set
	2 � � in the Milne metric (1). The action (8) then reduces
to

 S � ��2

Z
�0jtjd

2	
������������������������
� det�G�2����

q
; (9)

where now G�2��� is the induced metric on the two-
dimensional world sheet with coordinates 	0 	 � and
	1 	 	. Henceforth dots shall denote derivatives with
respect to � and primes derivatives with respect to 	.

The action (9) may be viewed as describing a string
moving in flat space-time with a tension �2�0jtj tending
to zero as the string approaches the singularity. Hence one
expects all points on the string to move with the speed of
light in this limit. Equivalently, the same action may be
viewed as describing a string of fixed tension �2�0ts,
moving in a time-dependent background with metric
g�� � jt=tsj���. We shall adopt this latter point of view
throughout the paper.

The action (9) is invariant under reparametrizations of
the string world sheet. In particular, we can choose time-
like gauge x0 	 t � �, and also _~x � ~x0 � 0. In this gauge,
the string spatial coordinate ~x�t; 	� obeys the following
classical equations of motion:

 @t�
 _~x� � @	

�
t2@	 ~x



�
; @t
 � t

� ~x0�2



; (10)

where 
 is an auxiliary quantity (roughly speaking, the
‘‘relativistic energy density’’ for the string), defined by

 
 �

�����������������
t2� ~x0�2

�1� _~x2�

s
: (11)

Eqs. (10) and (11) imply that

 @t�
2� �
2

t
�1� _~x2�
2; (12)

which will be useful later. Notice, in particular, that as t
tends to zero, from (10) 
 tends to a constant. Hence from
(12) the speed of the string tends to unity. As pointed out in
Ref. [1], for generic string states, Eqs. (10) are regular for
all t.

As in flat space-time, it is useful to rewrite these equa-
tions in terms of left and right moving modes, defined by

 ~r � _~x�
jtj


~x0; ~l � _~x�

jtj


~x0: (13)

It is easy to show that ~l and ~r are unit vectors, ~r2 � 1 � ~l2,
as in flat space [16]. For a closed string, they each describe
a closed curve on a unit sphere. Notice also that whereas
the timelike gauge we have chosen is invariant under
reparametrizations of 	, the left and right movers are
themselves reparametrization invariant. Many of the prop-
erties of oscillating loops can be seen most directly by
picturing the left and right movers as curves on a unit
sphere. In three spatial dimensions, even in flat space-
time such curves generically cross. Where this happens
the left and right movers coincide, and it follows that the
string moves at the speed of light for an instant [17]. As we
have already mentioned, in the background of interest, at
t � 0 every point on the string must move at the speed of
light. Hence, at this moment, the left and right mover
curves must actually coincide.

In terms of the left and right movers, the equations of
motion (10) read
 

_~r�
jtj


~r0 �

1

2t
�~l� �~r � ~l�~r� � 0;

_~l�
jtj


~l0 �

1

2t
� ~r� �~r � ~l�: ~l� � 0:

(14)

In the limit t! 0, the last terms in each equation force

 ~r! ~l; (15)

so that, as explained earlier, all points on the string reach
the speed of light. Conversely, in the limit of large times,
when a loop is well inside the Hubble horizon, one expects
it to evolve as in flat space-time. As explained below, when
we convert to proper time and space coordinates, the right
and left movers defined in (13) correspond to flat space-
time right and left movers after a reparametrization of 	.
Our numerical calculations verify that ~r and ~l tend towards
fixed curves at large times, providing a straightforward
matching onto flat space-time solutions in this asymptotic
regime (see Appendix B).

The equations of motion are nonlinear and hard to solve
analytically. We have therefore resorted to a numerical
study of a variety of cases. We have also developed ana-
lytic approximations in the large time and small time
limits, which we compare to the numerical results. Recall
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that the string length is
M�1
11 when we start our evolution,

and the Hubble radius is larger by a factor ��1
0 . As time

runs forward, the comoving Hubble radius shrinks as jtj
and the comoving loop size grows as jt=tsj��1=2�. Once the
string crosses the Hubble radius, its vibrations cease and
the string follows a kinematical super-Hubble evolution.

The ‘‘freezing’’ of the string outside the Hubble radius
is, as we will discuss below, like a sort of measurement
process. Depending on the phase of oscillation of the
string, either the string coordinate can be frozen, or its
momentum. In either case, the conjugate variable then
acquires a large kick following t � 0. After crossing the
singularity, the loop re-enters the Hubble radius and starts
oscillating as in flat space once again (see Fig. 1).

A. Asymptotic states: flat space description

At early and late times the string loop is well inside the
Hubble radius and we expect it to follow standard flat
space-time evolution, which we now pause to review. In
standard flat coordinates,

 ds2
fl � �dT

2 � �d ~X�2; (16)

we can choose timelike, orthonormal gauge, T � � and
�@T ~X� � �@	 ~X� � 0. The string then evolves according to
the wave equation

 @2
T
~X � @2

	
~X; (17)

with the constraint

 �@T ~X�2 � �@	 ~X�2 � 1: (18)

The usual left and right movers are given by

 

~R � @T ~X� @	 ~X; ~L � @T ~X� @	 ~X; (19)

and the equations of motion may be written

 @T ~R� @	 ~R � 0; @T ~L� @	 ~L � 0: (20)

The solutions may be expressed as a sum over Fourier
modes,

 Ri�T � 	� �
X�1

n��1

�ine
�in�T�	�;

Li�T � 	� �
X�1

n��1

~�ine
�in�T�	�;

(21)

where reality imposes �~�in�
 � ~�i�n and ��in�
 � �i�n. To
quantize the string, these Fourier parameters are promoted
to operators. After following the canonical procedure, and
regularizing and renormalizing the nonlinear constraints,
one finds there are three massless excitations, consisting of
states of the form ���1 ~���1j0i where j0i is the oscillator
vacuum state. These states consist of a space-time scalar
(the dilaton), a symmetric and traceless tensor (the gravi-
ton) and an antisymmetric tensor. These modes are the

most relevant to cosmological perturbation theory and
evolving perturbations through the bounce. Hence, the
rest of the paper will be dedicated to their classical analogs.
We shall not, however, study the important issue of mass
renormalization, which we defer to future work.

The classical string configuration with no angular mo-
mentum, hence corresponding to a dilatonlike state, con-
sists of a circular loop. In its rest frame, a loop in the XY
plane takes the form:

 

~X D � cos�T��cos�	�; sin�	�; 0; . . . ; 0�; 0<	 � 2�:

(22)

In contrast, the state with maximal angular momentum for
a given energy, analogous to the graviton, takes the form of
a rotor, a spinning doubled line:

 

~X G � cos�	��cos�T�; sin�T�; 0; . . . ; 0�; 0<	 � 2�:

(23)

The left and right movers are easily calculated: they are
circles in the XY plane which are parallel in the case of the
dilatonlike state and antiparallel in the gravitonlike state. A
state of intermediate angular momentum may be con-
structed by taking the left and right movers to trace out
two circles in perpendicular planes. Choosing the right
mover in the XY plane, and the left mover in the XZ plane,
the classical solution is

 

~XA �
1
2�2 cos�T� sin�	�; cos�T � 	�; cos�T � 	�; 0; . . . ; 0�;

(24)

The three solutions and their description in terms of left
and right movers on the sphere are depicted in Fig. 2.

In order to connect these flat space-time solutions to
those solutions in an expanding universe, we need to relate
comoving coordinates ~x and conformal time t to physical
coordinates ~X and proper time T. Since d ~X � ad~x and
dT � adt, the factors of the scale factor a cancel out in the
velocity. One can also show, using the result of Ref. [18]
that the time-averaged velocity squared of a loop in its
center of mass frame is 1

2 , that (12) implies that
R

d	 /

jtj1=2 / a�t�. Using this result, one can show using an
appropriate reparametrization of 	 that the left and right
movers (13) map precisely onto the flat space left and right
movers (19). This makes it easy to send in states of any
desired asymptotic form, and to read off the states in which
they come out. A further convenience of the timelike
orthonormal gauge we use is that we do not need to
actually perform the reparametrization of 	. At any value
of 	 one can read off the left and right movers as functions
of the time t.
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B. Conventions and important quantities for the
incoming/outgoing modes

As noted above, we will generally choose 	 to run from
0 to 2�. Moreover, in our convention capital letters (like X,
E, etc.) denote flat space-time quantities, i.e. those which
correspond to flat space-time variables in the regime where
the expansion of the universe is adiabatic (i.e. where the
string loop is well inside the Hubble radius). On the other
hand, lower case symbols (like x, 
, t, etc.) describe
coordinates or quantities in the cosmological background.
To specify an incoming mode, for the circle or rotor we will
assume the initial string configuration is in the xy plane,
with some center of mass velocity in the z direction. We
define the latter by

 vz �

R

 _zd	R

d	

; (25)

calculated at a time where we start the evolution, which we
shall formally denote �ts. The flat space solutions used to
specify initial conditions are obtained by Lorentz boosting
those given above. Moreover, we will define the comoving
string size at ts to be

 �x �
1

2�

Z
d	j ~x0j: (26)

and we shall choose this to be unity in the initial state. For
each choice of the initial time ts, there will be an associated
orbifold rapidity �0 � t�1

s . Finally, to get a quantitative
measure of how much energy was produced (or lost) during
the t � 0 transition, one can define a flat-space-time en-
ergy

 E �
Z
d	
jtstj�1=2 (27)

which approaches a constant for large values of jtj, as
explained above. The energy ratio between an incoming
mode and an outgoing one (� � Ein=Eout) provides a
measure of how much energy was produced during the
string’s passage across the singularity.

We will now consider separately the behavior of the
circle, the rotor and the classical analog of the antisym-
metric tensor.

III. CIRCULAR LOOP

The simplest nontrivial case to study is a circular
loop, where the symmetry reduces the problem to a single
dynamical variable. Employing the symmetric ansatz
~x��; 	� � �����cos�	�; sin�	�; 0; . . . ; 0� where � is the co-
moving radius of the loop, in the gauge t � � the string
action (9) reduces to

 S � �2��2

Z
dt�0jtjj�j

���������������
1� _�2

q
: (28)

To minimize clutter, from now on we shall work in time
and length units in which 2��2�0 � 1. The canonical
momentum p conjugate to � and the Hamiltonian are
found, respectively, to be

 p �
d�
dt

jtjSj�j������������������
�1� _�2�

p ; H � 
 �
���������������������
p2 � t2�2

q
; (29)

and Hamilton’s equations are

 

dp
dt
� �

t2�
H
;

d�
dt
�
p
H
: (30)

 

FIG. 2 (color online). Classical flat space-time solutions consisting of the lowest mode excitations with minimal, maximal and
intermediate angular momentum. To get zero angular momentum the right and left movers lie in the same plane with parallel
orientation. This configuration corresponds to an oscillating circular loop. The solution with maximal angular momentum is similar but
has the left and right movers oppositely oriented. This solution describes a spinning doubled line, or rotor. A classical solution with
intermediate angular momentum is achieved by taking the right mover circle to lie in a plane orthogonal to the left mover circle. The
solution is three-dimensional. However, under a suitable projection it appears as an elliptical loop, spinning through an intermediate
doubled line configuration. The WV plane is spanned by V̂ � �0; 1; 1; 0; . . . ; 0�=

���
2
p

and Ŵ � �0;�1; 1; 0; . . . ; 0�=
���
2
p

.
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Finally, because the Hamiltonian is explicitly time-
dependent, we obtain

 

dH2

dt
� 2t�2: (31)

The qualitative properties of the solutions to (29)–(31)
are easily seen. The energy density 
 � H takes its mini-
mal value at t � 0, where the radial speed d�=dt reaches
unity. This last effect triggers interesting effects which we

shall describe below. The solutions are regular for all t
except for the special case where the momentum p van-
ishes at t � 0. For that case, (31) implies that H 
 �0jtj at
small t. From (29) and (30), one finds that p is very mildly
nonanalytic, p
� 1

2 t
2sign�t�, whereas �
 �0 �

1
4 t

2=�0

is regular.
Eqs. (29)–(31) are invariant under the rescaling t! �t,


! �2
, p! �2p and �! ��, hence solutions for
loops of different sizes are trivially related, and inequiva-
lent solutions are labeled by only one parameter, which
may, for example, be taken to be the asymptotic phase of
the oscillation.

The motion of the loop is simplest to describe in two
asymptotic regimes, corresponding to large and small jtj,
when the loop’s radius � is well within, or outside, the
Hubble radius. In the first regime the loop oscillates with
fixed amplitude and period in proper time. In comoving
coordinates and conformal time the oscillation amplitude
changes as a�t��1 � �ts=jtj�

1=2, and the frequency changes
as a�t� / �jtj=ts�1=2, as illustrated in Fig. 3. The energy
density 
 scales as a�t� � �jtj=ts�1=2 in this regime.

Once the comoving Hubble radius jtj falls below the
loop radius �, the loop enters a new kinematical regime in
which the tension plays a subdominant role. As the time
tends to zero, all points on the string approach the speed of
light. The loop receives a ‘‘kick’’ from passing through t �
0 and emerges with a shift in its oscillation phase and a net
energy gain or loss. In the case of a circular loop, if the
radius is expanding at t � 0 the loop gains energy, whereas
if it is contracting the loop loses energy. Time reversal,
which is a symmetry of the equations, relates these two
situations. Figure 4 shows two examples.

A. Asymptotic states at large jtj

In order to parameterize the incoming and outgoing
states, it is helpful to perform a canonical transformation

 

0
t

ρ

(|t  /t|)1/2
s

FIG. 3 (color online). Numerical solution to Eqs. (29)–(31).
For large jtj, the comoving radius � oscillates, with an envelope
growing as jts=tj1=2. The evolution across t � 0 is smooth and, in
this particular example, it results in a larger amplitude oscillation
after the transition.

 

0
t

ρ
ρ

0
t

ρ
ρ

FIG. 4 (color online). The radius (solid line) and the velocity (dashed line) are plotted for two different circular loops. In the left plot
the singularity is crossed after a maximum in the radius and almost at a minimum in the velocity. In this particular case, there is a loss
of energy after the transition: the outgoing mode has a smaller amplitude than the incoming one. The right plot shows the opposite
situation, with the radial coordinate approaching a maximum at the singularity, and energy being produced.
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to new coordinates ��;P �:

 P �
p2 � t2�2

2jtj
; tan��� �

�jtj
p
: (32)

At large times, the angle � represents the oscillation
phase while the conjugate momentum P tends to a con-
stant measuring the energy stored in the loop. The
Hamiltonian equations now read

 

dP
dt
� �

P

t
cos�2��;

d�
dt
�

�������
jtj
2P

s
�

1

2t
sin�2��:

(33)

These equations are readily solved at large times, giving
 

P ! P1 � const:;

�!
Z �������

jtj
2P

s
dt
�

2

3

����������
jtj3

2P1

s
��0;

(34)

where �0 is a constant phase. From (32) it follows that the
energy (27) E /

�����
P
p

and hence it tends to a constant at
large times, as expected. In the usual comoving � coordi-
nate, the asymptotic behavior of the solution at large times
is

 �


����������
2P1
t

s
sin
�
2

3

����������
t3

2P1

s
��0

�
: (35)

Upon identifying proper time and radius, this takes the
form of the flat space solution (22), up to an arbitrary
phase. Due to the rescaling symmetry discussed above,
the only nontrivial parameter in the incoming state is the
phase �0 � �in. The outgoing state may be completely
characterized by a similar phase �out, and by the energy

ratio � � Ein=Eout, both of which can be expressed as a
function of the incoming phase. Figure 5 shows all the
information needed to describe the classical transition, i.e.,
the outgoing energy and phase in term of similar ingoing
quantities. In the case of the energy ratio �, one can
determine the energy production for an incoming mode
with fixed amplitude but unknown phase, or equivalently,
the average energy production weighted by the Liouville
measure. By integrating the curve in Fig. 5, we find

 h�i �
1

2�

Z 2�

0
�d�in � 2:12: (36)

Before moving into the regime close to the singularity
let us briefly comment on the consequences of including a
nonzero center of mass velocity. As we increase the initial
center of mass velocity vz, the energy production decreases
so that the plot for � (Fig. 5) shrinks in the vertical
direction. This is to be expected since the z component
of the string’s velocity means that it is closer to the speed of
light and hence suffers less of a ‘‘kick’’ as it passes through
t � 0. This translates into less energy production or energy
loss.

B. Behavior near the singularity

Classically, the state of a circular loop with zero center
of mass velocity is specified by two numbers, its radius and
the canonically conjugate momentum. However because of
the scaling symmetry discussed above, there is really only
one physical parameter. Near the singularity, we can
choose the scale-invariant combination jp0=�2

0j, where
p0 and �0 are the values of p�t� and ��t� at t � 0. This
combination compares the radial momentum to the size of
the loop at the singularity: if jp0=�2

0j � 1, then the radius

 

π−π 0
φ

π

0

−π

φ

in

o
u
t

π−π 0
φ

0

1

2

3

η

in

FIG. 5. The outgoing phase �out measured at large times is shown as a function of the incoming phase �in (left plot). There are two
different regions, one where �out varies steeply and the other where it is almost flat. The right hand plot shows the energy production
ratio � � Eout=Ein as a function of the incoming phase �in. The ratio � is less than one in the steep region of the left hand plot, and
greater than one outside it. Two neighboring regions are related by time-reversal (which sends � to 1=�), and they are separated by
special points at which � � 1. These special points, denoted by the vertical dashed lines, correspond to the loop crossing t � 0 with
either zero momentum or zero radius.
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is large and not much changed during the transition across
the singularity. In contrast, if jp0=�2

0j � 1, then the mo-
mentum is hardly changed during the transition. In each
case, the conjugate variable undergoes a large change
across the transition. Heuristically, one can think of the
transition as ‘‘measuring’’ the loop radius or its momentum
in the two cases, so that the conjugate variable acquires a
large jump, as a consequence of Liouville’s theorem.
Figs. 6 and 7 illustrate the two situations. The former
situation, where the radius is ‘‘frozen’’ during the transi-
tion, describes the rising portion of the ���in� curve in
Fig. 5. As can be seen from the plot, this is the more
common situation for initial states with uniformly chosen
�in.

Likewise, certain features of Fig. 5 are readily under-
stood. Recalling that the phase � and the ‘‘energy’’ P
defined in (32) are canonically conjugate, one sees how the
squeezing of the outgoing phase causes the loop energy to
be amplified, and vice versa.

C. Analytical treatment: An expansion in the string
tension

To understand the behavior near the singularity better,
we consider expanding about t � 0. The simplest possi-
bility is merely to perform a Taylor series in t, but this
expansion is poorly convergent. Instead, we have devel-
oped an analytic solution method which is formally an
expansion in the string tension, or 1=�0.
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Adiabatic approx.
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FIG. 6 (color online). Both numerical simulations and analytical approximations for the radius � (left plot) and the canonical
momentum (right plot) are shown as a function of time for a circular loop. Because of the small invariant parameter jp0=�

2
0j � 0:1, it is

the loop radius (left plot), not the momentum (right plot) that ‘‘freezes’’ during the transition. The expansion in the string tension (see
text) works well in this case, even beyond Hubble crossing. In contrast, the free particle approximation only agrees with the numerics
close to t � 0, where there is drastic change in the string momentum. If the loop radius is taken to be of order the string length ls at a
time ts, then this case corresponds to �0 
 1=260.
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FIG. 7 (color online). Another circular loop example, where in contrast to the situation in Fig. 6, the ratio jp0=�
2
0j � 10 so that the

momentum p is nearly frozen across the transition, whereas the radius � changes significantly—undergoing a complete oscillation. In
this case, the expansion in the string tension works only until Hubble crossing, and describes the maximum and minimum with less
precision. If the loop radius is taken to be of order the string length ls at a time ts, then this case corresponds to �0 
 1=128.
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To perform this expansion, let us introduce a formal
parameter 
 multiplying the tension term in the
Hamiltonian, so that

 H !
������������������������
p2 � 
t2�2

q
: (37)

We now calculate the Hamiltonian equations as before,
using (37) to eliminate the 
-dependence of the equation
for the time-dependence of the Hamiltonian. We obtain

 

dp
dt
� �


t2�
H
;

d�
dt
�
p
H
;

dH2

dt
�

2

t
�H2 � p2�:

(38)

In this form, 
 appears in only one term in the equations of
motion. We can solve the equations as a power series in 

by inserting the lower order solution into the term involv-
ing 
 at each new order. At the end of the calculation, we
set 
 � 1 and fix all remaining integration constants.
Notice that we do not allow powers of 
 in the initial
conditions: the approximation applies only to the dynami-
cal evolution.

The zeroth order solution is found by setting 
 � 0 in
Eqs. (38). The first equation implies p � p0, a constant.

The last equation then implies H �
���������������������
p2

0 � C
2t2

q
, with C a

constant. Finally, the equation for � is easily integrated.
Finally, we set 
 � 1 and identify the integration constant
C. Comparing the expression forH in our solution with the
exact Hamiltonian, we can see that C � �0, the radius of
the loop at t � 0. Hence we obtain the zeroth order solu-
tion

 � � �0 �
p0

�0
sinh�1

�
�0

jp0j
t
�
: (39)

This solution is the same as that for a winding string,
behaving as a particle of mass M / jtj, which reaches the
speed of light instantaneously at t � 0 as described in
Ref. [1].

It is straightforward to compute the solution to higher
order in 
, although the integrals become increasingly
difficult. Details are given in Appendix A. In general, the
series solution for � and p to a given order are truncated
polynomials in p0=�

2
0, where the coefficients are functions

of � 	 sinh�1� �0

jp0j
t�. The series converges for much larger

times than a simpler Taylor series in t in part because �
only grows logarithmically with time. If p consists of a
polynomial of order n in p0=�

2
0, then � consists of terms up

to order n� 1. Therefore, if jp0=�
2
0j � 1 the higher power

terms will be more important than the lower power ones,
and vice versa for jp0=�2

0j � 1. To second or higher orders
in the expansion, the time-dependent series coefficients
include polylogarithm functions, which appear naturally
in Feynman diagrams [19], and in number theory. This may
be a sign of deeper underlying simplicity.

In Figs. 6 and 7, the expansion in the string tension,
taken to second order, is compared with numerical solu-
tions. The analytic approximation shows good agreement
with the numerics up to times where the loop is starting to
be well described by the appropriate adiabatic flat-space
oscillatory solutions, i.e., when the loop is inside the
Hubble radius. We conclude that the expansion in the string
tension which we have defined is a powerful tool for
studying classical evolution right across the transition.

IV. ROTOR

The classical analogue of the graviton is a rotor solution,
a spinning doubled line whose ends move at the speed of
light. The flat space-time solution representing this incom-
ing state is given by Eq. (23) or, if it has nonzero center of
mass velocity, a Lorentz-boosted version of it. The appro-
priate initial conditions for the time-dependent background
we study are given by computing the flat space-time left
and right movers, and translating these into expanding
universe left and right movers at the initial time. The
solutions take the form of a doubled line for all time and
the two end-points always move at the speed of light. The
evolution is more complicated than that for a circular loop
because there is a nontrivial dependence on 	.

There is a set of measure zero on the space of initial
conditions where the evolution is singular, when the center
of mass momentum of the rotor is precisely zero. Since
there is no preferred direction orthogonal to the plane of
the rotor, its central point must remain at rest for all t. This
conflicts with the requirement that all points must move at
the speed of light at t � 0, hence the solution must go
singular. However, we do not believe this will cause any
problem in the quantum theory. States of zero momentum
are of zero measure on phase space. So we shall study the
behavior of a rotor with nonzero center of mass momentum
pz, in the limit as pz tends to zero. We shall find that the
resulting nonanalyticity in the classical solution is rather
mild, and thus likely to be overwhelmed by the measure in
any physically realistic calculation.

By boosting the static solution (23) we can obtain a
solution with arbitrary vz, as defined in (25). Any simula-
tion is then characterized by the starting time ts and the
initial center of mass velocity vz. Contrary to the circular
loop, the oscillation phase of the incoming rotor is of no
physical significance since it can be removed by a spatial
rotation. Therefore, as far as the classical dynamics is
concerned, the solution for a rotor depends only upon vz
and there are no other parameters to consider.

The evolution of such a moving rotor across t � 0 is
illustrated in Figs. 8 and 9. In the XY plane, it develops an
‘‘S’’ shape. This may be understood as a consequence of
the opposite arms of the rotor speeding up to the speed of
light in opposite directions as t � 0 approaches. In the
Z-direction, as the central point speeds up to the speed of
light it creates a kink which then runs out across the string.
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FIG. 9. The profile of the incoming rotor shown in Fig. 8, in the z direction. The passage through t � 0 results in a kink being
produced at t � 0, which then propagates outwards across the string.

 

-4 -2 0 2 4

-4

-2

0

2

4

y

t= -15.0

-4 -2 0 2 4

-4

-2

0

2

4 t= -2.0

-4 -2 0 2 4

-4

-2

0

2

4 t= -0.5

-4 -2 0 2 4
x

-4

-2

0

2

4

y

t=+3.0

-4 -2 0 2 4
x

-4

-2

0

2

4 t=+6.0

-2 0 2
x

-2

0

2 t=+7.5

-4 -2 0 2 4

-4

-2

0

2

4 t=0.0

-4 -2 0 2 4

-4

-2

0

2

4 t=+0.5

-4 -2 0 2 4

-4

-2

0

2

4 t=+2.0

-2 0 2
x

-2

0

2 t=+9.2

-2 0 2
x

-2

0

2 t=+10.0

-2 0 2
x

-2

0

2 t=+12.0

FIG. 8. An incoming flat space-time rotor solution (23), with a small initial center of mass velocity, vz � 0:01 and ts � 25. The rotor
evolves into an ‘‘S’’ shape in the XY plane as the two opposite arms speed up towards the speed of light. The outgoing state involves a
superposition of higher oscillation modes of the string, as may be seen from its evolution.
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A. Profile of the kink

As the rotor approaches t � 0, it develops a kink in the
direction of its motion, whose size and shape depends on
the magnitude of the transverse momentum. For zero
transverse momentum, the classical evolution is ill-
defined. This is a set of measure zero, but the breakdown
of the classical equations at pz � 0 may be indicative of
some divergence. Therefore it is important to study the
evolution for small pz to see whether physical quantities
diverge in that limit.

As the transverse momentum gets smaller, the kink gets
narrower and narrower, as shown in Fig. 10.

The profile of the kink may be modeled analytically as
follows. Consider the equation for the velocity of the string
in the z direction, _z. From Eq. (10), at t � 0 we have

 _z �
�z�0�

�0�

�
�z�0�������������
~��0�2

p ; (40)

where ~� � 
 _~x is the canonical momentum density at each
point on the string, and we used (11) to get the last equality.
For small transverse velocities, near the center of the rotor
we can replace �z 
 h _z0i 	

R

0 _z0d	=

R

0d	 and use the

Taylor expansion �2
x � �2

y 
 �C	�2, with C a constant.
Therefore, near the center of the rotor, the kink’s profile

at t � 0 is approximated by

 _z �
1��������������������

1� �C	
h _z0i
�2

q : (41)

This fit works well against our numerical results, as shown
in Fig. 10, with C2 
 0:2. As we take the center of mass
momentum of the loop to zero, the kink becomes more and
more strongly localized and involves higher and higher
oscillation modes of the string. However, these do not
contribute significantly to the energy. Figure 11 shows� �
Eout=Ein as a function of the loop momentum. In the limit
of small momentum, � tends to a finite constant 
1:93,
showing that there is little energy associated with the spike
generated at the center of the rotor. We conclude that at low
momenta, we produce a nondifferentiable but finite spike,
although physical quantities like the energy or momentum
remain perfectly finite.

B. Expansion in the string tension

Just as we have done for the circular loop, we can
describe more general string states, including the rotor,
using a formal expansion in the string tension. The details
are given in Appendix A. Following the same general
method as given for the circular loop, the zeroth order
solution is given as
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FIG. 10 (color online). The kink in the transverse velocity _z
around the middle of the rotor, for two very small velocities. The
profile (41) fits the shape very well for small transverse velocities
(red dashed line), where the quantity h _z0i 	
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measures the center of mass velocity at t � 0 in the z direction.
The initial conditions were: ts � 5, vz � 0:05 for the wider
curve and vz � 0:01 for the narrower curve.
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FIG. 11. The energy ratio � � Eout=Ein for a rotor is plotted
against the average center of mass speed of the loop at t � 0, i.e.,
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0d	, showing that the net energy produc-

tion is unaffected by the nonanalytic spike produced in the limit
of small transverse momentum.
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 ~x � ~x0 �
~p0

j ~x00j
sinh�1

�
j ~x00j
j ~p0j

t
�
; (42)

where ~p0, ~x0 and ~x00 are functions of 	.
Higher terms in the expansion are more difficult to

calculate and the integrals can only be done numerically
(see Appendix A for details). Figure 12 shows the numeri-
cal solution plotted against the zeroth order term in the
expansion, the first order term, and the flat space approxi-
mation, respectively. The comparison is made for an end
point of the rotor (right plot) and a representative point
further in (left plot). For the former, the adiabatic approxi-
mation holds very accurately up to Hubble crossing. Since

the point is moving at the speed of light, the zeroth and first
order terms of the expansion are nearly identical, providing
a good approximation to the motion outside the Hubble
radius. At Hubble re-entry, the solution reverts to a form
close to flat-space evolution but this is more complex to
determine hence we have not attempted to graph it. For
generic points on the rotor, the adiabatic approximation is
less accurate at earlier times: the speeding up of the central
point as the kink is created in effect extracts energy from
the normal spinning motion. As can be seen from the
diagram, the first order expansion in the string tension
does reasonably well in modeling the behavior around
t � 0 up to the first turning point.
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FIG. 13 (color online). The evolution of the right mover ~l for an incoming rotor. The right mover defines a closed curve on a three-
sphere. The left mover follows the same curve but with the opposite orientation. The condition (15) that the left and right movers
coincide t � 0, means that the evolution must deform the trajectories over the north pole of the three-sphere. The only way to get the
two curves to coincide is by deforming them into a double line at t � 0, running directly through the north pole (or the south pole if vz
is negative). The initial parameters here were vz � 0:05, ts � 45.
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FIG. 12 (color online). The numerical solution for two points on a rotor. The left plot shows the x coordinate at 	 � �=4 and the
right plot shows the x coordinate of the end point 	 � 0. The adiabatic flat space approximation reproduces the numerical solution
reasonably well until the loop crosses the Hubble radius. Beyond this point, an expansion in the string tension becomes a much better
description. In this plot, the initial center of mass speed was vz � 0:05 and ts was taken as 35.
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C. Outgoing state

When the rotor is evolved forward to large times, the
outgoing state consists of a complicated mixture of higher
oscillation modes. The precise mixture is most easily
understood by representing the outgoing solution in left
and right moving modes, which tend to fixed curves on the
unit sphere at late times. One can also use the right and left
movers to understand the motion of the rotor across the
singularity (Fig. 13). The two curves start out near the
equator (for small vz) and oppositely oriented. For zero
center of mass velocity, the curves are confined to the xy
plane and there is no way for them to coincide at t � 0.
However, if vz is positive (or negative), the curves sweep
over the north (or south) pole and coincide at t � 0.

To quantify the level of excitation produced in the
passage across t � 0, we can track the evolution of the
right and left movers in time at one particular value of	 on
the string. For very large times, the right and left movers
look like flat space solutions and become periodic func-
tions of proper time. Once the loop is well inside the
Hubble radius, for a single period the difference between
conformal time and proper time is negligible. Hence we

can just choose one value of 	 and follow the evolution of
left and right movers there. We write the expansion of the
left and right movers (21) as

 ri �
X�1

n��1

�ine�in�t�	�; li �
X�1

n��1

~�ine�in�t�	�; (43)

and compute the �in and ~�in by Fourier transforming the
solution with respect to t over a single period. As is seen in
Fig. 19, identifying the periodicity is straightforward. As
the initial center of mass velocity vz is tuned down, modes
at higher and higher n are excited, although as shown
above, the total energy in the outgoing string converges
to a finite limit as vz tends to zero (see Figs. 14 and 15).

V. CLASSICAL ANALOG OF THE
ANTISYMMETRIC TENSOR

To complete our discussion of low mode solutions, we
consider configurations with intermediate angular momen-
tum, which are the analog of the massless antisymmetric
tensor states of the quantized string. The corresponding
flat-space solution was given in (24), and its evolution,
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FIG. 14 (color online). Fourier amplitudes of outgoing right movers calculated in the asymptotic adiabatic regime for different initial
transverse speeds. The red dashed line shows the z component only, hence �z0 (the n � 0 value of the red dashed line) is the final speed
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illustrated in Fig. 2, consists of a spinning state whose
shape alternates between an ellipse and a doubled line.
The motion is simplest when projected onto planes
spanned by the vectors: x̂ � �1; 0; . . . ; 0�, v̂ � 1��

2
p �

�0; 1; 1; 0; . . . ; 0� and ŵ � 1��
2
p �0;�1; 1; 0; . . . ; 0�. In the xv

plane the solution appears as an ellipse which shrinks to a
point and re-expands. In the xw plane the motion is similar
to that of the rotor, but the length of the rotor oscillates.
(see Fig. 2).

If we follow the evolution of such a solution towards t �
0, once it has crossed the Hubble horizon, it practically
freezes in size in the x and w axes, and either its position or
its momentum freeze in the v coordinate. Apart from the
special case where the elliptical motion has a maximum at
t � 0 (which is mildly nonanalytic, like the case of a
circular loop), the motion is regular across t � 0 and
produces a tower of higher excited modes (see Fig. 16).
If the position is the frozen variable in the v direction, there
are fewer excited modes produced, and conversely if the
momentum is the frozen variable. As for the rotor, we can
picture the evolution of the antisymmetric tensor’s classi-
cal analog in terms of left and right movers on the sphere
(Fig. 17).

VI. QUANTUM EVOLUTION ACROSS T � 0

In this section we treat the quantum production of ex-
cited string modes in a simple approximation, which may
be extended to discuss more complicated string states. As
we have already indicated, for large string states it is
reasonable to expect that, provided the quantum theory

remains well-defined, quantum corrections should be small
and our classical calculations should be accurate.

Here we shall limit ourselves to an illustrative example,
consisting of a truncation of the full theory to the simplest
oscillation mode, namely, a circular loop. The method we
use generalizes to more interesting excited states and we
shall study this in future work. We start from the classical
equations of motion for a loop,

 

dp
dt
� �

t2�
H
;

d�
dt
�
p
H
; H2 � p2 � t2�2: (44)

We would like to quantize these equations, but the non-
linearity renders this difficult. We proceed in the following
approximation. The operator Ĥ2 � p̂2 � t2�̂2 is positive
definite, and so it is not unreasonable to attempt to ap-
proximate the terms H in the first two equations with the
c-number quantity,

 Hc�t� 	
���������������
hĤ2�t�i

q
: (45)

With this replacement, we have only to solve the linear
quantum system whose Heisenberg equations of motion
are

 

dp̂
dt
� �

t2�̂
Hc�t�

;
d�̂
dt
�

p̂
Hc�t�

; (46)

where Hc�t� is as yet undetermined.
The general solution to (44) may be expressed in terms

of two linearly independent solutions, defined at some
initial time t0, as follows:
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�̂�t� � �̂0f��t; t0� � p̂0g��t; t0�;

p̂�t� � �̂0fp�t; t0� � p̂0gp�t; t0�;
(47)

where f�, fp, g� and gp satisfy the initial conditions f� �
1, fp � 0, g� � 0 and gp � 1 at time t � t0.

We now wish to express the operators �̂0 and p̂0 in terms
of creation and annihilation operators for the incoming
vacuum state. To do so, we need to identify the relation
between � and p and the properly normalized coordinate
and momentum of a harmonic oscillator at large jtj.
Noticing that the quantity as

 P̂ �
Ĥ2

2jtj
�
p̂2 � t2�̂2

2jtj
; (48)

defined in (32), is an action variable at large jtj (see
Sec. III A), we identify the proper momentum �̂ �
p̂=

�����
jtj

p
and radius R̂ � �̂

�����
jtj

p
as the asymptotic coordinate

and momentum of a corresponding harmonic oscillator.
These variables can then be expressed in terms of creation
and annihilation operators, defined at some large negative
time t0:

 �̂ 0 �
�a0 � a

y
0 �����������

2jt0j
p ; p̂0 �

�������
jt0j
2

s
�a0 � a

y
0 �

i
: (49)

It is then clear how to compute the function Hc�t�, from the
formulas above, for any chosen incoming state. In particu-
lar, in the incoming vacuum state defined by a0j0iin � 0,
we find

 H2
c�t� �

1

2

�f2
p

jt0j
� jt0jg2

p � t2
�f2

�

jt0j
� jt0jg2

�

��
: (50)

It is straightforward to solve Eqs. (46) for the two inde-
pendent solutions f and g, using (50) to define Hc�t�. This
then provides a self-consistent semiclassical approxima-
tion to the full quantum evolution.

Figure 18 shows the results of this calculation, for the
incoming vacuum state. From formula (48), we identify
H2
c=�2jtj� as the asymptotic harmonic oscillator energy at

late times, which may in our chosen units be expressed as

inh0j�Nout �
1
2�j0iin where N is the usual number operator.

Therefore, from the Figure, we see that in the outgoing
state,

 inh0jNoutj0iin � j�j
2 � 2:04; (51)

where � is the usual Bogoliubov coefficient measuring the
amount of particle creation [15]. Similar results are ob-
tained for excited incoming states. One can straightfor-
wardly compute the Bogoliubov coefficients � and �
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including their phases, using the same method. The results
will be given elsewhere.

VII. SUMMARY

We have herein discussed how classical strings propa-
gate through the simplest possible big crunch/big bang
transition in M theory, and made a start on considering
the quantum problem. As we have discussed, the usual �0

expansion must be replaced by an expansion in the string
tension, i.e. 1=�0, once the Hubble radius falls below the
string length. We have presented an analytic solution of the
Nambu equations as a formal expansion in the string
tension, which could form the basis for a quantum treat-
ment of the small time regime.

Using the decomposition into right and left movers, we
have shown how higher oscillation modes are excited by a
finite amount as the string crosses the singularity. We have
also given a discussion of some special cases where the
string is constrained by symmetry to be static at t � 0.
Except for a set of configurations of measure zero, the
classical counterparts of the dilaton, graviton and antisym-
metric tensor string states evolve smoothly across t � 0.

We have made a modest start at describing the quantum
evolution of string across t � 0, discussing a truncation of
the theory to the lowest mode describing a circular loop.
The method we have employed appears to be readily
extendible to more complex incoming states, and to the
inclusion of more and more string modes. As this is done,
we can begin to address the subtle issues of renormaliza-
tion which we have so far ignored. It may also be feasible
to go beyond the first semiclassical calculation we have
described.

Our main conclusion is that classical strings pass
smoothly through singularities of the simple type studied
here, and the excitations they acquire in doing so may be
readily calculated in a formal expansion in the string
tension. While much remains to be done to develop a full
quantum description, our findings reported here are
encouraging.
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APPENDIX A: SERIES EXPANSION AROUND t � 0

1. Circular loop

As explained in Sec. III C, in order to study the motion
of the string across t � 0 we perform a formal expansion in
the string tension. We do so by introducing a formal
parameter 
 in front of the relevant term in the
Hamiltonian, and then we solve the equations of motion
to a given order in 
. Finally, we take 
 � 1. With this

parameter 
, Eqs. (29)–(31) take the form (38), which we
repeat here:

 

dp
dt
� �


t2�
H
;

d�
dt
�
p
H
;

dH2

dt
�

2

t
�H2 � p2�:

(A1)

From this point, there is only one consistent way to pro-
ceed. At lowest order in 
, we solve the above equations
with 
 � 0. Then we substitute this solution into the term
involving 
 and integrate with respect to t to obtain first p,
then H and finally � to order 
. This solution is again
substituted into the right-hand side of the first equation,
and the procedure continued. Effectively, we have

 

dp�n�

dt
� �
t2

�
�
H

�
�n�1�

;
d�t�2�H2��n��

dt
� �2

�p2��n�

t3
;

(A2)

which can be written as integral equations,
 

p�n� � p0 � 
I�n�1�;

�H2��n� � p2
0 � �

2
0t

2 � 4
p0J
�n�1� � 2
2K�n�2�; (A3)

where p�0� � p0, ��0� � �0 and I�n��t�, J��n�t�, and K�n��t�
are defined as

 I�n��t� � �
Z t

0

~t2
�
��~t�
H�~t�

�
�n�
d~t; J�n��t� �

Z t

0

I�n��~t�
~t3

d~t;

(A4)

 K�n��t� �
Z t

0

��I�~t��2��n�

~t3
d~t; (A5)

Now Eqs. (A3) have the desired form. Finally, we use these
solutions for p and H to construct � to the same order in 

by expanding the quotient

 

d��n�

dt
�

�
p
H

�
�n�
: (A6)

To zeroth order in 
, we find

 p�0� � p0; H�0� �
���������������������
p2

0 � C
2t2

q
; (A7)

where C is an integration constant that we will fix at the
end, after setting 
 � 1. The solution to ��0� is then given
by

 ��0� � �0 �
p0

jCj
sinh�1

�
jCj
jp0j

t
�
: (A8)

In order to construct the next order solutions, there is a
change of variables which simplifies the expressions, given
by

 � 	 sinh�1

�
jCj
jp0j

t
�
; (A9)

thus the zeroth order solutions look like
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 p�0� � p0; H�0� � p0 cosh���;

��0� � �0 �
p0

jCj
�:

(A10)

To next order in 
, we get
 

p�1� � p0

�
1�


p0�0

4C2 �2�� sinh�2���

�

p2

0

4C4 ��
2� sinh2����� sinh�2���

�
;

�H2��1� � p2
0

�
cosh2����


p0�0

2jCj3
�2�cosh�2��� sinh�2���

�

p2

0

2C4 ��
2 cosh�2��� sinh2����� sinh�2���

�
:

(A11)

The parameter 
 governs the dynamics of solutions near
t � 0, so it can not appear in the initial conditions.
Consequently, after setting 
 � 1 the value for C is deter-

mined using the equation for the Hamiltonian (29), which
implies @2

t H2�0� � 2�2
0. From the solution of �H2��0�, or

equivalently �H2��1�, at t � 0 one reads C � �0. Therefore,
the solutions for p�1� and H�1� are just polynomials in the
scale-invariant parameter jp0=�2

0j.
Note that the functions p�1� has an odd and an even piece

with respect to �. Therefore, the function will be more
symmetric around t � 0 if jp0=�2

0j � 1, and more asym-
metric for the converse value. The odd-� part will always
have a zero near t � 0, which represents either the maxi-
mum or the minimum in � near t � 0. The other zero of p
depends on the even-� piece, which is close to t � 0 only
for jp0=�2

0j � 1. However, the series is only accurate for
small � which guarantees �t2�=H is small after taking

 � 1, so only if the invariant parameter jp0=�

2
0j � 1 one

can go a little beyond the Hubble radius crossing.
By expanding the quotient on the right-hand side of

Eq. (A6) to first order in 
 we obtain ��1�, which looks like

 

��1� � �0

�
1�

p0

�0jCj
�� 


p2
0

4C4
0

���2 tanh��� � �� � sinh2����

� 

p3

0

12�0jCj5
�9�� 2�3 � 3� cosh�2�� � 3 sinh�2�� � 6 tanh��� � 6�2 tanh����

�
: (A12)

Again, ��1� has piece which is an even function of �, but now there are two terms which are odd-� functions. It is due to this
extra order term in p0=�2

0 that the � solution is more symmetric if jp0=�2
0j � 1 and asymmetric if jp0=�2

0j � 1, in
opposition to p�1�.

In order to obtain better precision and more maxima and minima in � with this series, one has to go beyond first order in

. However, the integrals become harder and harder to solve. Just to illustrate the flavor of the next order solutions, ��2� is
given by
 

��2� � �0cosh3���
�
cosh3��� �

p0

�2
0

��cosh3���� �
p2

0

16�4
0

cosh2������1� 4�2� cosh��� � cosh�3�� � 8� sinh����

�
p3

0

768�6
o
�32cosh3�����2 � 12�2 � 24� ln�2 cosh��� � 12Li2��e�2����

� ��9 cosh��� � 4 cosh�3�� � 12 cosh�5��� � �24�2 � 42� sinh��� � �120�2 � 27� sinh�3��

� 15 sinh�5��� �
p4

0

12288�7
0

�3�347� 208�2� cosh�5�� � 3 cosh�7�� � 1440� sinh�5��

� 128cosh3����144�2 ln�2� � 96�3 � 5�4 � 48�1� 3�2� ln�cosh�����

� 6 cosh�����647� 40�2 � �473� 1248� cosh�2��� � 96��2�17� 6�2� sinh��� � �65� 28�2� sinh�3���

� 96�24 cosh���3�4Li3��e�2�� � 8Li2��e�2�� � 3��3����

�
p5

0

122880�9
0

�4 cosh����16cosh2����40�2 � 7�4 � 480�2 � 720�4 � 20�6��

� 320�3 cosh����4� 13 cosh�4�� � 57 cosh�2�� � 192cosh2��� ln�2 cosh�����

� 15360cosh3�����2� 6�2�Li2��e�2�� � 6�Li3��e�2�� � 3Li4��e�2���

� 30 sinh����1204� 1824�2 � 320�4 � 1845 cosh�2�� � 2560�2 cosh�2���

� 30 sinh����448�4 cosh�2�� � 516 cosh�4�� � 480�2 cosh�4�� � 3 cosh�6����
�

(A13)
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where we have already set 
 � 1 and C � �0. In the above
expression, ��x� is the Riemann Zeta function and Lin�z� is
the n-degree polylogarithm function, which is defined as
[20]

 Li n�z� 	
X1
k�1

zk

kn
; (A14)

where z belongs to the open unit disk in the complex plane,
and is defined uniquely for jzj> 1 by analytic
continuation.

2. Expansion in the string tension for a general string
configuration

In this Appendix we want to construct a formal expan-
sion in the string tension for an arbitrary string configura-
tion. Our starting point is the Hamiltonian corresponding to
the action (9),

 H �
Z
d	H ; H �

�����������������������������
~P 2
� 
t2� ~x0�2

q
; (A15)

where in analogy with the circle, we have chosen to work
in units where �2�0 � 1 but we have inserted a formal
parameter 
 in front of the term involving the string
tension. The Hamiltonian equations read as follows:

 @t ~P � 
t2@	

�
@	 ~x

H

�
; @t ~x �

~P

H
;

@tH
2 �

2

t
�H 2 � ~P 2

�:

(A16)

The second equation can be written in the integral form

 

_~x �
~p0 � 
~I

H
; (A17)

where ~p0 � ~p0�	� is the momentum distribution at t � 0,
and

 

~I �n��t; 	� �
Z t

0
d~t~t2@	

�
@	 ~x�~t; 	�

H �~t; 	�

�
�n�

(A18)

Similarly, H �t; 	� also has an expansion with respect to 
,
given by

 �H 2��n� � ~p2
0 �D

2
0t

2 � 4
 ~p0 � ~J
�n�1� � 2
K�n�2�;

(A19)

where D2
0 is an integration constant that we will fix after

taking 
 � 1, and

 

~J �n��t; 	� �
Z t

0

d~t
~t3
~I�n��~t; 	�;

K�n��t; 	� �
Z t

0

d~t
~t3
�� ~I�~t; 	��2��n�

(A20)

With these definitions, Eq. (A17) becomes @t ~x�n� � �
~P
H
��n�,

and hence the zeroth order equation in 
 is

 

_~x �0� �
~p0����������������������

~p2
0 �D

2
0t

2
q ; (A21)

which is easily solved by

 ~x �0� � ~x0 �
~p0

jD0j
sinh�1

�
jD0j

j ~p0j
t
�
; (A22)

where ~x0 is the string shape at t � 0. After setting 
 � 1
the Hamiltonian Eq. (A15) implies @2

tH
2�0� � 2� ~x0�0��2,

which translates into D0 � j ~x
0�0�j.

Now, to first order in 
, we find the equation for ~x is
given by

 

_~x �1� �
~p0����������������������

~p2
0 �D

2
0t

2
q �

1� 
I�0� � 

2t2 ~p0 � ~J

�0�

~p2
0 �D

2
0t

2

�
; (A23)

and with a similar change of variables to that we intro-
duced before for the circular loop, � � sinh�1�jD0jt

j ~p0j
�, the

first order solution reduces to

 

~x � ~x�0� �


jD0j

Z �

0
d# ~I�0��#;	� �

2
 ~p0

jD0j ~p2
0

Z �

0

sinh2�#�
cosh�#�

�
Z #

0

cosh� ~#�

sinh3� ~#�
~p0 � ~I

�0�� ~#;	�d ~#d# (A24)

These integrals can be reduced to a single integral by
changing the order of the integrals, provided no conver-
gence issues arise. For situations where the parameter
j ~p0j=jD0j 
 1, there is no difficulty and the integrals can
be exchanged in the following way

 Z �

0
d# ~I�0��#;	� �

~p2
0

D2
0

Z �

0
d ~#sinh2� ~#� cosh� ~#�

� �# � ~#�@	

�
@	 ~x� ~#;	�

H � ~#;	�

�
�0�
;

Z #

0

cosh� ~#�d ~#

sinh3� ~#�
~I�0�� ~#;	� �

~p2
0

2D2
0

Z #

0
d ~# cosh� ~#�

�

�
1�

sinh2� ~#�

sinh2�#�

�

� @	

�
@	 ~x� ~#;	�

H � ~#;	�

�
�0�
:

We have used these last expressions for the example in
Fig. 12.

In principle, the method we have presented may be
extended to second or higher order in the string tension.
However, the integrals become very complicated and only
in simple cases, like the circular loop, one could actually
calculate them analytically.
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APPENDIX B: CHECK OF NUMERICAL
EVOLUTION

In order to check our numerical algorithm for following
the string evolution, we have performed a number of tests.
Figure 19 shows the behavior of right and left movers for
an incoming rotor. One can readily distinguish the regime
of adiabatic oscillations from the super-Hubble evolution
around the singularity. In the former region, the right and
left movers oscillate as in flat space-time. Different posi-
tions 	 on the string are distinguished only by a phase
difference. Moreover, because the rotor is isotropic ini-
tially, the incoming x and y components of the right and left
movers are equivalent. However, after the singularity these

components behave differently, in agreement with the loss
of isotropy in the xy plane. Furthermore, the spinning
doubled line structure makes the left movers equivalent
to the right movers, with only a phase difference. This
structure is preserved across the singularity, hence only
�n, with n-odd, are produced during the transition.
Contrary, the z direction gets modified during the singu-
larity, from constant right and left movers to a mix of
excited states with both, odd and even n. In the 1=�0

region, the evolution of right and left movers is completely
nonlinear and there is not any correlation between right and
left movers, between different components and, perhaps
more interesting, between different points in the string.
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