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We discuss the covariant formulation of the dynamics of particles with Abelian and non-Abelian gauge
charges in external fields. Using this formulation we develop an algorithm for the construction of
constants of motion, which makes use of a generalization of the concept of Killing vectors and tensors
in differential geometry. We apply the formalism to the motion of classical charges in Abelian and non-
Abelian monopole fields.
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I. INTRODUCTION

A standard problem in the solution of classical and
quantum mechanical systems is to identify the constants
of motion associated with the system. There are many ways
to obtain constants of motion, but two methods are fairly
common in different branches of physics. In the canonical
phase-space formulation of classical conservative systems
we have to identify all dynamical quantities Q which
commute with the Hamiltonian in the sense of Poisson
brackets1:

 fQ;Hg � 0: (1)

The drawback of this prescription is, that for systems with
gauge interactions this formulation is usually not mani-
festly gauge covariant.

On the other hand for systems with a nonflat configura-
tion space, such as particles moving on a curved manifold
(or space-time, in general relativity) the appropriate algo-
rithm is to search for Killing vectors and their higher-rank
generalizations. In Riemannian geometry these are cova-
riant objects, but the procedure is only applicable for
geodesic motion in the absence of nongeometrical external
fields of force.

As observed in [1], for constants of motion to exist in the
case of nongeodesic motion, e.g., for particles in external
fields, the symmetries of the metric and those of the
external fields have to match. In fact Killing vectors appear
explicitly in the expressions for constants of motion linear
in the momentum. In [2,3] a complete set of consistency
conditions for the existence of constants of motion were
derived for particles in arbitrary background geometries,
using a covariant Hamiltonian phase-space approach in-
cluding the contributions of spin. This procedure also
applied to constants of motion which are higher-order
polynomials in the momentum, as well as constants of
motion which are Grassmann-odd expressions in the spin

degrees of freedom, which generate standard or nonstan-
dard supersymmetries on the worldline of the system.

In this paper we show how to extend this covariant
phase-space approach to include the presence of external
gauge fields. As in [1] our non-Abelian dynamics is based
on the equations of motion postulated by Wong [4]. These
equations were studied in a geometric setting, using the
method of coadjoint orbits, for a similar purpose in [5],
while a Lagrangian realization in terms of Grassmann
variables was constructed in [6]. Having a completely
covariant phase-space formulation we derive a set of gen-
eralized Killing equations, the solution of which produces
all constants of motion in a manifestly covariant way. To
avoid unnecessary complications, we formulate all our
dynamical models in Euclidean or Riemannian space, but
the generalization to Minkowskian or Lorentzian mani-
folds is straightforward.

II. DYNAMICS OF POINT CHARGES

The classical dynamics of a point charge in a magnetic
field is described by the Lorentz force law

 m _v � qv� B: (2)

In the standard canonical formulation this equation is
derived from a Hamiltonian

 H �
1

2m
�p� qA�2; (3)

via Hamilton’s equations:
 

_r �
@H
@p
�

1

m
�p� qA�;

_p � �
@H
@r
�
q
m
�rA� � �p� qA�:

(4)

Therefore

 p � m _r� qA � mv� qA; _p � qrA � v; (5)

and after substitution and the definition B � r�A
Eq. (2) follows. In terms of the field-strength tensor F

 Fij � "ijkBk � riAj �rjAi; (6)

*Electronic address: v.holten@nikhef.nl
1In quantum mechanics, the Poisson bracket is replaced by the

commutator; for brevity and to avoid irrelevant operator ordering
complications, we stay with classical mechanics in this paper.
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the equation for the Lorentz force takes the form

 m _vi � qFijvj: (7)

In this form the equation can be extended easily to relativ-
istic particles in Minkowski space.

The above construction uses Cartesian coordinates ri
and their canonical momenta pi, such that the equations
of motion an be written in terms of Poisson brackets

 ff; gg �
X
i

@f
@ri

@g
@pi
�
@f
@pi

@g
@ri

; (8)

for phase-space functions f�ri; pi; t� and g�ri; pi; t�. In term
of these brackets

 

df
dt
�
@f
@t
� ff;Hg: (9)

The phase-space coordinates �ri; pi� are canonical as the
only nontrivial fundamental bracket is

 fri; pjg � �ij; (10)

all others vanishing:

 fri; rjg � fpi; pjg � 0: (11)

A disadvantage of this formulation is, that the canonical
momenta are gauge dependent:

 A 0 � A� r�) p0 � p� qr�; (12)

although this does not affect the fundamental brackets (10).
As a result, the Hamiltonian equations of motion are not
manifestly gauge covariant.

However, an alternative exists in which the dynamical
variables of the particle are all gauge invariant, and which
has the added advantage that the Hamiltonian takes a very
simple form. Introduce the gauge-invariant momenta

 � � p� qA � mv: (13)

Then the Hamiltonian takes the simple quadratic form

 H �
1

2m
�2: (14)

This has the form of a free-particle Hamiltonian, but the
dynamics is now manifest in the modified brackets:

 ff; gg �
@f
@ri

@g
@�i

�
@f
@�i

@g
@ri
� qFij

@f
@�i

@g
@�j

: (15)

In particular the fundamental brackets are

 fri;�jg � �ij; fri; rjg � 0; f�i;�jg � �qFij:

(16)

This shows, that the momenta � are not canonical, but act
like covariant derivatives, rather than ordinary partial de-
rivatives; indeed, the last bracket is the Poisson-bracket
version of the Ricci identity. As a result, we can derive the
homogeneous Maxwell equations (the Bianchi identities)

from the Jacobi identity:

 f�i; f�j;�kgg � f�j; f�k;�igg � f�k; f�i;�jgg � 0

(17)

which implies

 riFjk �rjFki �rkFij � 0, r �B � 0: (18)

It remains to establish that the brackets and the
Hamiltonian reproduce the correct equations of motion;
this follows by direct computation:

 _r i � fri; Hg �
�i

m
; _�i � f�i; Hg �

q
m
Fij�j:

(19)

The covariant phase-space formulation has been used by
various authors in different contexts, see e.g. [1,3,5].

III. SYMMETRIES AND CONSTANTS OF MOTION

The gauge-covariant formulation of Hamiltonian me-
chanics of charged particles is mathematically elegant; it
is also most suited to study the existence of symmetries and
constants of motion. Indeed, in the Hamiltonian framework
a constant of motion Q�r;�� is identified by the property
that its bracket with the Hamiltonian vanishes:

 fQ;Hg � 0) �i

�
riQ� qFij

@Q
@�j

�

� � �
�
rQ� qB�

@Q
@

�
� 0: (20)

A systematic procedure is to expand any constant of mo-
tion as a power series in �:

 Q�r;�� � C�r� � Ci�r��i �
1
2Cij�r��i�j � . . . : (21)

Substitution gives a series of constraints
 

riC � qFijCj;

riCj �rjCi � qFikCkj � qFjkCki;

riCjk �rjCki �rkCij � qFilCljk � qFjlClki

� qFklClij; . . .

(22)

This series can be truncated whenever there is a Killing
vector or tensor of flat space:

 r�i1Ci2...in� � 0: (23)

Then we can take Ci1...ip � 0 for all p � n, and the con-
stant of motion takes the polynomial form

 Q�r;�� �
Xp�1

k�0

1

k!
Ci1...ik�r��i1 . . . �ik : (24)

Note that it is always possible to add an arbitrary constant
to the zeroth order coefficient C�r�. Therefore it is obvious
that for particles in an electromagnetic background there
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are no nontrivial constants of motion corresponding to only
a C�r� with Ci�r�, Cij�r� and all higher coefficients vanish-
ing. The first nontrivial case is therefore the set truncated at
p � 2:

 Q�r;�� � C�r� �C�r� ��; (25)

with C a Killing vector of flat space:

 riCj �rjCi � 0: (26)

Such Killing vectors generate translations and rotations,
and take the form

 C � m� n� r; (27)

where m and n are arbitrary constant vectors. The lowest-
order constraint equation now becomes

 riC � qFijCj � qri�AjCj� � qAjriCj � qCjrjAi
(28)

Now use the Killing equation forCi to rewrite this equation
as

 ri�C� qC �A� � qA � rCi � qC � rAi: (29)

A very simple example a constant magnetic field:

 A �
�
2

C) B � �n: (30)

For such a field

 C � qC �A �
q�
2

C2 �mod constant�: (31)

As a result the full constant of motion takes the form

 Q � C � �qA��� � C � p � m � p�
1

�
B � �r� p�:

(32)

As m is arbitrary, all components of the momentum and the
component of the angular momentum in the direction of B
are conserved. This reflects the invariance under transla-
tions and transverse rotations in a constant magnetic field.

Starting from the general Killing vector (27) the equa-
tion for the Killing scalar becomes

 rC � qm�B� q�rn � B� nr �B�: (33)

As a nontrivial example, consider axially symmetric fields
B with the axis defined by a unit vector n:

 B �
B���
�

r� n �
B���
�
�� n; � � r� �r � n�n;

(34)

where � � j�j. Then Eq. (33) becomes

 rC � qm�B �
qB
�
��n �m� n� �m�: (35)

The corresponding vector potential can be taken as

 A � g���n; (36)

provided we identify B��� � g0���. Then Eq. (35) be-
comes

 rC �
qg0���
�
��n �m� n� �m�

� q�m � n�rg� q�m � rg�n: (37)

This equation allows solutions for m � �n, with � an
arbitrary scalar parameter. As n � � � 0 and n2 � 1, one
finds

 C � �qg���: (38)

The full constant of motion then reads

 Q � �qg��� � ��n� n� r� ��

� �n � p� n � �r� p�: (39)

As � is arbitrary, it follows that the components of the
canonical momentum and the angular momentum in the
direction n are independently conserved2

One can also search for constants of motion which are
higher-order polynomials in the momentum, associated
with flat-space Killing tensors. The simplest one is

 Cij � �ij; (40)

which has the special property that

 FijCjk � FkjCji � 0: (41)

Therefore the associated Killing vector and scalar can be
taken to vanish, and the corresponding constant of motion
is the Hamiltonian:

 C � 1
2�ij�i�j � mH; (42)

More complicated Killing tensors are of the form

 Cij � 2�ijn � r� �nirj � njri�; (43)

for an arbitrary fixed unit vector n, and

 Cij � �ijr2 � rirj; (44)

which is the radial counterpart of (43). Any constants of
motion associated with these Killing tensors are extensions
of the n-component of the Runge-Lenz vector

 n �K � n � ���L� � n � r2 � n ��r ��; (45)

or the total angular momentum

 L 2 � �r���2 � r2�2 � �r ���2 � r �K: (46)

Such constants of motion are associated with special field
configurations, in particular, spherically symmetric ones.
We discuss such fields in the next section.

2Actually, the components of the canonical and covariant
angular momentum in the direction n are the same.
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IV. MAGNETIC MONOPOLES

A spherically symmetric magnetic solution of the
Maxwell equations is the Dirac monopole:

 B �
gr
r3 : (47)

For such a field equation (33) takes the form

 rC �
qg

r3 �m� r� �r � n�r� r2n�: (48)

Now the first term is a curl, not a gradient; as a result we
have to take m � 0, and

 C � �qg
n � r
r
: (49)

The result for the constants of motion based on the Killing
vector (27) then is

 Q � n �
�
�gq

r
r
� r��

�
; (50)

where n is an arbitrary vector; therefore all components of
the gauge-covariant improved angular momentum

 J � L� qr�A� gq
r
r
; L � r� p; (51)

are conserved. We observe, that these quantities generate
rotations and satisfy the standard so�3� Lie algebra

 fJi; Jjg � "ijkJk: (52)

The Casimir invariant of so�3� is the total angular momen-
tum squared:

 J 2 � L2 � g2q2; (53)

which is a constant of motion with

 Cij � �ijr2 � rirj; Ci � 0; C � g2q2: (54)

It follows from (53), that the values of the total angular
momentum in the classical theory satisfy the bound J2 �
C � g2q2. A recent analysis relating many different for-
mulations of this dynamical system is found in [7].

Remarkably, the Runge-Lenz vector can be extended to
a constant of motion in another type of central magnetic
field:

 B �
gr

r5=2
: (55)

Indeed, in such a field there is a constant of motion

 Q � n �
�

K�
2gq���
r
p L� 2g2q2 r

r

�
; (56)

for any unit vector n, with

 

Cij � 2�ijn � r� �nirj � njri�;

Ci �
2gq���
r
p n� r;

C � �2g2q2 n � r
r
:

(57)

In contrast, for such a central field there is no conserved
angular momentum vector J, although the total angular
momentum J2 is conserved. Of course, the total energy of
the magnetic field (55) diverges both at r � 0 and at
r! 1, and the field does not satisfy the free Maxwell
equations. Therefore it requires nontrivial magnetic
sources and boundary conditions. However, even if the
field would exist only in a restricted region of space, the
constant of motion exists provided the orbit of the point
charge is also restricted to this region.

V. NON-ABELIAN POINT CHARGES

The gauge-covariant dynamics of point charges can be
extended to non-Abelian point charges. The starting point
is defined by the Wong equations [4], which can be written
in the form

 � � mv; _� � gtav� Ba; _ta � gfabcv �Abtc;

(58)

where the ta are the non-Abelian gauge variables, and
where the non-Abelian field strength is defined as

 Fija � "ijkBka � riAja �rjAia � gfabcAibAjc: (59)

A Lagrangian representation of the gauge variables in
terms of Grassmann-odd degrees of freedom was shown
to exist in Ref. [6]. The Hamiltonian formulation uses
canonical coordinates and momenta, with a Hamiltonian

 H �
1

2m
�p� gAata�

2; (60)

supplemented by the fundamental brackets

 fri; pjg � �ij; fta; tbg � �fabctc; (61)

with all other brackets vanishing. It is easily verified, that
these brackets reproduce the equations of motion (58). A
more transparent and gauge-covariant formulation is ob-
tained by introduction of the covariant momentum

 � � mv � p� gAata: (62)

with the quasifree Hamiltonian

 H �
1

2m
�2: (63)

The equations of motion (58) are now reobtained from the
covariant brackets

 

_f � ff;Hg; (64)

where the brackets are defined explicitly by
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 ff; hg �Dif
@h
@�i

�
@f
@�i

Dih� gFijata
@f
@�i

@h
@�j

� fabctc
@f
@ta

@h
@tb

: (65)

Here the covariant phase-space derivative of a function
f�r;�; ta� appearing on the right-hand side is defined as

 D if � rif� gfabctaAib
@f
@tc

: (66)

As in the Abelian case we can now look for constants of
motion by applying the Hamiltonian formalism:

 fQ;Hg � 0) �i

�
DiQ� gFijata

@Q
@�j

�
� 0; (67)

or in vector notation

 � �

�
rQ� gtafabcAb

@Q
@tc
� gtaBa �

@Q
@�

�
� 0: (68)

Using a covariant momentum expansion

 Q � C� Ci�i �
1

2
Cij�i�j � . . . ; (69)

we obtain a set of constraints to be satisfied
 

DiC � gtaFijaCj;

DiCj �DjCi � gta�FikaCkj � gFjkaCki�;

DiCjk �DjCki �DkCij � gta�FilaCljk � FjlaClki

� FklaClij�; . . . (70)

Clearly the condition for the series (69) to stop after a finite
number of terms is the existence of a tensor satisfying the
condition

 D �i1Ci2...in� � 0; (71)

a gauge-covariant generalization of the Killing equation.
All of this is a direct non-Abelian generalization of the case
of Maxwell-Lorentz theory.

VI. 2-D YANG-MILLS THEORY

A simple example to illustrate the procedure of con-
structing constants of motion from generalized Killing-
vectors and tensors is offered by 2-D SU�2� Yang-Mills
theory. In this theory the magnetic field strength is repre-
sented by a triplet of scalar fields Ba:

 Faij � Ba"ij; (72)

which satisfies the euclidean Yang-Mills equations

 DiBa � 0: (73)

Thus the magnetic field is covariantly constant, and its
modulus B2 � BaBa is a gauge-invariant real constant:

 riB2 � 0: (74)

As the effect of a local gauge transformation is a local
rotation of Ba in the internal space, it is possible to gauge
transform the magnetic field locally into a constant, e.g.

 Ba � �0; 0; B�: (75)

Such a constant magnetic field can be constructed from the
linear gauge potential

 Aai � �
1
2B

a"ijrj: (76)

In a constant magnetic field there is translation and rotation
invariance, hence we can look for Killing vectors of the
type (27):

 Ci � mi � �"ijrj; (77)

with mi and � arbitrary constants. It then only remains to
solve for the generalize Killing scalar C � Cata:

 �DiC�
a � riC

a � g�abcAbi C
c � gFaijCj

� gBa�"ijmj � �ri�: (78)

The straightforward solution to this equation with Aai given
by (76) is

 Ca � gBa
�
"ijrimj �

�
2

r2

�
: (79)

Withmi and �we thus associate two constants of motion; a
gauge-improved momentum:

 Qi � �i � gB
ata"ijrj � pi � gA

a
i ta; (80)

and the canonical angular momentum

 J � "ijri�j �
g
2
Batar2 � "ijripj: (81)

As a next step, one can look for symmetric Killing tensors
Cij; however, the two candidates

 Cij � �ij; Cij � �ijr2 � rirj; (82)

lead us back to the Hamiltonian (63) and the square of the
angular momentum J2, respectively. A nontrivial constant
of motion of this type is a Runge-Lenz-like vector
 

Ki � r2
i�

2 ��i� � r� gBata�12"ij�jr2 � ri"jkrk�k�

� 1
2�gB

ata�
2rir2

� rip2 � pip � r� 1
4gB

ataJri �
1
8�gB

ata�
2rir2: (83)

These constants of motion, described simultaneously by
the arbitrary linear combination n �K, are constructed in
terms of the generalized Killing tensors
 

Cij � 2�ijr � n� rinj � rjni;

Ci � �gB
ata"ij�rjr � n� 1

2njr
2�;

C � 1
2�gB

ata�2r2r � n:

(84)
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This solution of the 2-D Yang-Mills equations can be
embedded straightforwardly in 3-D Yang-Mills theory by
taking connections

 Aax � �
1
2B

ay; Aay �
1
2B

ax; (85)

while all other components of Aa� vanish. Actually, this
amounts simply to embedding an Abelian solution of the
type (30) into a non-Abelian model. In essence, the results
of the Abelian case are reproduced.

VII. THE NON-ABELIAN WU-YANG MONOPOLE

A genuinely non-Abelian static solution of the pure
SU�2� Yang-Mills equations in 3-D space is the non-
Abelian Wu-Yang monopole [8]; the monopole field is
given by

 Aai �
1

g
"iakrk
r2 ; (86)

with the corresponding magnetic field strength

 Faij �
1

g

"ijkrkra
r4 ; DjF

a
ij � 0: (87)

In such a field a particle has a conserved charge invariant
under combined spatial and isospin rotations

 Q �
rata
r
)DiQ � 0: (88)

In addition, there is a conserved angular momentum

 n � J � n �
�

r���Q
r
r

�
, J � r� p� t � L� t:

(89)

which is constructed from the Killing vector and associated
scalar

 Ci � �n� r�i; C � �Q
n � r
r
� �n � r

rata
r2 : (90)

It is easily established that the components of the angular
momentum J generate the so�3� Lie algebra (52). The
contribution of isospin to the orbital angular momentum
mixes gauge and spin degrees of freedom, a result well-
known in the literature [9,10]. For point-particles carrying
even-dimensional isospin representations (e.g., isodoub-
lets) this turns the bound states into fermions [11].

Also in this case there exist constants of motion qua-
dratic in the momenta: the Hamiltonian H and the square
of the total angular momentum:

 J 2 � r2�2 � �r ���2 �
�
rata
r

�
2
: (91)

This constant of motion is constructed from the Killing
tensor (44):

 Cij � �ijr2 � rirj;

with Ci � 0 and C �Q2. In contrast, a constant of motion
polynomial in the momenta which generalizes the Runge-
Lenz vector does not exist for a point-particle in the Wu-
Yang monopole background.

As is well-known, there also exist Abelian monopole
solutions in spontaneously broken non-Abelian gauge
theories [12,13]. The motion of non-Abelian point particles
in such a background has been studied in [14,15].

VIII. CHARGED PARTICLES IN CURVED SPACE

The concept of Killing vector has its origin in differen-
tial geometry, where it arises as generator of an isometry.
In the previous sections we have applied the concept in flat
space, the isometries of which are translations and rota-
tions. We have shown how the concept can be generalized
in the presence of background gauge fields, Abelian as well
as non-Abelian. Symmetries and constants of motion arise,
in particular, when the isometries are matched by symme-
tries of the background fields. We have also discussed
Killing tensors of higher rank, associated with constants
of motion depending on higher powers of the momenta.

The generalizations can easily be extended to nonflat
spaces. The Hamiltonian of a charged particle moving in a
space with metric gij�x� is

 H �
1

2m
gij�x��i�j: (92)

For a particle without spin the covariant brackets are the
same as in flat space:

 fxi;�jg � �ij; f�i;�jg � qFij: (93)

In particular, the equations of motion become

 

_xi � fxi; Hg �
1

m
gij�j;,�i � mgij _xj;

_� � f�i; Hg �
1

m
gkl��ik

j�l�j � qFik�l�

,
D�i

Dt
� _�i � _xk�ki

j�j � qFij _xj: (94)

By the first of these equations, the second one reduces to
the Lorentz-Wong equations in curved space. As before,
constants of motion are obtained by solving the equation

 fQ;Hg � 0; (95)

with Q a polynomial in the momenta

 Q�x;�� � C�x� � Ci�x��i �
1
2C

ij�x��i�j � . . . (96)

Then the coefficients are solutions of the hierarchy of
differential equations
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DiC � riC � qFijC
j;

DiCj �DjCi � qFikCkj � qFjkC
k
i;

DiCjk �DjCki �DkCij � qFilC
l
jk � qFjlC

l
ki

� qFklC
l
ij; . . .

(97)

As usual, indices are raised and lowered with the metric,
and the covariant derivative Di is constructed with the
Levi-Civita connection

 DiCj � riCj � �ij
kCk; (98)

in the case of Abelian background gauge fields. In the case
of non-Abelian background gauge fields we have to make
the replacements

 Di !Di � Di � gfabctaAib
@
@tc

; qFij ! gtaFija:

(99)

As an example we consider the motion of a charged
particle on the unit sphere S2 supplied with a constant
magnetic field. The metric on the sphere is defined by the
line element

 ds2 � gijdx
idxj � d�2 � sin2�d’2: (100)

The sphere S2 admits a triplet of Killing vectors Ci �
�C�;C’� satisfying the homogeneous form of the second
Killing equation (97), with Cij and all higher Killing
tensors vanishing:
 

Ci
�1� � �� sin’;� cot� cos’�;

Ci
�2� � �cos’;� cot� sin’�;

Ci
�3� � �0; 1�:

(101)

These Killing vectors generate three independent rotations
on S2. The magnetic field with constant flux B is described
by the field strength

 Fijdx
i ^ dxj � B sin�d� ^ d’: (102)

Applying the vectors (101) in the right-hand side of the
equation for the Killing scalars, we find that they take the
form
 

C�1� � �qB sin� cos’;

C�2� � �qB sin� sin’;

C�3� � �qB cos�:

(103)

Therefore we find as constants of motion the components
of the gauge-improved angular momentum J�a�:
 

J�1� � � sin’�� � cot� cos’�’ � qB sin� cos’;

J�2� � cos’�� � cot� sin’�’ � qB sin� sin’;

J�3� � �’ � qB cos�:

(104)

As in Eq. (52), these constants of motion satisfy the so�3�
Poisson bracket algebra

 fJ�a�; J�b�g � "abcJ�c�: (105)

Indeed, the present model is equivalent to a dimensional
reduction of the monopole field from 3-D flat space to the
2-D unit sphere [7]. As a result, we also expect the exis-
tence of Killing tensors. First observe, that

 

X
a

J2
�a� � 2mH� q2B2; (106)

which is a quadratic expression in the momenta with Cij �
gij. In addition, there two other independent symmetric
Killing tensors:

 Cij
�1� �

0 cos’
cos’ �2 sin’ cot�

� �
;

Cij
�2� �

0 sin’
sin’ 2 cos’ cot�

� �
:

(107)

Inserting these expressions on the right-hand side of the
second equation (97), and solving this equation, we find the
associated generalized Killing vectors

 Ci�1� � �
qB

sin�
�cos� sin� cos’;��cos2�� sin2�� sin’�

Ci�2� � �
qB

sin�
�cos� sin� sin’; �cos2�� sin2�� cos’�:

(108)

The associated Killing scalars, the solution of the first
equation (97), read

 C�1� � q2B2 sin� cos� sin’;

C�2� � �q
2B2 sin� cos� cos’:

(109)

Combining these results we find the constants of motion

 K�1� � cos’���’ � cot� sin’�2
’ � qB cos� cos’��

� qB
cos2� sin’

sin�
�’ � q

2B2 sin� cos� sin’;

K�2� � sin’���’ � cot� cos’�2
’ � qB cos� sin’��

� qB
cos2� cos’

sin�
�’ � q2B2 sin� cos� cos’:

(110)

Observe, that

 K�1� � @’K�2�; K�2� � �@’K�1�: (111)

These relations follow, because @’Di � Di@’.

IX. SUPERSYMMETRY

Spinning particles whose internal angular momentum is
described by Grassmann coordinates  i can have
Grassmann-odd constants of motion, generating transfor-
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mations in anticommuting coordinates. If their bracket
closes on the Hamiltonian, they generate standard super-
symmetries. In the case of charged particles in an external
gauge field, the standard supercharge takes the form

 � � �i i; (112)

while the nonzero covariant brackets are

 fxi;�jg � �ij; f�i;�jg � qFij;

f i;  jg � �i�ij:
(113)

in the Abelian case, with appropriate modifications in the
non-Abelian generalization. It follows, that the internal
spin rotations are generated by the bilinears

 si � �
i
2
"ijk 

j k; fsi; sjg � "ijksk: (114)

The Hamiltonian in flat space reads

 H �
1

2m
�2 �

q
m

B � s; (115)

and satisfies the supersymmetric bracket relation

 f�;�g � �2miH: (116)

In such a theory any dynamical quantity of which the
bracket with the supercharge vanishes, is automatically a
constant of motion:

 fQ;�g � 0) fQ;Hg � 0; (117)

owing to the Jacobi identity for the brackets. The reverse
does not hold in general. Hence the class of superinvariants
is a subclass of the constants of motion. For these super-
invariants one can derive another more restrictive hierarchy
of conditions which are sufficient, though in general not
necessary, to obtain solutions of Eqs. (22) or their appro-
priate generalizations (70) or (97). These equations were
derived in [3], hence it is not necessary to elaborate on
them in detail. The generating equation is

 � i i
�
riQ� qFij

@Q
@�j

�
��i

@Q
@ i
� 0; (118)

obtained by writing out the bracket f�; Qg. The hierarchy
of square roots of the extended Killing equations is ob-
tained by expanding Q in a series in the momenta �i, and
each coefficient Ci1...in�x;  � in a (finite) polynomial in the
Grassmann variables  i. In some cases of physical interest
the superinvariants do not only include known constants of
motion, such as the angular momentum in the case of a
monopole field, but also new Grassmann-odd invariants.
The coefficients in the expressions for such conserved odd
charges are generalizations of the so-called Killing-Yano
tensors, rather than the Killing tensors proper. In the case
of the magnetic monopole such an anticommuting constant
of motion is the nonstandard supercharge [16]

 

~� � "ijk

�
xi�j k �

i
3
 i j k

�
; (119)

the bracket of which with itself closes on the square of the
angular momentum, rather than on the Hamiltonian:

 f ~�; ~�g � �i
�

J2 � 2gq
r � s
r

�
; (120)

with J � r��� s. A generalization for the non-Abelian
monopole was constructed in [17].

X. SUMMARY AND DISCUSSION

In this paper we have developed an algorithm to con-
struct constants of motion for conservative dynamical sys-
tems. The method, based on extensions of the Killing
equations in differential geometry, works in the presence
of gauge interactions and in nonflat geometries as well. It
brings out, in particular, the importance of tuning the
symmetries of the external fields with those of the geome-
try of the configuration space. The method has been illus-
trated with several examples, in particular, monopole-type
solutions in Abelian and non-Abelian gauge theories. We
have restricted ourselves to classical dynamical systems,
but the use of a bracket formulation on phase space allows
easy translation—modulo operator ordering—to the case
of quantum systems. Extending the particle models with
Grassmann variables to describe fermions opens the pos-
sibility to include supersymmetries in this framework.

We have discussed, in particular, constants of motion
that are polynomial in the momenta. Not all constants of
motion are necessarily of this form. In particular, any
function f�Q�� of constants of motion Q� is itself a
constant of motion. Such functions f�Q�� can be algebraic
and contain poles and other singularities. An example is
the normalized Runge-Lenz vector

 M �
K
j2Hj

; (121)

which is useful in the algebraic solution of the Kepler
problem and the isotropic oscillator [18,19], and in the
case of the magnetic monopole as well [15]. More gener-
ally, for constants of motion of the form

 Q �
U�r;��
V�r;��

; (122)

with V � 0, the condition fQ;Hg � 0 leads to a general-
ization of Eq. (20) of the form

 �i�VriU�UriV� � qFij�i

�
V
@U
@�j

�U
@V
@�j

�
;

(123)

for Abelian gauge theories, with a suitable generalization
for non-Abelian theories.

Apart from the generic importance of constructing con-
stants of motion, the classification of all dynamical varia-
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bles commuting with the Hamiltonian is a starting point for
the procedure of Hamiltonian reduction. This procedure
provides an elegant way of constructing nontrivial inte-
grable models; for a recent review see [20]. This technique
was applied to derive N � 4 supersymmetric mechanics in

a monopole background in [21]. The connection with
Killing vectors and tensors and their generalizations dis-
cussed here provides a geometrical configuration-space
description of this reduction process.
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