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The spectrum of meson and diquark excitations in cold color superconducting (2SC) quark matter is
investigated under local color and electric neutrality constraints with � equilibrium. A two-flavored
Nambu-Jona-Lasinio–type model including baryon �B, color �8, and electric �Q chemical potentials is
used. The contribution from free electrons to the free energy is added to take into account the �
equilibrium. The sensitivity of the model to the tuning of the interaction constants in the diquark (H) and
quark-antiquark (G) channels is examined for two different parametrization schemes by choosing the ratio
H=G to be 3=4 and 1, respectively. The gapless neutral color superconductivity is realized at H � 3G=4,
and the gapped neutral color superconductivity at H � G. It is shown that color and electrical neutrality
together with � equilibrium lead to a strong mass splitting within the pion isotriplet in the 2SC phase (both
gapped and gapless), in contrast with non-neutral matter. The �- and �-meson masses are evaluated to be
�300 MeV. It is also shown that the properties of the physical SU�2�c-singlet diquark excitation in the
2SC ground state vary for different parametrization schemes. Thus, for H � 3G=4 one finds a heavy
resonance with mass �1100 MeV in the non-neutral (gapped) case, whereas, if neutrality is imposed, a
stable diquark with mass �j�Qj � 200 MeV appears in the gapless 2SC environment. For a stronger
attraction in the diquark channel (H � G), there is again a resonance (with the mass �300 MeV) in the
neutral gapped 2SC phase. Hence, the existence of the stable massive SU�2�c-singlet diquark excitation is
a new peculiarity of the gapless 2SC. In addition, the behavior of the diquark mass in vacuum, i.e., at
�B � 0, as a function of H has been investigated.
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I. INTRODUCTION

According to modern theoretical observations made in
the framework of perturbative QCD, at asymptotically high
baryonic densities and low temperatures the strongly
interacting quark matter is expected to undergo a phase
transition to the color superconducting state [1,2].
Unfortunately, a perturbative QCD analysis is not appli-
cable at moderate baryon densities (which might exist
inside compact stars or in heavy-ion collision experiments)
and a study is usually done with the help of effective
theories, such as the Nambu-Jona-Lasinio (NJL) model
[3–5].

In spite of the lack of quark confinement in the NJL
model, it successfully describes low-energy pseudoscalar
and vector mesons in the hadronic phase (see, e.g., [6,7]).
This success is provided by the fact that many of light
meson properties, e.g., masses, are driven by chiral sym-
metry, rather than by confinement. Moreover, the chiral
phase transition at high temperatures and/or density ex-
pected in QCD is naturally described by the NJL model
[7,8]. The NJL model is also well suited for the considera-
tion of a hot and/or dense medium under the influence of
external conditions [9,10] as well as for the investigation of
different physical processes in it [11,12].

In the earlier studies of color superconductivity [13–15]
for the case of two-flavor quark matter (u and d quarks),
only the influence of baryonic density was taken into
account. From these investigations, it became evident

that the two-flavor color superconducting phase (2SC)
might yet be present at rather small values of �B �
1 GeV, i.e., at baryon densities only several times larger
than the density of ordinary nuclear matter (see reviews
[14,16,17]). This is just the density of compact star cores.

The quark matter inside compact stars is considered to
be electrically and color neutral in a bulk. Moreover, there
must be an equilibrium between the gain and loss in the �
decay d! u� e� ��e (here e is the electron and �e is the
electron neutrino), the so-called � equilibrium. All these
physical constraints must be taken into account when
studying the equations of state for a compact star. To do
this in the NJL model, additional chemical potentials re-
lated to the electric charge density of quarks and electrons
as well as to color charges must be introduced. Recently, an
intensive theoretical study of neutral color superconduct-
ing quark matter has been given (see, e.g., [16–26]), which
revealed a new possible ground state of the 2SC phase,
where some additional number of quasiparticles with a
gapless dispersion law appeared [19] (it is the so-called
gapless color superconductivity g2SC, an antipode to the
usual gapped 2SC).

There is a great interest in the study of different excita-
tions of the 2SC phase, as the application of its results in
some related investigations, e.g. in astrophysics and heavy-
ion collision experiments, may help to reveal some observ-
able effects evidencing the formation of a quark-gluon
plasma. In particular, the bosonic excitations of the 2SC
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phase ground state, such as � and � mesons as well as
diquarks, are expected to be copiously produced in a dense
medium with rather strong correlations between quarks
and antiquarks (such is indeed the case at moderate bar-
yonic densities) and affect some scattering and decay
processes to a visible effect. Diquarks on their own are
also of great interest in hadron physics because of their
importance in determining baryon properties [27]. As to
the compact stars, one may find an influence of these
particles on the equation of state and on the cooling pro-
cess. Moreover, in dense matter, the deconfinement phase
transition might be accompanied by the appearance of
Bose-Einstein condensed diquark matter [28], etc.

In our recent papers [29,30], we have studied the masses
of mesons and diquarks that are formed in cold (T � 0)
and dense quark matter in the framework of a two-flavored
NJL model with baryon chemical potential �B. In particu-
lar, it was shown that in the 2SC phase the meson masses
lie in the interval 330� 500 MeV, depending on the val-
ues of �B 2 �1050; 1200� MeV. Since the original SU�3�c
color symmetry of the model is spontaneously broken
down in this phase to SU�2�c, one may expect the appear-
ance of five Nambu-Goldstone bosons. However, we have
proved that the abnormal number of three, instead of five,
massless bosons is allowed for the diquark sector of the
model. In addition, there are two light diquarks as well as a
heavy diquark resonance that is an SU�2�c singlet with the
mass�1100 MeV. Qualitatively, the local color neutrality
constraint does not affect the masses of mesons or the
SU�2�c-singlet diquark. However, in this case only one
Nambu-Goldstone boson and four light diquarks are
present in the 2SC phase in the NJL model [31] (see also
the discussion at the end of the paper). At nonzero tem-
perature some of the properties of mesons and diquarks in a
strongly interacting quark matter were discussed in
[32,33].

In the present paper, we continue our investigation of
mass spectra for mesons and diquarks, imposing the local
electrical neutrality and � equilibrium to the cold 2SC
medium, in addition to the color neutrality. As in our
previous papers, we use a two-flavored NJL, where addi-
tional color (�8) and electric (�Q) chemical potentials are
introduced. It will be shown that, in the 2SC phase, the
color neutrality constraint supplemented by the electrical
neutrality and � equilibrium drastically changes the mass
spectrum of the � and � mesons and SU�2�c diquark, in
comparison with non-neutral quark matter.

The paper is organized as follows. In Sec. II, the ther-
modynamic potential (TDP) as well as the effective action
of the NJL model, extended with baryon (�B), color (�8),
and electric (�Q) chemical potentials, are obtained in the
one-loop approximation in � equilibrium. Further, in
Sec. III, the gap equations and the phase diagram of quark
matter are investigated under the local color and electrical
neutrality constraints. Here, the behavior of �8 and �Q vs

�B are obtained for neutral quark matter with 2SC-type
color superconductivity within two different parametriza-
tion schemes: H � 3G=4 and H � G. In the first case,
H � 3G=4, a gapless 2SC phase revealed itself, whereas
for H � G a gapped phase is preferred. In Secs. IV and V,
some peculiarities of the mass spectra of the �, � mesons
and scalar diquarks are investigated both in the gapless and
gapped neutral 2SC phases. (In addition, the influence of
the diquark channel coupling constant on the diquark mass
in the vacuum, i.e. at �B � 0, is also considered.) Finally,
in Appendix B, the expression for the quark propagator in
the Nambu-Gorkov representation is obtained.

II. THE MODEL AND THE EFFECTIVE ACTION

Our investigation is based on the NJL-type model with
two quark flavors. Its Lagrangian describes the interaction
in the quark-antiquark as well as scalar diquark channels:

 Lq � �q���i@� �m	q�G�� �qq�2 � � �qi�5 ~�q�2	

�H
X

A�2;5;7

� �qCi�5�2�Aq	� �qi�
5�2�Aq

C	; (1)

where the quark field q 
 qi	 is a flavor doublet (i � 1, 2
or i � u, d) and color triplet (	 � 1, 2, 3 or 	 � r, g, b) as
well as a four-component Dirac spinor; qC � C �qt and
�qC � qtC are charge-conjugated spinors, and C � i�2�0

is the charge conjugation matrix (the symbol t denotes the
transposition operation). It is supposed that up and down
quarks have an equal current (bare) mass m. Furthermore,
�a stands for Pauli matrices and �A for Gell-Mann matrices
in flavor and color space, respectively. Clearly, the
Lagrangian Lq is invariant under transformations from
color SU�3�c as well as baryon U�1�B groups. In addition,
at m � 0 this Lagrangian is invariant under the chiral
SU�2�L � SU�2�R group. At m � 0 the chiral symmetry
is broken to the diagonal isospin subgroup SU�2�I with the
generators Ik � �k=2 �k � 1; 2; 3�. Moreover, in our sys-
tem the electric charge is conserved, too, since Q � I3 �
B=2, where I3 is the third generator of the isospin group
SU�2�I, Q is the electric charge generator, and B is the
baryon charge generator [evidently, these quantities are
unit matrices in color space, but in flavor space they are
Q � diag�2=3;�1=3�, I3 � diag�1=2;�1=2�, and B �
diag�1=3; 1=3�]. If the Lagrangian (1) is obtained from
the QCD one-gluon exchange approximation, then H �
3G=4. In addition, we find it interesting to deal with
another relation between coupling constants, H � G,
which results in qualitatively different model properties
(see below).

In order to take into account � equilibrium, we include
electrons in our consideration, extending the Lagrangian as
follows:

 Lqe � Lq � �e��i@�e: (2)

Here e is the electron spinor field (for simplicity, electrons
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are taken to be massless). Clearly, the Lagrangian (2) is
well suited for the description of different processes in the
vacuum, i.e. in the empty space. Since the prime object of
the present paper is the consideration of dense medium
properties, we extend the Lagrangian (2) by including
terms with charge densities and chemical potentials, as it
is usually done in statistical physics,

 L � Lqe ��BNB ��QNQ ��8N8: (3)

In (3), NB, NQ, N8 are baryon, electric, and 8th-color
charge density expressions, respectively; �B, �Q, �8 are
the corresponding chemical potentials. Recall that

 NB � �qB�0q; NQ � �qQ�0q� �e�0e;

N8 � �qT8�
0q;

(4)

where T8 

���
3
p
�8 � diag�1; 1;�2� is a matrix in the color

space. From Eqs. (4), we have
 

�BNB ��QNQ ��8N8 � �e �e�0e�
X
i;	

�i	 �qi	�0qi	


 �e �e�0e� �q �̂ �0q; (5)

where �e is the electron number chemical potential, and
�i	 is the chemical potential for the number of quarks with
color 	 and flavor i. Obviously, one has
 

�ur � �ug �
�B

3
�

2�Q

3
��8;

�dr � �dg �
�B

3
�
�Q

3
��8;

�ub �
�B

3
�

2�Q

3
� 2�8;

�db �
�B

3
�
�Q

3
� 2�8;

�e � ��Q;

(6)

 �̂ � �B=3��QQ��8T8 � ~�� 
��3 ��8T8; (7)

where the last equality in (7) is obtained due to the above-
mentioned relation Q � I3 � B=2; moreover, ~� �
�B=3��Q=6, 
� � �Q=2. It follows from (6) that
�d	 � �u	 ��e for each color 	. The matrix �̂ is di-
agonal in the six-dimensional �color� � �flavor� space, and
its matrix elements are just the quantities �i	 from (6).

If all chemical potentials in (3) are nonzero and inde-
pendent quantities, then SU�3�c and SU�2�I are not the
symmetry groups of this Lagrangian. Instead, due to the
�8- and �Q-terms, it is symmetric under the reduced color
SU�2�c � U�1��8

and flavor U�1�I3 groups. With the local
neutrality imposed, the chemical potentials in (3) are,
however, no longer independent quantities of the model.
Equating further hNQi and hN8i to zero, the chemical
potentials are subjected to two constraints, thereby fixing
two of them. As a result, �Q and �8 become dependent on
�B. It turns out (see below) that there exists a critical value

of the baryon chemical potential �c
B in the locally neutral

matter which separates two phases: if �B < �c
B, the nor-

mal quark matter phase with �Q � 0 and �8 � 0 is
formed, and the Lagrangian (3) is an SU�3�c � SU�2�I
invariant one; if �B > �c

B (2SC phase), the �Q and �8

are not already equal to zero and have a nontrivial �B
dependence. It means that at �B � �c

B the SU�3�c �
SU�2�I symmetry of the Lagrangian (3) is explicitly (not
spontaneously) broken by the chemical potential terms (i.e.
no Nambu-Goldstone bosons must appear) to the color
SU�2�c � U�1��8

and flavor U�1�I3 groups. (Note that the
color U�1��8

group is broken spontaneously in the 2SC
phase; see below.) Because of the above-mentioned flavor
symmetry transformation in the critical point �c

B, one
could expect that all pions would have equal masses for
�B < �c

B, whereas at larger �B (�B >�c
B) the pion mass

splitting should occur in neutral matter.
To study the phase diagram of the system and the mass

spectra of meson and diquark excitations, we need to get
the thermodynamic potential as well as an effective action
up to second order for the bosonic degrees of freedom.
Since electrons and quarks are not mixing, the total ther-
modynamic potential � of the system is the sum of its
electronic �e and quark �q parts: � � �q ��e. It is
well known that �e � ��4

e=12�2. To obtain �q, we start
from the Lagrangian describing the quark contribution
only [see (3)],

 L � Lq � �q �̂ �0q; (8)

where �̂ is the quark number chemical potential matrix,
defined in (7). The linearized version of the Lagrangian (8)
that contains auxiliary bosonic fields has the following
form:
 

~L � �q���i@� � �̂�
0 � ��m� i�5�a�a	q

�
1

4G
���� �a�a	 �

1

4H
��A�A

�
��A
2
� �qCi�5�2�Aq	 �

�A

2
� �qi�5�2�Aq

C	; (9)

where, here and later, a summation over repeated indices
a � 1, 2, 3 and A; A0 � 2, 5, 7 is implied. Clearly, the
Lagrangians (8) and (9) are equivalent, as can be seen by
using the equations of motion for bosonic fields, which
take the form
 

��x� � �2G� �qq�;

�a�x� � �2G� �qi�5�aq�;

�A�x� � �2H� �qCi�5�2�Aq�;

��A�x� � �2H� �qi�5�2�Aq
C�:

(10)

One can easily see from (10) that the mesonic fields ��x�,
�a�x� are real quantities, i.e. ���x��y � ��x�, ��a�x��y �
�a�x� (the superscript symbol y denotes the Hermitian
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conjugation), but all diquark fields �A�x� are complex
scalars, so ��A�x��

y � ��A�x�. Clearly, the real ��x� and
�a�x� fields are color singlets, whereas scalar diquarks
�A�x� form a color antitriplet �3c of the SU�3�c group. If
some of the scalar diquark fields have a nonzero ground
state expectation value, i.e. h�A�x�i � 0, the color symme-
try of the model (8) is spontaneously broken down.

It is more convenient to perform our investigations in
terms of the semibosonized Lagrangian (9), since in this
case we have a common footing for obtaining both the
thermodynamic potential and the effective action of the
model. Indeed, in the one-fermion-loop approximation, the
effective action Seff��;�a;�A;��A0 � of the model (9) is
expressed by means of the path integral over quark fields:

 exp�iSeff��;�a;�A;�
�
A0 �� � N0

Z
�d �q	�dq	

� exp
�
i
Z

~Ld4x
�
;

where
 

Seff��;�a;�A;�
�
A0 � � �

Z
d4x

�
�2 � �2

a

4G
�

�A��A
4H

�
� ~Seff ; (11)

and N0 is a normalization constant. The quark contribution
to the effective action, i.e. the term ~Seff in (11), is given by
 

exp�i~Seff� � N0
Z
�d �q	�dq	 exp

�
i
2

Z
� �qD�q� �qCD�qC

� �qKqC � �qCK�q	d4x
�
: (12)

In (12) we have used the following notations:
 

D� � i��@� �m� �̂�
0 � �;

D� � i��@� �m� �̂�
0 � �t;

� � ��x� � i�5�a�x��a;

�t � ��x� � i�5�a�x��
t
a;

K� � i��A�x��
5�2�A;

K � i�A�x��5�2�A;

(13)

where D
 are nontrivial operators in coordinate, spinor,
color, and flavor spaces.1 In the following, it is very con-
venient to use the Nambu-Gorkov formalism, in which a
bispinor � is used instead of quarks, where

 � �
q
qC

� �
; �t � �qt; �qCt�;

�� � � �q; �qC� � � �q; qtC� � �t 0; C
C; 0

� �

 �tY:

(14)

Furthermore, by introducing the matrix-valued operator

 Z �
D�; �K
�K�; D�

� �
; (15)

one can rewrite the functional Gaussian integral in (12) in
terms of � and Z and then evaluate it as follows (clearly, in
this case �d �q	�dq	 � �dqC	�dq	 � �d�	):

 exp�i~Seff� �
Z
�d�	 exp

�
i
2

Z
��Z�d4x

�

�
Z
�d�	 exp

�
i
2

Z
�t�YZ��d4x

�
� det1=2�YZ� � det1=2�Z�;

where the last equality is valid due to the evident relation
detY � 1. Then, using the general formula detO �
exp Tr lnO, one obtains the expression for the effective
action:
 

Seff��;�a;�A;��A0 � � �
Z
d4x

�
�2 � �2

a

4G
�

�A��A
4H

�

�
i
2

TrsfcxNG lnZ: (16)

As well as being an evident trace over the two-dimensional
Nambu-Gorkov (NG) matrix, the trace in (16) is also
calculated in spinor (s), flavor (f), color (c), and four-
dimensional coordinate (x) spaces, respectively.

Starting from (16), one can define the quark contribution
�q��;�a;�A;��A0 � to the TDP of the model (8). In the
mean-field approximation one has

 S effj�;�a;�A;��A0�const � ��q��;�a;�A;�
�
A0 �
Z
d4x:

(17)

The ground state expectation values (mean values) of
the fields, h�a�x�i 
 �o, h�a�x�i 
 �oa, h�A�x�i 
 �o

A,
h��A0 �x�i 
 ��oA0 , are solutions of the gap equations for the
TDP �q (in our approach all ground state expectation
values do not depend on coordinates x):

 

@�q

@�a
� 0;

@�q

@�
� 0;

@�q

@�A
� 0;

@�q

@��A0
� 0:

(18)

Next, let us perform the following shift of bosonic fields
in (16): ��x� ! ��x� � �o, �a�x� ! �a�x� � �oa,
��A�x� ! ��A�x� � ��oA , �A�x� ! �A�x� ��o

A. [Ob-
viously, the new shifted bosonic fields ��x�, �a�x�,
�A�x�, ��A�x� now denote the small quantum fluctuations
around the mean values �o, �oa, �o

A, ��oA of mesons and

1In order to bring the quark sector of the Lagrangian (9) to the
expression, given in the square brackets of (12), we use the
following well-known relations: @t� � �@�, C��C�1 � �����t,
C�5C�1 � ��5�t � �5, �2 ~��2 � �� ~��t,

 �2 �
0; �i
i; 0

� �
:
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diquarks rather than the original fields (10)]. In this case

 Z �
D�o ; �Ko
�K�o; D�o

� �
�

�; K
K�; �t

� �


 S�1
0 �

�; K
K�; �t

� �
; (19)

where S0 is the quark propagator matrix in the Nambu-
Gorkov representation (its matrix elements Sij are given in
Appendix B), and

 �Ko;K
�
o;D



o ;�o;�

t
o� � �K;K

�; D
;�;�t�j���o;�a��oa;...:

Then, expanding the obtained expression into a Taylor
series up to second order of small bosonic fluctuations,
we have

 S eff��;�a;�A;�
�
A0 � � S�0�eff � S�2�eff��;�a;�A;�

�
A0 �

� � � � ; (20)

where [due to the gap equations, the linear term in meson
and diquark fields is absent in (20)]

 S �0�eff � �
Z
d4x

�
�o�o � �oa�oa

4G
�

�o
A��oA
4H

�

�
i
2

TrscfxNG ln�S�1
0 �


 ��q��
o;�oa;�

o
A;�

�o
A0 �

Z
d4x; (21)

 

S�2�eff��;�a;�A;�
�
A0 � � �

Z
d4x

�
�2 � �2

a

4G
�

�A��A
4H

�

�
i
4

TrscfxNG

(
S0

�; K

K�; �t

 !

� S0

�; K

K�; �t

 !)
: (22)

In the following we will study the spectrum of meson/
diquark excitations in the color superconducting phase of
the NJL model on the basis of the effective action S�2�eff . The
effective action (22) can be presented in the explicit form

 S �2�eff � S�2�mesons � S�2�diquarks � S�2�mixed; (23)

where

 S �2�mesons � �
Z
d4x

�2 � �2
a

4G
�
i
4

TrscfxfS11�S11�

� 2S12�tS21�� S22�tS22�tg; (24)

 S �2�diquarks � �
Z
d4x

�A��A
4H

�
i
4

TrscfxfS12K
�S12K

�

� 2S11KS22K
� � S21KS21Kg; (25)

 S �2�mixed �
i
2

TrscfxfS11�S12K� � S21�S11K

� S12�tS22K
� � S21KS22�tg; (26)

and Sij are the matrix elements of the quark propagator
matrix S0 defined in (19) (see also Appendix B). Moreover,
some necessary explanations concerning the trace opera-
tion over coordinate space in the expressions (24)–(26) are
given in Appendix A [see (A4)]. It follows from these
formulas that the effective action (24) is a functional of
the meson fields ��x�, �i�x� only, the effective action (25)
is composed from diquark fields only, and the mixing
between mesons and diquarks might occur because of the
effective action (26).

III. GAP EQUATIONS AND NEUTRALITY
CONDITIONS

Earlier (see, e.g., the papers [19–21]), it was shown that
for electrically and color neutral cold dense matter, de-
scribed in the framework of the model (3), only two phases
are allowed to exist. In the first one, the symmetric phase
that is usually called the normal quark matter phase, only
the mean value of the � field, h��x�i 
 �o, is nonzero. In
the second one, which is just the 2SC phase of dense
matter, the mean value of the diquark field �2�x� is nonzero
as well, i.e. h�2�x�i 
 �o

2 � 0. Hence, without loss of
generality, it is convenient to deal with TDP
�q��o;�oa;�o

A;�
�o
A0 � (note that A, A0 � 2, 5, 7), in which

all arguments, except �o 
 M�m (m is a bare quark
mass, whereas the parameter M is usually called constitu-
ent or dynamical quark mass) and �o

2 
 �, are identically
equal to zero. In this case the calculation of the total TDP
� of the system (3) (recall that � � �e ��q) is signifi-
cantly simplified [19,20], and we have
 

���B;�Q;�8;M;�� � �
�4
Q

12�2 �
�M�m�2

4G
�
j�j2

4H

� 2
X



Z d3q

�2��3
fjE
� � 
�j

� jE
� � 
�jg

�
X



Z d3q

�2��3
fjE
�ubj

� jE
�dbjg; (27)

where E
� �
����������������������������
�E
�2 � j�j2

p
, E
 � E
 ��, E �������������������

~q2 �M2
p

, �� � ��ur ��dg�=2 � ��ug ��dr�=2 �
~���8 � �B=3��Q=6��8, �ub � �B=3�
2�Q=3� 2�8, �db � �B=3��Q=3� 2�8, 
� �
�Q=2 [see also the notations used in (7)]. Note that, apart
from the order parameters M and �, the TDP � really
depends on the chemical potentials, which is indicated in
(27) in an explicit form. Since the integrals in the right-
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hand side of (27) are ultraviolet divergent, we regularize
them as well as the other three-dimensional divergent
integrals below by implementing a cutoff in the integration
regions, j ~qj<�. Starting from (27), one can find the gap

equations @�=@�� � 0 and @�=@M � 0, which supply
us with the values of M, � in the ground state of the
system:

 

@�

@��



�

4H
� 2�

Z d3q

�2��3

�
��E�� � j
�j�

E��
�
��E�� � j
�j�

E��

�
� 0; (28)

 

@�

@M


M�m

2G
� 2M

Z d3q

�2��3E
���E� j�ubj� � ��E� j�dbj�	

� 4M
Z d3p

�2��3E

�
��E�� � j
�j�E

�

E��
�
��E�� � j
�j�E

�

E��

�
� 0: (29)

Next, let us impose the local color as well as electric charge neutrality requirements on the ground state of the model (3).
This means that the quantities �8 and �Q take such values that the densities of the 8th color charge N8 and electric charge
NQ are equal to zero in the ground state for arbitrary fixed values of other model parameters, i.e. hN8i � �@�=@�8 
 0,
hNQi � �@�=@�Q 
 0. These neutrality constraints look like
 

hN8i 
 4
Z d3q

�2��3

�
��E�� � j
�j�E

�

E��
�
��E�� � j
�j�E

�

E��

�

� 4
Z d3p

�2��3
�sign��ub���j�ubj � E� � sign��db���j�dbj � E�	 � 0; (30)

 hNQi 

�3
Q

3�2 �
hN8i

6
� 2

Z d3q

�2��3
�sign��ub���j�ubj � E� � sign�
����j
�j � E�� � � sign�
����j
�j � E�� �	 � 0:

(31)

In the following we suppose, for simplicity, that � is a real
quantity. Of course, the solution of the common system of
gap equations (28) and (29) and neutrality relations (30)
and (31) is possible only numerically. In all numerical
calculations of the present paper we use the following
parameter set:

 G � 5:86 GeV�2; � � 618 MeV;

m � 5:67 MeV
(32)

which leads, in the framework of the NJL model, to the
well-known vacuum phenomenological values of the
pion weak-decay constant F� � 92:4 MeV, pion mass
M� � 140 MeV, and chiral quark condensate h �qqi �
��245 MeV�3. Moreover, we use two different values for
the coupling constantH in the diquark channel,H � 3G=4
and H � G, for which two qualitatively different 2SC
phases are realized in the model (see below). The numeri-
cal analysis shows that, for the parameter set (32) and both
relations H � 3G=4 and H � G, the system of equations
(28)–(31) has only two solutions. As was already discussed
after (7), the first one (with M � 0, � � 0, �8 � 0, and
�Q � 0) corresponds to the SU�3�c � SU�2�I symmetry of
the model (normal phase), whereas the second one (with
M � 0, � � 0, �8 � 0, and �Q � 0) corresponds to the
2SC phase. As usual, solutions of these equations give

local extrema of the thermodynamic potential
���B;�Q;�8;M;�� (27). Clearly, one should also check
in which of them the TDP takes the least value (for each
fixed value of �B). Only this solution of the system of
equations (28)–(31) corresponds to the genuine neutral
ground state of the model. In particular, for each fixed
�B it supplies us with mean values (gaps) M, � (see
Figs. 1 and 2) as well as with values �8 and �Q (see
Figs. 3 and 4), at which the ground state has zero charges.2

It is clear from Figs. 1 and 2 that there is a critical value
of the baryon chemical potential �c

B (for the case H �
3G=4 one has �c

B � 1:08 GeV, whereas for the case H �
G one gets �c

B � 1:04 GeV)3 such that at �B <�c
B the

normal SU�3�c � SU�2�I-symmetric phase of the model
occurs. However, at �B >�c

B the 2SC phase is realized.
Since in this case �Q � 0 (see Fig. 4), the isospin SU�2�I

2In the literature, the zero value of the current quark mass m is
of frequent use in the 2SC investigation. In this case the
constituent quark mass M is identically equal to zero in the
2SC phase of neutral matter (see, e.g., [19,22]).

3The tendency, the greater H the smaller �c
B, is indeed

supported by earlier investigations of the 2SC phenomenon in
the framework of NJL models [34,35]. In particular, it was
shown that, at sufficiently large values of the coupling constant
H, the 2SC phase may be realized in the model even at zero
baryon chemical potential �B [35].
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symmetry of the normal phase is broken in the critical
point by hand rather than dynamically, down to the
U�1�I3 group. Furthermore, in the 2SC phase we have
h�2�x�i � � � 0, h�5;7�x�i 
 0. So in the critical point
�c
B the color SU�3�c symmetry is broken down to the

SU�2�c subgroup. Since at �B >�c
B the �8-term of the

Lagrangian (3) is nonzero (see Fig. 3), the initial color
symmetry of the model is also broken down by hand to the
SU�2�c � U�1��8

subgroup, which is further broken down
dynamically (spontaneously) to SU�2�c. Hence, one may
expect the appearance of only one Nambu-Goldstone bo-
son in the mass spectrum of the 2SC phase (see the
discussion below). Finally, we remark that in the critical
point �c

B the transition between these two phases is of the
first order which is characterized by a discontinuity in the
behavior of M and � vs �B (see Figs. 1 and 2).

Up to now we have discussed the properties of the 2SC
phase in neutral and �-equilibrated matter which are com-
mon for the two particular cases H � 3G=4 and H � G.
However, there exist, at least two, qualitative distinctions
between these neutral 2SC phases. (Both of them are based
on the fact that in the neutral 2SC matter the relation �<
j
�j is valid for the case ofH � 3G=4, whereas atH � G
the opposite one, �> j
�j, is true.) The first one lies in
the diquark mass spectrum and will be discussed below.
Now we would like to present the second one which is
provided by the quasiparticle dispersion relations, i.e. the
momentum dependence of energy. In condensed matter
physics quasiparticles are simply the one-fermion excita-
tions of the ground state. In our case the quasiparticle
spectrum of the 2SC matter is defined by singularities of
the quark propagator S0 (see Appendix B). Clearly, there
are 12 (6 quark and 6 antiquark) quasiparticles in the 2SC
matter. Four of them, blue quasiparticles, have the energies
E
�ub and E
�db. The energy spectrum of the other 8,
red and green quasiparticles, consists of four values E
� 

j
�j, each doubly degenerate. Evidently, for both relations

 

FIG. 3. The behavior of �8 vs �B in neutral matter.

 

FIG. 4. The behavior of �Q vs �B in neutral matter.

 

FIG. 2. The behavior of � vs �B in neutral matter.

 

FIG. 1. The behavior of M vs �B in neutral matter.

MESONS AND DIQUARKS IN NEUTRAL COLOR . . . PHYSICAL REVIEW D 75, 025024 (2007)

025024-7



between coupling constants H and G there are momentum
values at which the energies of two blue quasiparticles turn
into zero, i.e. there are no energy costs to create these
quasiparticles (their energies are E��ub and E��db).
Because of this reason, these excitations are called gapless
ones. Similarly, at H � 3G=4 there are, in addition, also
two gapless red and green fermionic excitations (with
energies E�� � j
�j) of neutral 2SC matter, since in this
case the relation �< j
�j is true. However, in the neutral
2SC matter of the case H � G there are no additional
gapless red and green quasiparticles. Hence, at H �
3G=4 the quasiparticle spectrum of the neutral 2SC matter
consists of four gapless excitations (it is a so-called gapless
color superconductivity). In contrast, at H � G there are
only two gapless quasiparticles in the neutral 2SC matter,
and color superconductivity is gapped. Thus, our results
corroborate the conclusion, made, e.g., in [19,23], that the
gapless 2SC may exist for a rather narrow interval of the
coupling constant H values.

In the next sections we will calculate the inverse two-
point (unnormalized) correlators of meson and diquark
fluctuations over the ground state of neutral 2SC matter
in the one-loop (mean-field) approximation and find their
masses in the two cases, H � 3G=4 and H � G.

IV. MESON MASSES

After a more detailed study of the S�2�mixed part (26) of the
effective action, it turns out that it is composed of ��x�,
�2�x�, and ��2�x� fields only, i.e. the � mesons are not
mixed with diquarks (this property is justified by the parity
conservation both in the normal and 2SC phases of our
model). So to find the �-meson masses it is enough to deal
with the effective action S�2�mesons (24), which is a generating
functional of the one-particle irreducible (1PI) Green func-
tions of �- and �-meson fields. In this case, instead of
�i�x� fields (10), we will use the new fields�0�x� 
 �3�x�,
�
�x� 
 ��1�x� 
 �2�x��=

���
2
p

, so that the quantities �, �t

from (13) look like
 

� � ��x� � i�5��0�x��3 � ���x��� � ���x���	;

�t � ��x� � i�5��0�x��3 � ���x��� � ���x���	;
(33)

where �
 
 ��1 
 �2�=
���
2
p

. Then, the 1PI Green functions
of �- and �
; �0-meson fields can be generated through
the relation

 �XY�x� y� � �

2S�2�mesons


Y�y�
X�x�
; (34)

where X, Y � �, �
, �0 [to take the variational deriva-
tives in (34), it is very instructive to refer to the relations
(A4) and (A5)]. In momentum space the zeros of the
Fourier transformations of these functions are connected
with meson masses.

A. The �
-meson masses

Using the relation (34), it is possible to define the 1PI
Green functions of the �
 fields. In particular,

 

������x� y� �

�z�
2G
� 2iTrsc�2A11�z��5B11��z��5

� 2B22�z��5A22��z��5

� A12�z��5A21��z��5

� B21�z��5B12��z��5	 (35)

(in this expression all traces over flavor indices are calcu-
lated, and z � x� y), where operators Aij�z� andBkl�z� are
defined in Appendix B. Moreover, ������x� y� �
������y� x� and ������x� y� � ������x� y� � 0.
Because of the traces containing an odd number of �5,
all the mixed Green functions of the form ���0;
�x� y� �
�f
2S�2�mesons=�
�0;
�y�
��x�	g are zero. Moreover, since
the traces containing an odd number of �
 matrices equal
zero, all the 1PI Green functions of the form ��0�
�x� y�
are also zero. Hence, in the framework of our model there
is no mixing between �
 fields on the one hand, and �, �0

fields on the other. After taking the trace over color indices,
the Fourier transform of (35) has the following form:

 

�������p� �
1

2G
� 4iTrs

Z d4q

�2��4
�2 �a�12�

11 �p� q��
5 �b�12�

11 �q��
5 � �a�3�11 �p� q��

5 �b�3�11 �q��
5 � 2 �b�12�

22 �p� q��
5 �a�12�

22 �q��
5

� �b�3�22 �p� q��
5 �a�3�22 �q��

5 � �a12�p� q��
5 �a21�q��

5 � �b21�p� q��
5 �b12�q��

5	; (36)

where the quantities �a�12�
11 �q�, �b�12�

11 �q�, etc. are the corre-
sponding Fourier transformations of a�12�

11 �z�, b
�12�
11 �z�, etc.

presented in Appendix B. Clearly, �������p� �
��������p�. The zeros of these functions determine the
�
-meson dispersion laws, i.e. the relations between their
energy and three-momenta. In the present paper, we are

mainly interested in the investigation of the modification of
meson and diquark masses in dense and cold color and
electrically neutral matter. Since in this case a particle
mass is defined as the value of its energy in the rest frame,
~p � 0 (see, e.g., [30,31,36]), we put p � �p0; 0; 0; 0� in
the following. As a result, the calculation of 1PI Green
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functions is significantly simplified. Indeed, in the rest frame one can easily perform all the trace calculations over spinor
indices in (36) [see the auxiliary relations (B10)] and get

 

�� �����p0� �
1

2G
� 16i

Z d4q

�2��4
�q0 � 
���p0 � q0 � 
�� � E�E� � j�j2

��q0 � 
��
2 � �E�� �

2	��p0 � q0 � 
��
2 � �E�� �

2	
� 4i

Z d4q

�2��4

�

�
1

�p0 � q0 ��ub � E��q0 ��db � E�
�

1

�p0 � q0 ��ub � E��q0 ��db � E�

�
; (37)

where we have used the same notations as in (27). Note also that in (37) q0 is a shorthand notation for q0 � i" � sign�q0�
and �p0 � q0� is a shorthand notation for �p0 � q0� � i" � sign�p0 � q0�, where "! 0� [see also [37] and the remark after
(B9)]. The q0 integration in (37) is performed along the real axis in the complex q0 plane. We will close this contour by an
infinite arc in the upper half of the complex q0 plane. Inside the obtained closed contour, the integrand of the first integral in
(37) has four simple poles which are located at the following points:

 �q0�1 � 
�� E�� � i" � ��E
�
� � 
��; �q0�2 � 
�� E�� � i" � ���E

�
� � 
��;

�q0�3 � E�� � 
�� p0 � i" � ��
�� E
�
� �; �q0�4 � �E

�
� � 
�� p0 � i" � ��
�� E

�
� �;

whereas the integrand in the second line of (37) has the following four poles in the upper half of the q0 plane:

 � �q0�1 � E��db � i" � ���db � E�; � �q0�2 � ��db � E� i" � ���db � E�;

� �q0�3 � �E��ub � p0 � i" � ��E��ub�; � �q0�4 � E��ub � p0 � i" � ���ub � E�:

Summing the residues of the integrand function in these poles, we can perform the q0 integration in (37) and obtain

 

�������p0� �
1

2G
� 8

Z d3q

�2��3

�
���
�� E�� �

E��
�
�p0 � E�� � 2
��E�� � E

�E� � j�j2

�p0 � E�� � 2
��2 � �E�� �
2 �

��E�� � 
��

E��

�
�p0 � E

�
� � 2
��E�� � E

�E� � j�j2

�p0 � E
�
� � 2
��2 � �E�� �

2 �
��
�� E�� �

E��
�
�p0 � E

�
� � 2
��E�� � E

�E� � j�j2

�p0 � E
�
� � 2
��2 � �E�� �

2

�
��
�� E�� �

E��
�
�p0 � E

�
� � 2
��E�� � E

�E� � j�j2

�p0 � E�� � 2
��2 � �E�� �
2

�

� 4
Z d3q

�2��3

�
���db � E�

p0 � 2
�� 2E
�

���ub � E�
p0 � 2
�� 2E

�
��E��db�

p0 � 2
�� 2E
�

���ub � E�
p0 � 2
�� 2E

�
: (38)

Clearly, the matrix element �������p0� depends effectively
on the variable z � �p0 � 2
��. It follows from our nu-
merical analysis that, for both values of the coupling
constant H (H � G and H � 3G=4), the expression (38)
has only two zeros, z1��B� and z2��B�. Hence, for each
fixed value of �B >�c

B, i.e. in the 2SC phase, we have
�������p0� � �p0 � 2
�� z1��p0 � 2
�� z2�. Since
�������p0� � ��������p0�, the determinant of the inverse
propagator matrix of the �
 mesons has the following
form:

 

�������p0� � �������p0� � �p
2
0 � �2
�� z1�

2�

� �p2
0 � �2
�� z2�

2�: (39)

Evidently, in the p2
0 plane it has two zeros, which are the

mass squared of the �
 mesons. Hence, in the 2SC neutral
dense matter the �
 mesons have different masses:

 M2
�� � �2
�� z1�

2; M2
�� � �2
�� z2�

2: (40)

The behavior of M�� and M�� vs �B in the color super-
conducting and neutral matter is depicted in Figs. 5 and 6
for the cases H � 3G=4 and H � G, respectively.

B. The �0, �-meson masses

As it was already discussed after (35),�0 mesons are not
mixed with other fields in the framework of the NJL model
(3), i.e. the 1PI Green functions of the form ��0X�x� y�,
where X�x� � ��x�, �
�x�, �A�x�, ��A0 �x� are equal to
zero. In this case the 1PI Green function ��0�0�x� y� is
just the inverse �0 propagator, which can be found from
(34). To get the �0 mass we need the expression ���0�0�p�,
i.e. the Fourier transform of ��0�0�x� y�, in the rest frame.
Using the technique presented in the previous section, one
can obtain, after tedious but straightforward calculations at
p � �p0; 0; 0; 0�,
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���0�0�p0� �
1

2G
� 8

Z d3q

�2��3
E��E

�
� � E

�E� � �2

E��E
�
�

E�� � E
�
�

p2
0 � �E

�
� � E

�
� �

2

� 4
Z d3q

�2��3

�
��
�� E�� � � ���
�� E

�
� �

E��

�
�p0 � E�� �E

�
� � E

�E� � j�j2

�p0 � E�� �
2 � �E�� �

2

�
�E�� � p0�E�� � E

�E� � j�j2

�E�� � p0�
2 � �E�� �

2

�

�
��
�� E�� � � ���
�� E

�
� �

E��

�
�E�� � p0�E

�
� � E

�E� � j�j2

�E�� � p0�
2 � �E�� �

2 �
�E�� � p0�E

�
� � E

�E� � j�j2

�E�� � p0�
2 � �E�� �

2

��

� 8
Z d3q

�2��3
E

p2
0 � 4E2 ���E��db� � ��E��ub� � ����ub � E� � ����db � E�	: (41)

The function (41) is an even one, i.e. ���0�0�p0� �
���0�0��p0�. Hence, it effectively depends on the variable
p2

0. Numerical investigations, performed both at H �
3G=4 and H � G, show that for each fixed value of �B >
�c
B the 1PI Green function (41) has a single zero on the

positive p2
0 semiaxis, which is just the mass squared of the

�0 meson. Its mass in the 2SC phase of the dense and
neutral matter is presented graphically in Figs. 5 and 6.

The situation with the �-meson mass is much more
involved. Indeed, as it follows from the previous section,
in the model under consideration the � meson is mixed
with �2�x�;�

�
2�x� diquarks (see also [29–31]). So, to get

the particle masses in this case, one should find the zeros of
the 3� 3-matrix determinant, whose matrix elements are
nothing but the 1PI Green functions ��XY�p0� (we use the
rest frame in the momentum space representation), where
X�x�; Y�x� � ��x�;�2�x�;�

�
2�x�. In general, it is a rather

hard task, which, however, can be significantly simplified
due to some reasons. It turns out that 1PI Green functions
of the form ��X [X�x� � �2�x�;��2�x�] are proportional to

the gap � (see Fig. 2) and constituent quark mass M (see
Fig. 1) as well. Hence, in the normal color symmetric phase
(where � � 0) there is no mixing between the � meson
and diquarks �2�x�, ��2�x� at all. The similar is true for the
2SC phase, if the current quark massm is zero (in this case,
as was pointed out in Footnote 2, the parameter M is also
equal to zero in the 2SC phase). In our consideration the
parameter M is a rather small quantity in comparison to the
gap � in the 2SC phase (see Figs. 1 and 2). So, to have a
grasp of the order of magnitude of the �-meson mass, we
ignore, for simplicity, the ���2 mixing effect in this
case, too. As a result, we see that for both H � 3G=4
and H � G the �-meson mass is defined by the 1PI
Green function ����x� y� which is approximately the
1PI Green function ��0�0�x� y�. Hence, for both above-
mentioned values of the coupling constant H, the �-meson
mass is approximately equal to the �0-meson mass in the
2SC neutral matter (see Figs. 5 and 6).

Now some comments concerning the behavior of the
�-meson masses in the neutral dense matter are in order.

 

FIG. 5. The behavior of meson masses vs �B in the gapless
(H � 3G=4) color superconducting neutral matter (�B >�c

B �
1:08 GeV).

 

FIG. 6. The behavior of meson masses vs �B in the gapped
(H � G) color superconducting neutral matter (�B >�c

B �
1:04 GeV).
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First of all, note that in the normal phase (where�B <�c
B)

the �Q-term of the Lagrangian (3) is zero. As a result, the
ground state of this phase is an SU�2�I-invariant one.
Because of this symmetry, in the normal phase all �
mesons have a common mass that is approximately
140 MeV for all �B <�c

B, both for H � 3G=4 and H �
G (the �-meson mass is approximately equal to 700 MeV
in the normal phase). Above the critical point, i.e. at �B >
�c
B, the isotopic SU�2�I symmetry of the system is broken

due to the appearance in (3) of a nonzero �Q-term. So, in
the 2SC phase of electrically neutral matter the meson
masses are allowed to have different values. Just this con-
clusion was supported by our numerical investigations (see
Figs. 5 and 6), where a rather strong splitting of �-meson
masses is observed. In contrast, if the electric charge
neutrality is not imposed on the NJL system, then all
mesons have a common mass in the 2SC phase [30,31].

Finally, note that in [38] a rather strong splitting of
�-meson masses was shown to exist in electrically neutral
and noncolor superconducting dense quark matter both
with and without pion condensation phenomenon.

V. DIQUARK MASSES

As in the previous section, we will ignore, for simplicity,
the mixture between diquarks �2�x�, ��2�x� and � mesons
(this is justified by moderately small values of the parame-
ter M in the 2SC phase). In this case, in order to obtain the
masses of diquarks, we need to analyze the 1PI Green
functions, generated by the effective action S�2�diquarks (25):

 �XY�x� y� � �

2S�2�diquarks


Y�y�
X�x�
; (42)

where X�x�; Y�x� � �A�x�;��A0 �x�.

A. Diquark masses in the 2SC phase

Because of the structure of (25), the diquarks, as such,
are not mixed to one another in the framework of our
model. So it is reasonable to study step-by-step the diquark
excitations of the 2SC neutral matter in the �2�x�;��2�x�,
�5�x�;�

�
5�x�, and finally in the �7�x�;�

�
7�x� sectors of the

model.
The investigations of the 1PI Green functions (42) in the

�5�x� and �7�x� sectors of the model supply us with four
excitations of the 2SC phase ground state. All of them have
the common mass 3j�8j for both H � 3G=4 and H � G,
when color and electric charge neutrality constraints are
imposed [22,31]. Evidently, these excitations form two real
(or one complex) doublets of the SU�2�c ground state
symmetry group of the 2SC phase.

To study the masses of the SU�2�c-singlet diquark ex-
citations, we should consider the 1PI Green functions in the
�2�x�;��2�x� sector of the model. It can be shown in the

usual way that in the 2SC phase these quantities take the
following form (here, again, the rest frame, i.e. ~p � 0, in
the momentum space representation is used):
 

���2�2
�p0� � ����2��2

�p0� � 4�2I0�p
2
0�;

����2�2
�p0� � ���2��2

��p0�

� �4�2 � 2p2
0�I0�p2

0� � 4p0I1�p2
0�; (43)

where
 

I0�p2
0� �

Z d3q

�2��3
��E�� � j
�j�

E�� �4�E
�
� �

2 � p2
0	

�
Z d3q

�2��3
��E�� � j
�j�

E�� �4�E
�
� �

2 � p2
0	
;

I1�p2
0� �

Z d3q

�2��3
��E�� � j
�j�E

�

E�� �4�E
�
� �

2 � p2
0	

�
Z d3q

�2��3
��E�� � j
�j�E

�

E�� �4�E
�
� �

2 � p2
0	
:

(44)

From the expressions (43) it is possible to compose the
inverse propagator matrix G�1�p0� for the diquarks
�2�x�;�

�
2�x� moving in neutral 2SC matter:

 G �1�p0� � �
���2�2

�p0�; ���2��2
�p0�

����2�2
�p0�; ����2��2

�p0�

 !
: (45)

Then, the mass spectrum in the �2�x�;�
�
2�x� sector of the

model is defined by the equation

 detG�1�p0� 
 4p2
0f�p

2
0 � 4�2�I2

0�p
2
0� � 4I2

1�p
2
0�g


 4p2
0F�p

2
0� � 0: (46)

In the p2
0 plane this equation has an evident zero, corre-

sponding to a Nambu-Goldstone boson (NG boson), p2
0 �

0. [Since F�0� � 0, it does not have another zero of the
form p2

0 � 0.]4 Since in the 2SC phase the chemical po-
tential �8 is nonzero, it is clear that in this phase the initial
color SU�2�c � U�1��8

symmetry of the Lagrangian (3) is
spontaneously broken down to the SU�2�c group. So, there
is only one broken symmetry generator, corresponding to
the above-mentioned NG-boson solution of Eq. (46).
Hence, it is possible to assert that in the 2SC phase of
color and electrically neutral matter, described by the NJL
model (3), there appears a normal number of NG bosons,
corresponding to a spontaneous breaking of the color
symmetry. In contrast, if neutrality requirements are not

4It might seem that the appearance of the NG boson in the
mass spectrum of the model is strongly connected with the
disregarding of the mixing between � mesons and
�2�x�;��2�x� diquarks. However, as it was shown in [30], this
NG boson is a native property of the model, since it exists in the
mass spectrum even in the case, when the mixing is taken into
account.
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imposed and only the baryon chemical potential is taken
into account, then in the NJL model there is an abnormal
number of NG bosons in the mass spectrum of the 2SC
phase [29]. (Note that an abnormal number of NG bosons
is not an unexpected phenomenon. It is inherent to a variety
of quantum models with broken Lorentz symmetry, which
is provided by chemical potentials [28,39].)

For the further investigation of Eq. (46) some additional
information about the functions I0, I1 (44), and conse-
quently about the function F in (46), is required. It turns
out that these functions are analytical in the complex p2

0

plane, except for the cut ß< p2
0 along the real axis (the first

Riemann sheet). It is easy to verify that ß � 4�2 in the
case of the gapped 2SC phase, i.e. at H � G, where �>
j
�j. However, ß � 4j
�j2 
 �2

Q > 4�2 in the case of
the gapless 2SC phase, i.e. atH � 3G=4, where �< j
�j.
The quantity F�p2

0� is a complex-valued function in the
whole first Riemann sheet, except for points on the real
axis which do not belong to a cut, where F�p2

0� is a real-
valued function.

Notice that, in the case of the gapless 2SC phase, the cut
of the p2

0 plane originates to the right of the point 4�2,
whereas in the case of the gapped 2SC phase it just starts at
the point 4�2. This circumstance is of decisive importance
for the appearance of the diquark mass difference in the
two types of color superconductivity. Indeed, atH � G we
did not manage to find any solution of the equation
F�p2

0� � 0 in the first Riemann sheet of the variable p2
0.

[In particular, it is evident from (46) that in the real points
such that p2

0 < 4�2 the function F�p2
0� is an exactly nega-

tive quantity.] So, using the procedure presented in the
appendix of our previous paper [30], we continue the
function F�p2

0� to the second Riemann sheet, where it takes

a zero value in some complex point. This means that an
SU�2�c-singlet diquark resonance appears in the mass
spectrum of the neutral gapped 2SC phase. Its mass MD
and width � are presented in Fig. 7 as functions of �B. For
the gapless 2SC phase (at H � 3G=4) the situation is quite
different. In this case the first Riemann sheet of the func-
tion F�p2

0� contains, in addition, the set of real points p2
0

such that 4�2 � p2
0 <�2

Q. Only among these points the
zero M2

D of F�p2
0� is located. This means that the existence

of an SU�2�c-singlet stable diquark excitation with mass
MD such that 2� � MD < j�Qj (see Fig. 8) is typical for
the neutral gapless 2SC phase (at H � 3G=4), in contrast
to the neutral gapped one (at H � G), where it is a reso-
nance (see Fig. 7). In addition, it is easily concluded that
for the same relation H � 3G=4 the SU�2�c-singlet di-
quark is a heavy resonance in the 2SC (gapped) phase
without a neutrality requirement [30,31], whereas it is a
stable particle in the gapless neutral 2SC phase, if the
neutrality constraints are fulfilled.5

Notice that in the present paper the dispersion relations
of mesons and diquarks, i.e. the momentum dependence of
their energies, are actually investigated for the particular
value of the three-momentum, ~p � 0. On the contrary, in

 

FIG. 7. The sketch of the SU�2�c-singlet diquark resonance in
the gapped (H � G) 2SC neutral matter (�B >�c

B �
1:04 GeV). The solid line is for its mass MD vs �B, whereas
the width of the strip between dashed lines MD 
 �=2 is its
width � vs �B.

 

FIG. 8. The behavior of the stable SU�2�c-singlet diquark mass
MD vs �B in the gapless (H � 3G=4) color superconducting
neutral matter (�B >�c

B � 1:08 GeV).

5Let us quote also another less rigorous, but more physical
argument in favor of the stability of the SU�2�c-singlet diquark
excitation in the g2SC phase (H � 3G=4). Namely, the decay of
the above-mentioned diquark excitation with mass MD into a
pair of u- and d-quark quasiparticles is forbidden due to the
energy disbalance. Indeed, the total energy E�p� of this quark
pair in their center-of-mass system takes the form E�p� �
Eu�p� � Ed�p�, where p � j ~pj � 0 and Eu�p� � E�� � j
�j,
Ed�p� � jE

�
� � j
�jj. One can easily show that E�p� � j�Qj.

Since the mass MD of the SU�2�c-singlet diquark excitation in
the g2SC phase is smaller than j�Qj, we conclude that the decay
of this excitation into a pair of u and d quasiparticles is
forbidden.
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the recent papers [24,25] the diquark dispersion relations
were studied at ~p � 0, and a conclusion about the Higgs
instability of the NJL gapless 2SC phase was made. In this
case the g2SC phase is unstable vs fluctuations of the
Nambu-Goldstone diquark fields and, as a result, some of
the diquarks acquire a nonphysical negative velocity
squared [24]. (In addition, the g2SC phase of a gauged
NJL model also suffers from a chromomagnetic instability
[26].) In particular, it was shown that a sufficient condition
for the Higgs instability in the gapped 2SC phase is the
relation

���
2
p
j
�j>�. Since in the case G � H this rela-

tion is not fulfilled, one may conclude that, in the gapped
neutral 2SC phase considered above, the Higgs instability
is absent.

Finally, it is necessary to note that, in the physical
SU�2�c-singlet diquark channel, we have found a stable
massive mode in the case of the g2SC phase (H � 3G=4),
whereas in [24] it was claimed that a gapless tachyon
emerges in this channel. Actually, there is no contradiction
between our result and the result of that paper. Indeed, in
our case the diquark mass MD obeys the relation 2�<
MD � p0. In contrast, in [24] those solutions for the di-
quark dispersion relation that are constrained by
jp0j; j ~pj � � were investigated. This means that in the
gapless color superconductor there are two branches for the
dispersion relation of the physical SU�2�c-singlet diquark
mode at small values of j ~pj. The first is the massive heavy
excitation with 2�<p0 (see Fig. 8 of the present paper),
and the other one corresponds to a gapless tachyon, located
in a quite different kinematic region with jp0j � �. In
addition, it was shown in [24] that the singularity p0=j ~pj
appears in the diquark two-point 1PI Green function in the
gapless 2SC phase. In this case, owing to this singularity, it
is quite possible to get, at j ~pj ! 0, a result (gapless
tachyon) that does not coincide with the diquark mass,
directly calculated at ~p � 0.

B. Diquarks in the normal phase
(� � 0, �8 � 0, �Q � 0)

At � � 0 the three complex diquark fields �A�x� (A �
2, 5, 7) are not mixed with other fields in the second order
effective action (23) of the model. Since in addition the
quantities �8, �Q are equal to zero in the normal phase,
there is an SU�3�c symmetry of the ground state of this
phase. So, in order to study the diquark masses at �B <
�c
B, it is enough to consider, e.g., the �2-diquark sector

only. In this phase the inverse propagator matrix G�1�p0�
for the diquarks �2�x�, ��2�x� looks, in contrast to the
inverse propagator (45) of these fields in the 2SC phase,
more simple [30,31] (again, we use the rest frame, ~p � 0,
in the momentum space representation):

 G �1�p0� � �
0; ���2��2

�p0�
����2�2

�p0�; 0

 !
; (47)

where ���2��2
�p0� � ����2�2

��p0�,
 

����2�2
�p0� �

1

4H
� 16

Z d3q

�2��3
E

4E2 � �p0 � 2�B=3�2



1

4H
�	���; (48)

and � � �p0 � 2�B=3�2. Since the determinant of the
inverse propagator matrix (47) takes the form

 detG�1�p0� 
 ����2�2
�p0� ���2��2

�p0�

� ����2�2
�p0� ����2�2

��p0�; (49)

it is clear that the mass spectrum is defined by the zeros of
the 1PI Green function (48). Note that the function 	��� is
analytical in the whole complex � plane, except for the cut
4M2 < � along the real axis. [In general, this function is
defined on a complex Riemann surface which is to be
described by several sheets. The integral representation
for 	���, given in (48), defines its values on the first sheet
only. To find a value of 	��� on the rest of the Riemann
surface, a special procedure of analytical continuation is
needed (see, e.g., [30]).] It turns out that, for the model
parameter set (32) and a wide set of the coupling constant
H values (see below), the equation

 	��� �
1

4H
(50)

has, on the first Riemann sheet of the variable �, a single
root �0 on the real axis such that 0< �0 < 4M2. In this case
the physical meaning of �0 is that �0 � �M

o
D�

2, where Mo
D

is the mass of a stable diquark at�B � 0. Having a root �0,
one can find two zeros of the 1PI Green function ����2�2

�p0�

as well as four zeros of the determinant (49). They provide
us with the following mass squared in the ��2;�2 sector of
the model:
 

�M��
2 � �Mo

D � 2�B=3�2;

�M�� �
2 � �Mo

D � 2�B=3�2:
(51)

In particular, if H � 3G=4, then Mo
D � 1:988M, and if

H � G, then Mo
D � 1:746M [here M is the constituent

quark mass, or gap, in the normal phase (see Fig. 1), i.e.
M � 0:350 GeV]. We relate M� in (51) to the mass of the
diquark with the baryon number B � 2=3, and M�� to the
mass of the antidiquark with B � �2=3. The difference
between diquark and antidiquark masses in (51) is ex-
plained by the absence of a charge conjugation symmetry
in the presence of a chemical potential �B.

Finally, due to the underlying color SU�3�c symmetry,
the previous statement is valid also for ��5, �5 and ��7, �7.
As a result, we have a color antitriplet of diquarks with the
massM� (51) as well as a color triplet of antidiquarks with
the mass M�� in the mass spectrum of the normal phase,
i.e. at �B < �c

B.
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It is clear from Eq. (50) that its own solution �0 lies
inside the interval 0< �0 < 4M2 only if H� <H <H��,
where H� and H�� are defined by
 

H� 

1

4	�4M2�

�
�2

4��
�������������������
M2 ��2
p

�M2 ln����
�������������������
M2 ��2
p

�=M�	
;

H�� 

1

4	�0�

�
�2

4��
�������������������
M2 ��2
p

�M2 ln����
�������������������
M2 ��2
p

�=M�	

�
3MG

2�M�m�
(52)

(here the values of �, m, and G are presented in (32),
whereas M � 0:350 GeV is the dynamical quark mass in
the normal phase). In this case, as was noted above, �0

defines the stable diquark mass Mo
D in the vacuum, i.e. at

�B � 0, through the relation �0 � �M
o
D�

2. The values of
Mo
D are depicted in Fig. 9 as a function of the parameter


 � H=G. [Note that 
� � H�=G, 
�� � H��=G �
1:5M=�M�m�]. For a rather weak interaction in the di-
quark channel (H <H� or 
< 
�), �0 runs onto the
second Riemann sheet, and unstable diquark modes (reso-
nances) appear. Contrarily, a sufficiently strong interaction
in the diquark channel (H >H�� or 
> 
��) pushes �0

towards the negative semiaxis, i.e. �Mo
D�

2 < 0 in this case.
The latter indicates a tachyon singularity in the diquark
propagator, evidencing that the SU�3�c-color symmetric
ground state is not stable. Indeed, at a very large H, as it

has been shown in [35], the color symmetry is spontane-
ously broken even at a vanishing chemical potential. The
fact that at 
! 
��� the diquark mass Mo

D tends to zero
may be considered as a precursor of the spontaneous break-
ing of the SU�3�c symmetry, taking place at H � H��.

VI. SUMMARY AND DISCUSSION

The present paper is the last in the series of our papers
[29–31], devoted to the investigation of the ground state
bosonic excitations (mesons and diquarks) of color super-
conducting quark matter. The novel features of our present
consideration, performed in the framework of the two-
flavored NJL model, are the local electric charge neutrality
constraint as well as the � equilibrium that is due to taking
electrons into account. As a result, depending on the di-
quark channel coupling constant H, the gapless (H �
3G=4) or gapped (H � G) 2SC may exist in the system
based on the Lagrangian (3). Since in (3) a new term with
the electric charge chemical potential �Q appeared, we
have an explicit breaking of the flavor SU(2) symmetry in
both 2SC phases. So, in contrast to the non-neutral case
[29–31],�mesons acquire a rather strong mass splitting in
both gapless and gapped 2SC phases (see Figs. 5 and 6).

The diquark sector of the model consists of six modes.
Since in the color and electrically neutral 2SC phase the
chemical potential �8 is not equal to zero (see Fig. 3), the
Lagrangian (3) is invariant under the color SU�2�c �
U�1��8

group. It turns out that in the color superconducting
phase this symmetry is spontaneously broken down to
SU�2�c, so, in accordance with general theorems, one of
the diquark modes takes zero mass, i.e. the Nambu-
Goldstone boson is an SU�2�c singlet. Besides, in this
phase there are four very light diquark excitations that
are composed into two real SU�2�c doublets with a com-
mon mass proportional to �8. In our opinion, when the
NJL model is gauged, the above-mentioned diquark modes
should be absent in the model. Instead, due to the
Anderson-Higgs mechanism, five massive gluons will ap-
pear. So, we believe that five diquark excitations with zero
or very small mass, observed in the 2SC phase of the
nongauged model (3), are not physically interesting objects
and might be ignored (see also the discussion in [32]).

The remaining one, an SU�2�c-singlet diquark excitation
of the 2SC ground state, has different properties under
different external conditions. Indeed, if the electric charge
neutrality requirement is not imposed, then, as it was
shown in [30,31] at H � 3G=4, this diquark mode is a
heavy resonance with mass approximately equal to
1100 MeV. However, if the neutrality and �-equilibrium
conditions are imposed, then, on the one hand, at H �
3G=4 the gapless 2SC phase is realized, in which the
above-mentioned diquark mode is already a stable particle,
whose mass is evaluated around 200 MeV (see Fig. 8).
Note that its mass is approximately equal to the value of
j�Qj presented by Fig. 4. On the other hand, at H � G we

 

FIG. 9. The behavior of the stable diquark mass Mo
D vs 
 


H=G in the vacuum (at �B � 0). Here 
� � H�=G � 0:698,

�� � H��=G � 1:525, M � 0:350 GeV. At 
< 
� there are
no stable diquarks in the normal phase, and these particles are
resonances. At 
> 
�� an SU�3�c symmetric ground state of the
normal phase (including the vacuum) is unstable in favor of color
superconducting phases.
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have the neutral gapped 2SC phase, in which the diquark is
still a resonance but with a much smaller mass (see Fig. 7).

It was shown, e.g., in [40] that at sufficiently high baryon
densities, comparable with densities inside neutron stars,
the normal quark matter equation of state is significantly
influenced by scalar mesons (� mesons, etc.). Moreover,
these mesons might change significantly the mass and
radius of the neutron star as well as the role of hyperon
degrees of freedom in dense matter. Since the masses of
diquarks in the electrically neutral color superconducting
quark matter are of the same order as those of mesons
(compare Figs. 5–8), one might expect similar effects in
the measurable parameters of neutron stars (e.g. their
masses, radii, etc.), when diquarks will be taken into
account properly in neutron star physics (see also [28]).
So, the influence of rather light diquark excitations might,
in principle, be checked by astrophysical observations.

In fact, in the present paper the dispersion relations for
mesons and diquarks following from the NJL model (3) are
investigated in the rest frame, i.e. at j ~pj � 0. In the recent
paper [24] (see also [25]) the diquark dispersion relations
at small nonzero j ~pjwere studied in the same model. It was
found there that, in the gapless 2SC phase (H � 3G=4),
Nambu-Goldstone diquark modes have a nonphysical
negative velocity squared, i.e. the model is unstable against
fluctuations of these fields. [In contrast, as it follows from
our discussion at the end of Sec. VA, in the gapped 2SC
phase (H � G) this kind of instability is absent.]
Moreover, it was proved in [24] that at small j ~pj � 0 in
the SU�2�c-singlet diquark channel of the g2SC phase there
is a gapless tachyon with jp0j � �. Our result, i.e. the
existence of a stable diquark excitation with mass MD �
200 MeV (see Fig. 8) in the same channel, does not conflict
with this, since p0 � MD belongs to quite another kine-
matic region, where p0 � MD > 2�. In spite of the fact
that in our calculations j ~pj � 0, we believe that at j ~pj � 0
there is also a branch of the SU�2�c-singlet diquark disper-
sion relation, which corresponds to a stable excitation of
the g2SC phase with mass MD (see Fig. 8).

Moreover, in the present paper the behavior of the
diquark mass at vanishing �B as a function of the coupling
constant H is also obtained (see Fig. 9).
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APPENDIX A: SOME FORMULAS

This appendix contains some useful formulas employed
in the text.

(i) Determinant:

 det
A; B
C; D

� �
� det��CB� CAC�1D	

� det�DA�DBD�1C	: (A1)

(ii) Inverse matrix:

 

A; B

C; D

 !
�1

�
C�1DL; �N
�L; B�1AN

� �

�
�L; �A�1B �N

�D�1C �L; �N

� �
; (A2)

where

 L � �AC�1D� B	�1; N � �DB�1A� C	�1;

�L � �A� BD�1C	�1; �N � �D� CA�1B	�1:

(A3)

(iii) Variational derivatives:
Let A, B be some operators in the coordinate space
with matrix elements A�x; y� 
 A�x� y� and
B�x; y� 
 B�x� y�, respectively. Moreover, let
��x� and ��x� be some fields. Then,
 

TrfA�B�g 

Z
dxdydzduA�x; z���z�
�z� y�

� B�y; u���u�
�u� x�

�
Z
dxdyA�x; y���y�B�y; x���x�: (A4)

It follows from (A4) that

 


2 TrfA�B�g

��y�
��x�

� A�x; y�B�y; x�

� A�x� y�B�y� x�: (A5)

APPENDIX B: QUARK PROPAGATOR IN THE
NAMBU-GORKOV REPRESENTATION

In the Nambu-Gorkov representation, the inverse quark
propagator matrix S�1

0 is defined in (19). Using the relation
(A2) as well as the energy projection operator technique of
[34], one can obtain the following expressions for the
matrix elements Sij�x� y� of the quark propagator S0�z�
(here z � x� y):
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S11�z� � A11�z����� � B11�z�����; S12�z� � A12�z��� � B12�z���;

S22�z� � A22�z����� � B22�z�����; S21�z� � A21�z��� � B21�z���;
(B1)

where their explicit structure in the flavor space is presented with the help of �
 
 ��1 
 �2�=
���
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matrices (recall that �i
are the Pauli matrices) and
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In the above formulas P�c�12 � diag�1; 1; 0�, P�c�3 � diag�0; 0; 1� are the projectors on the red-green and blue subspaces of the
color space, correspondingly; �2 is the Gell-Mann matrix; ��
 �

1
2 �1


�0� ~� ~q�M�
E � are projectors on the solutions of the

Dirac equation with positive/negative energy. The other notations appearing in (B2)–(B9) are identical to those of (27).
Note that, in (B2)–(B9) and similar integrals containing an integration over the energy variable, the symbol q0 is a
shorthand notation for q0 � i" � sign�q0�, where "! 0�. This prescription correctly implements the roles of �B, �8, and
�Q as chemical potentials and preserves the causality of the theory (see, e.g., [37]). Introducing the new projectors �
 �
1
2 �1


�0� ~� ~q�M�
E �, it is very convenient to use in trace calculations the following relations:

 

�5 ��
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 � �
; �
�� � 0;

Tr�
 � 2; Tr��
 ��
� �
2 ~q2

E2 ; Tr��
 ���� �
2M2

E2 :
(B10)
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