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We analyze the structure of the Faddeev-Jackiw method and show that the canonical 2-form of the
Lagrangian constructed in the last step of the Faddeev-Jackiw method is always nondegenerate. So
according to the Darboux theorem, there must exist a coordinate transformation that can transform the
Lagrangian into a standard form. We take the coordinates after the transformation as these in a phase
space, and use this standard form of the Lagrangian, we achieve its path integral expression over the
symplectic space, give the Faddeev-Jackiw canonical quantization of the path integral, and then we further
show up the concrete application of the Faddeev-Jackiw canonical quantization of the path integral.
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I. INTRODUCTION

Systems described by singular Lagrangians are called
singular systems and this kind of system contains inherent
constraints [1,2]. In a lot of physical domains, there ex-
tensively exist different singular systems [3–5], such as
gauge field theories, gravitational theory, supersymmetric
theory, supergravity, superstring theory, and so on. The
investigation on inherent constraints has become one basic
task of theoretical research in these theories.

The Faddeev-Jackiw method is a kind of quantization
method that showed up in the 80’s of the last century. This
method has some very useful properties of obviating the
need to distinguish primary and secondary constraints and
the first and the second types of constraints. The method is
simpler and does not have such a hypothesis of Dirac’s
conjecture, thus it has evoked much attention. In the devel-
opment of the Faddeev-Jackiw method, Floreanini and
Jackiw proposed a kind of brackets, defined in the configu-
ration space of a 2-dimensional self-dual field, in order to
give the canonical quantization [6]. Subsequently, Faddeev
and Jackiw interpreted its reasonability and systematically
gave the Faddeev-Jackiw method [7]. In succession,
Barcelos-Neto and Wotzasek represented the procedure
of dealing with constraints in the Faddeev-Jackiw method
[8–10].

However, Faddeev-Jackiw quantization is only one ca-
nonical quantization. Up to now, there is still no path
integral quantization in Faddeev-Jackiw formalism. So,
in this report, we will construct the path integral quantiza-
tion in the Faddeev-Jackiw formalism by the Darboux
theorem, which keeps the property of the Faddeev-
Jackiw method, and does not have the need of distinguish-
ing the first and second class constraints and the primary
and secondary constraints.

The plan of this letter is: Sec. II investigates the mathe-
matical structure of the Faddeev-Jackiw method, Sec. III

proposes the path integral quantization corresponding to
Faddeev-Jackiw canonical quantization, Sec. IV gives the
application of the path integral quantization to the
Schrödinger field, and the last section is a summary and
conclusion.

II. THE MATHEMATICAL STRUCTURE OF THE
FADDEEV-JACKIW METHOD

At first, we begin with the Lagrangian L�qi; _qi�, �i �
1; . . . ; N� in configuration space. L�qi; _qi� is not always the
one-order Lagrangian (a one-order Lagrangian means that
there are only one-power terms of general velocities in the
Lagrangian [8]). So, if L�qi; _qi� is not the one-order
Lagrangian, we must introduce variables of auxiliary fields
to transform the Lagrangian into a one-order Lagrangian.
Usually, the momenta are chosen as auxiliary fields, but
this is not absolute.

Here, after introducing variables of auxiliary fields we
obtain the form of the one-order Lagrangian

 L�0� � ai��� _�i � V�0����; �i � 1; . . . ; m�: (2.1)

(2.1) can also be written as

 L�0�dt � ai���d�i � V�0����dt: (2.2)

The one-form ai���d�i can induce the two-form

 f�0� � d�ai���d�
i� � 1

2f
�0�
ij d�

i ^ d�j;

�i; j � 1; . . . ; m�;
(2.3)

where f�0�ij �
@aj
@�i �

@ai
@�j . It is obvious that (f�0�ij ) is an anti-

symmetrical matrix.
Using (2.1) we can deduce Euler-Lagrange equations

 f�0�ij _��0�j �
@V�0����0��

@��0�i
� 0: (2.4)

On the other hand, because a lot of general physical
processes should satisfy the quantitative causal relation
with a no-loss-no-gain character [11–13], e.g., Ref. [14]
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uses the no-loss-no-gain homeomorphic map transforma-
tion satisfying the quantitative causal relation to gain exact
strain tensor formulas in Weitzenböck manifold. In fact,
some changes (cause) of some quantities in (2.4) must
result in the relative changes (result) of the other quantities
in (2.4) so that (2.4)’s right side keeps no-loss-no-gain, i.e.,
zero, namely, (2.4) also satisfies the quantitative causal
relation.

There are two classes for (2.4):
(1) The matrix (f�0�ij ) is reversible, then (2.4) can be

written as

 

_� �0�j � f�0��1
ij

@V�0����0��

@��0�i
: (2.5)

So the general bracket can be defined through the
Faddeev-Jackiw method as

 fF;Gg� �
@F

@��0�i
f�0��1
ij

@G

@��0�j
: (2.6)

By (2.6), the quantum commutator can be written as
�P̂; Ĝ� � i@fP;Gg�, so we complete the quantiza-
tion. From another angle, we can analyze this
Lagrangian.
Two-form f�0� is not a degenerate two-form, so
according to the Darboux theorem [15], there exists
the coordinate transformation

 �Q1��
�0��; . . . ;Qm=2��

�0��;

P1��
�0��; . . . ; Pm=2��

�0���;
(2.7)

which transforms (2.1) into

 L�0� � Pk _Qk � V
�0��P;Q�;

�
k � 1; . . . ;

m
2

�
:

(2.8)

The corresponding Euler-Lagrange equations are

 

_Q k �
@V�0�

@Pk
; _Pk � �

@V�0�

@Qk
: (2.9)

Setting xk �Qk, x�m=2��k � Pk, (2.9) can be written

as _xi � J�1
ij

@V�0�
@xj

, where

 �J�1
ij � �

0 Im=2

�Im=2 0

� �
;

and Im=2 is the unit matrix of �m=2� 	 �m=2� (m is
an even number).
So, according to the Faddeev-Jackiw method, we
can construct a general bracket

 fF;Gg� �
@F
@xi

J�1
ij
@G
@xj

: (2.10)

Then, (2.10) is equivalent to (2.6), i.e., fF;Gg� �
@F
@xi
J�1
ij

@G
@xj
� @F

@�i f
�0��1
ij

@G
@�j , which has merely the dif-

ference of the forms under the different formalism
of coordinates, and (2.10) is regular and may make
the calculation of quantization simple, because J�1

ij

is regular.
(2) The matrix (f�0�ij ) is irreversible.

Under this condition, which cannot satisfy the
Darboux theorem, there is not a coordinate trans-
formation as (2.7), but we can obtain some inherent
constraints according to the Faddeev-Jackiw
method.
According to the Faddeev-Jackiw method, (f�0�ij ) has
zero-modes satisfying

 ���0�� �T�f
�0�
ij � � 0: (2.11)

We left multiply these zero-modes to the left side of
(2.4), and we can obtain

 ��0�� � ��
�0�
� �
�0�
i
@V�0�

@�i�0�
� 0; (2.12)

which are zero-iterated Faddeev-Jackiw constraints.
Substituting these constraints into the Lagrangian in

agreement with the Faddeev-Jackiw method, we can obtain
one new Lagrangian

 L�1� � a�0�i ��
�0�� _��0�i ���0�� _��0�� � V�1����0��; (2.13)

where V�1����0�� � V�0����0��j��0��0.
We also regard �� as symplectic variables, so the sym-

plectic variables become

 ��1� � f��0�; ��0�g; (2.14)

and a�1�
��0�i
� a�0�i ��

�0��, i � 1; . . . ; n; a�1�
��0��
� ��0�� ���0��, � �

1; . . . ; m.
Judging whether (2.13) is a singular Lagrangian; if it is,

we repeat the above procedures to a new similar
Lagrangian, and we can get more constraints and construct
a new Lagrangian by using these new constraints, again
and again, until we get a nonsingular Lagrangian, i.e., we
cannot get more new constraints.

Supposing that after obtaining s constraints after h steps
through the Faddeev-Jackiw method, there are no con-
straints generated, we can construct a h-interated
Lagrangian as

 L�h� � ai���0�� _��0�i ���
_�� � V�h����0��;

�� � 1; . . . ; s�; V�h����0�� � V�0����0��j��0:
(2.15)

In the Faddeev-Jackiw method, the Lagrangian multi-
pliers �� are also regarded as new symplectic variables to
expand the symplectic variables, and the all new symplec-
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tic variables are

 ��h� � ���0�1; . . . ; ��0�m; �1; . . . ; �s�:

Thus, (2.15) can be rewritten as

 L�h� � a�h�i0 ��
�0�� _��h�i

0

� V�h����0��;

�i0 � 1; . . . ; m� s�:
(2.16)

In the new space of new symplectic variables, the ca-
nonical two-form of this Lagrangian is

 f�h� � d�a�h�i0 ��
�0��d��h�i

0
� � 1

2f
�h�
i0j0d�

�h�i0 ^ d��h�j
0
;

�i0; j0 � 1; . . . ; m� s�:
(2.17)

As in (2.4), there are two classes of (2.16).
(i) Two-form f�h� is not degenerate, i.e., (f�h�i0j0) is

reversible.
Similarly, according to the Darboux theorem, in
the new space of new symplectic variables, there
exists coordinate transformation (Q�h�

1 ��
�h��; . . . ;

Q�h�
�m�s�=2��

�h��, P�h�1 ��
�h��; . . . ; P�h�

�m�s�=2��
�h��), which

transforms (2.15) into the following expression

 L�h� � P�h�k0
_Q�h�
k0 � V

�h��P�h�;Q�h��;�
k0 � 1; . . . ;

m� s
2

�
:

(2.18)

Setting x�h�k0 �Q�h�
k0 , x�h�k0���m�g�=2� � P�h�k0 the motion

equations of (2.18) can be written as
 

x�h�i0 � J�1
i0j0
@V�h�

@x�h�j0
;

where �J�1
i0j0 � �

0 I�m�s�=2

�I�m�s�=2 0

 !
;

�i0; j0 � 1; . . . ; m� g�:

(2.19)

So, the general bracket can be rewritten as

 fF;Gg� �
@F

@x�h�i0
J�1
i0j0

@G

@x�h�j0
: (2.20)

(ii) Two-form f�h� is degenerate, namely, (f�h�i0j0) is
irreversible.
So, according to the Faddeev-Jackiw method, there
exists gauge symmetry in the system and we must
introduce the gauge condition.
In practice, the gauge condition can be regarded as
constraints and we construct the new Lagrangian by
introducing the gauge condition as constraints, thus,
we have

 L�h� ! ~L�h�

� a�0�i ��
�0�� _��0� ���

_�� ���
_�0� � ~V�h����0��;

(2.21)
where ~V�h� � V�h�j��

gf�0, and �gf is the gauge

condition.
Consequently, the variables �i, ��, �0� form a larger
symplectic space, and the symplectic variables are

 �00�h� � ���0�1; . . . ; ��0�m; �1; . . . ; �s; �01; . . . ; �0g�:

(2.22)

Thus, (2.21) can be written as

 

~L �h� � a�h�i00 ��
�0�� _�00�h�i

00

� ~V�h����0��;

�i00 � 1; . . . ; m� s� g�:
(2.23)

The canonical two-form of (2.23) is non-
degenerate, so there exists the transformation
(�Q00�h�

1 ��00�h��; . . . ;Q00�h�
�m�s�g�=2��

00�h��, P00�h�1 ��00�h��;

. . . ; P00�h�
�m�s�g�=2��

00�h��) which transforms (2.23) into

 

~L �h� � P00�h�k00
_Q00�h�
k00 �

~V�h��P00�h�;Q00�h��: (2.24)

So, it is easy to construct the general bracket as the
above.

In conclusion, in any case in the Faddeev-Jackiw
method, at the last step, we can always obtain the new
Lagrangian that has nondegenerate canonical two-form, so
according to the Darboux theorem, there must be a special
transformation which can transform the new Lagrangian
into a standard form as (2.8) and (2.18) or (2.24). From the
mathematical view, the key of the Faddeev-Jackiw method
is just to construct such a Lagrangian that satisfies the
Darboux theorem, and the Faddeev-Jackiw canonical
quantization is established on such a form of the
Lagrangian. Moreover, in the next section, we can find
that it is also the crucial fact in the construction of the
path integral quantization corresponding to Faddeev-
Jackiw canonical quantization.

III. THE PATH INTEGRAL QUANTIZATION
CORRESPONDING TO FADDEEV-JACKIW

CANONICAL QUANTIZATION

In this section, such a conclusion is reached, that is, no
matter what form is the Lagrangian, in the Faddeev-Jackiw
method, at last, we can always obtain a new Lagrangian
satisfying the Darboux theorem, which can transform the
Lagrangian into a standard form.

So, supposing we have completed all the procedure of
the Faddeev-Jackiw method, and obtain a new Lagrangian
 

~L�h� � a�0�i0 ��
�0�� _��0�i

0

���
_�� ���

_�� � ~V�h����0��;

�i0 � 1; . . . ; m;� � 1; . . . ; s;� � 1; . . . ; g�; (3.1)
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where �� are the constraints and �� are gauge conditions
(if there is no gauge symmetry, gauge conditions vanish).

According to the Darboux theorem, we can transform
(3.1) into

 

~L �h� � Pi _Qi � ~V�h��P;Q�;
�
i � 1; . . . ;

m� s� g
2

�
:

(3.2)

The motion equations of (3.2) are

 

_P i � �
@ ~V�h�

@Qi
; _Qi �

@ ~V�h�

@Pi
: (3.3)

And the general brackets are

 fPi;Qjg
� � �ij; fPi; Pjg

� � fQi;Qjg
� � 0: (3.4)

Consequently, according to the Faddeev-Jackiw quanti-
zation, the quantum commutators are obtained as follows

 �Q̂i; P̂j� � i@�ij; �P̂i; P̂j� � �Q̂i; Q̂j� � 0: (3.5)

From (3.5), we can see that the quantum commutative
relation between Q̂, P̂ is similar to the relation between the
canonical coordinate operators and the momentum opera-
tors of the nonsingular system. So, being similar to the
usual Feynman path integral, it is easy to obtain the quan-
tum transition amplitude of (3.2) as follows

 Z�0� �
Z
DQi���DPi��� exp

�
i
@

Z t0

t
�Pi��� _Qi���

� ~V�h��Q���; P�����d�
�
: (3.6)

And, (3.6) can be written by the coordinates
���0�i

0
; ��; ��� as

 

Z�0� �
Z
D��0�i

0
���D�����D�����

	
Y1
j�0

J���0�i
0
��j�; ����j�; ����j��

	 exp
�
i
@

Z t0

t
�a�0�i0 ��

�0�� _��0�i
0

���
_�� ���

_��

� ~V�h����0���
�
; (3.7)

where
 

DQi���DPi��� � D��0�i
0
���D�����D�����

	
Y1
j�0

J���0�i
0
��j�; ����j�; ����j��; (3.8)

and in which
Q
1
j�0 J��

�0�i0 ��j�; ����j�; ����j�� is the
Jacobian determinant of the transformation. �j denotes
the time point of the time interval �t; t0�, which is divided
into infinitesimal equal parts of length " and �i � j"�
t�j � 1; 2; . . . ;1�. So, in fact, we can rewrite the Jacobian

determinant as

 

Y1
j�0

J���0�i
0
��j�; ����j�; ����j��

� exp
�X1
j�0

lnJ���0�i
0
��j�; ����j�; ����j��

�

� exp
�Z t0

t
d��ln�J���0�i

0
���; �����; �������="

�
: (3.9)

Then there are two kinds of situations:
(i) When the Jacobian determinant J � 1 in (3.9), then

lnJ � 0, in this time, (3.9) reduces to the unit ele-
ment. This is the usual discussion situation in general
field theories.

(ii) When the Jacobian determinant J � 1 in (3.9), then
(3.7) can be rewritten as
 

Z�0� �
Z
D��0�i

0
���D�����D�����

	 exp
�
i
@

Z t0

t
�a�0�i0 ��

�0�� _��0�i
0

���
_��

���
_�� � ~V�h����0��

� i@�ln�J���0�i
0
���; �����; �������="�d�

�

�
Z
D��0�i

0
���D�����D�����

	 exp
�
i
@

Z t0

t
L0���0�i

0
���; �����; ������d�

�
;

(3.10)

where the Lagrangian L���0�i
0
���; �����; ������ is

revised as L0���0�i
0
���; �����; ������ (called an

equivalently extended Lagrangian) by the contribu-
tion coming from the Jacobian determinant J, which
is just the reason that the Jacobian determinant J is
usually taken as a unit element in general field
theories. Information about the studies on the case
of J � 1 will be given in another paper.

Therefore, (3.7) is the representation of the quantum
transition amplitude with the symplectic variables, and
this is one procedure of path integral quantization.
Moreover, from the above analysis, we can consider it
corresponding to Faddeev-Jackiw canonical quantization
of the path integral.

IV. APPLICATION OF THE PATH INTEGRAL
QUANTIZATION TO THE SCHRÖDINGER FIELD

The Lagrangian density of the Schrödinger field is [16]

 L �
i@
2
��� _��� _��� �

@
2

2m
r�� 
 r�� V�r����;

(4.1)

the Euler-Lagrange equation is just the Schrödinger equa-
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tion

 i@ _��
@

2

2m
r2�� V�r�� � 0: (4.2)

The Dirac primary constraints of (4.1) are

 �1 � 	�
i@
2
�� � 0; �2 � 	� �

i@
2
� � 0: (4.3)

The Hamiltonian density is

 H e �
@

2

2m
r�� 
 r�� V�r����; (4.4)

and there exist no secondary constraints.
Consequently, according to the Faddeev-Senjanovic

path integral quantization, the quantum transition ampli-
tude is obtained as follows
 

Z�0� �
Z
D�D��D	D	��

�
	�

i@
2
��
�
�
�
	� �

i@
2
�
�

	 exp
�
i
@

Z
d4x

�
	 _�� 	� _�� �

@
2

2m
r�� 
 r�

� V�r����
��
: (4.5)

Calculating the integral of (4.5) over the 	, 	�, we
obtain
 

Z�0� �
Z
D�D�� exp

�
i
@

Z
d4x

�
i@
2
��� _��� _���

�
@

2

2m
r�� 
 r�� V�r����

��
: (4.6)

When obtaining (4.6), we complete Dirac-Senjanovic
quantization, and adding the external source to (4.6), we
can obtain the generating functional of the Green function.

Now, we turn to the Faddeev-Jackiw formalism.
Setting �1 � �, �2 � ��, then (4.1) can be written as

 L �
i@
2
��2 _�1 � �1 _�2� �

@
2

2m
r�1 
 r�2 � V�r��1�2;

(4.7)

which is just a first-order Lagrangian density, and the
symplectic matrix of (4.7) is

 fij�r
0; r00� � i@

0 ���r0 � r00�
��r0 � r00� 0

� �
; (4.8)

(4.8) is invertible, the inverse of (4.8) is

 f�1
ij �r

0; r00� �
1

i@
0 ��r0 � r00�

���r0 � r00� 0

� �
: (4.9)

So, according to the Darboux theorem, there must be the
transformation to transform (4.7) into the standard form.

Then, we can have

 Q �

���
2
p

2
��1 � �2�; P � �

i@
���
2
p

2
��1 � �2�;

or we obtain

 �1 �

���
2
p

2
Q�

���
2
p
i

2@
P; �2 �

���
2
p

2
Q�

���
2
p
i

2@
P; (4.10)

which is just the transformation satisfying the Darboux
theorem.

Then (4.7) can be rewritten as
 

L �
1

2
�P _Q�Q _P� �

@
2

4m

�
�rQ�2 �

�
rP
@

�
2
�

� V
�
Q2 �

P2

@
2

�
: (4.11)

So, as the analysis of Sec. III, the quantum transition
amplitude can be expressed as
 

Z�0� �
Z
DQDP exp

�
i
@

Z
d4x

�
1

2
�P _Q�Q _P�

�
@

2

4m
�rQ�2 �

h2

4m

�
rP
@

�
2
�
V
2

�
Q2 �

P2

@
2

���
:

(4.12)

At last, we transform (4.12) into the path integral ex-
pressions, respectively, over the symplectic variables �1,
�2 and the �, �� as
 

Z�0� �
Z
D�1D�2 exp

�
i
@

Z
dx4

�
i@
2
��2 _�1 � �1 _�2�

�
@

2

2m
r�1 
 r�2 � V�r��1�2

��

�
Z
D�D�� exp

�
i
@

Z
d4x

�
i@
2
��� _��� _���

�
@

2

2m
r�� 
 r�� V�r����

��
; (4.13)

where the Jacobian determinant of (4.10) is independent of
the variables, then, the determinant can be eliminated from
their transition amplitudes.

From (4.13), we can see that the quantum transition
amplitude (4.13) is identical with the transition amplitude
(4.6). Therefore, for the Schrödinger field, we concretely
proved that the path integral quantization corresponding to
the Faddeev-Jackiw canonical quantization is equivalent to
the Dirac-Senjanovic path integral quantization.

V. SUMMARY AND CONCLUSION

In any case, in the last step of the Faddeev-Jackiw
method, we show that a one-power Lagrangian is able to
be transformed into the Lagrangian whose canonical two-
form is nondegenerate, so according to the Darboux theo-
rem, there exists a kind of special transformation which
transforms the Lagrangian into a standard form, and after
this transformation, we can regard the space of new vari-
ables as a phase space, thus we achieve the path integral
expression in this new space, and, at last, transform the
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quantum transition amplitude into that over the symplectic
variables. Therefore, we obtain the path integral quantiza-
tion expression in the Faddeev-Jackiw formalism. In suc-
cession, we use this method concretely to quantify the
Schrödinger field and concretely show that the path inte-
gral expression is equivalent to the Faddeev-Senjanovic
path integral expression.
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