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We derive the properties of hard thermal effective actions in gauge theories from the point of view of
Schwinger’s proper time formulation. This analysis is simplified by introducing a set of generalized
energy and momenta which are conserved and are nonlocal in general. These constants of motion, which
embody energy-momentum exchanges between the fields and the particles along their trajectories, can be
related to a class of gauge invariant or covariant potentials in the hard thermal regime. We show that in this
regime the generalized energy, which is nonlocal in general, generates the characteristic nonlocal behavior
of the hard thermal effective actions.
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I. INTRODUCTION

The high temperature properties of the quark-gluon
plasma in QCD are of great interest not only in their own
right, but also as a starting point for the resummation of
perturbation theory [1,2]. These physical properties are
encoded in the hard thermal effective action whose coeffi-
cient (the overall multiplicative factor) is proportional to
T2 where T represents the equilibrium temperature. Such
leading contributions to the effective action arise from one-
loop diagrams where the internal momentum is of order T
which is much larger than any external momentum. The
corresponding hard thermal effective actions have been
derived from the point of view of thermal field theory
[3–9] as well as from the point of view of semiclassical
transport equations [10–16]. It is known from these studies
that the hard thermal effective actions are gauge invariant
and, in general, are nonlocal except in the static limit where
they become local.

The one-loop effective actions at zero temperature, on
the other hand, are commonly derived using the proper
time formulation of Schwinger [17] which is manifestly
gauge invariant. However, this formulation is not as much
developed at finite temperature [18] and the main purpose
of this short paper is to derive the hard thermal effective
actions as well as their properties from Schwinger’s proper
time approach. We find that, in this approach, all the
information about the hard thermal effective action is
contained in a set of conserved generalized momenta,
which are in general nonlocal. In the hard thermal regime,
these momenta can be related to a class of gauge invariant
or covariant potentials [19]. In this regime, the generalized
energy, which is in general nonlocal, contains all the
information about the nonlocal behavior of the effective
actions which become local only in the static limit. While
our analysis holds for all theories, for brevity we discuss
only gauge theories in this paper. In Sec. II, we recapitulate
briefly Schwinger’s proper time approach and derive the
hard thermal effective action resulting from scalar QED. In

this case, we construct the conserved generalized momenta
and determine the set of associated gauge invariant poten-
tials [19] in the hard thermal regime. In Sec. III, we extend
this analysis to non-Abelian gauge theories and derive the
corresponding generalized momenta and the related set of
gauge covariant potentials in the hard thermal regime.
These potentials, which generate correctly the relevant
hard thermal contributions to all orders, are in general
nonlocal. We conclude this note with a brief summary in
Sec. IV.

II. EFFECTIVE ACTION FOR QED

Let us consider scalar QED in 3� 1 dimensions de-
scribed by the Lagrangian density (our metric has the
signature ��;�;�;��)

 L � ��@� � ieA����
y�@� � ieA����m2�y�: (1)

The Lagrangian density is quadratic in the scalar fields
which can be integrated out in the path integral leading to
the generating functional

 Z�A�� � N�det��@� � ieA���@
� � ieA�� �m2���1

�

�
det

1

2m
���� � eA����� � eA�� �m2�

�
�1
;

(2)

where we have identified the canonical momentum con-
jugate to the coordinate x� as �� � �i@� and have
chosen a particular form for the normalization constant
N. It follows now that the one-loop effective action for this
theory can be written as

 � � iTr ln
1

2m
���� � eA����

� � eA�� �m2�

� iTr lnH; (3)

where ‘‘Tr’’ stands for trace over a complete set of states
and we have identified
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 H �
1

2m
���� � eA����� � eA�� �m2�: (4)

The expression (3) can lead to the effective action at zero as
well as at finite temperature depending on the periodicity
condition and the basis states chosen.

In Schwinger’s approach, the effective action (3) can be
written (in a regularized manner) as

 � � �iTr
Z 1

0

d�
�
e��H; (5)

where H (defined in (4)) can be thought of as the evolution
operator for the proper time parameter �. Defining the
kinematic momentum as

 p� � �� � eA�; (6)

we can determine the proper time evolution of the coor-
dinates and momenta from the canonical commutation
relations to be
 

dx�

d�
� �i�x�;H� �

p�

m
;

dp�
d�
� �i�p�;H� �

e
m
F��p�;

(7)

where F�� denotes the Abelian field strength tensor. (It is
worth pointing out here that we have not worried about the
order of factors in the second equation, which is not
relevant in the hard thermal regime that we are interested
in.) If the dynamical Eqs. (7) for such a particle can be
solved in a closed form, one can construct a complete set of
states and evaluate the effective action (5) in a closed form.
In general, this is not possible for a particle interacting with
an arbitrary external field and in such a case, one studies
the effective action in a perturbative manner [17]. How-
ever, as we will show, in the hard thermal regime where
�� eA, there is a great simplification yielding the lead-
ing result for the effective action in a straight forward
manner.

To calculate the hard thermal effective action, we note
that the current of the theory at zero temperature follows
from (3) to be

 j��0��x� �
���0�

�A��x�

� �2e
Z d4�

�2��4
��� � eA��

i

��� eA�2 �m2 :

(8)

If we know the current, it can, of course, be functionally
integrated (in principle) to yield the effective action. We
note that the denominator in (8) can be thought of as an
effective scalar propagator in a space-time dependent
background field A��x�. In order to calculate the hard
thermal (retarded) effective action, we need to define the
current at finite temperature by generalizing this propaga-

tor to the appropriate finite temperature one through a
suitable analytic continuation [1,2,20] (in either imaginary
time or real time formalism). Because of the presence of
the background field in the zero temperature propagator,
such a generalization is not immediately obvious.
However, the extension of the propagator to finite tempera-
ture can be carried out as follows.

Let us note from (7) that when interactions are present,
the momentum p� (or ��) is not conserved. However,
even in such a case, we can define a generalized momen-
tum that is a constant of motion in the following way. We
note from (7) that the time evolution of functions in the
phase space is given by the operator

 

d
d�
�

1

m

�
�p 	 @� � eF��p�

@
@p�

�
: (9)

Let us next define the (nonlocal) operator (we note here
parenthetically that this is, in fact, the operator that arises
in the conventional calculations of the hard thermal effec-
tive action for QED)

 K �
e

p 	 @
F��p�

@
@p�

: (10)

Then, it can be easily checked with the help of (9) that

 P� � p� � Y� � p� �
1

1� K
Kp� �

1

1� K
p�; (11)

is conserved, namely,

 

dP�
d�
� 0: (12)

The coordinate, canonically conjugate to this generalized
momentum, can also be derived and has the form

 X� � x� �
1

1� K
1

p 	 @
Y�; (13)

and it satisfies the equation

 

dX�

d�
�
P�

m
: (14)

Thus, we see that in these generalized variables, the dy-
namical equations reduce to those of free particle motion.

We note that this generalized momentum, P�, is in
general nonlocal. However, it can be easily verified that

 P�P� � p�p�; (15)

so that the zero temperature propagator can be written in
these variables as a free propagator

 i��0� �
i

��� eA�2 �m2 �
i

P2 �m2 ; (16)

where we have used both (6) as well as (15). The general-
ization to finite temperature is now immediate
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 i��T� �
i

P2 �m2 � 2�n�jP0j���P2 �m2�; (17)

where n�jP0j� denotes the bosonic distribution function.
We note here in passing that since the thermal propagator is
related to the zero temperature one through the thermal
operator [21], the currents at finite temperature will also
satisfy such a relation.

Using (17) we can determine the temperature dependent
part of the current (see (8)) (we are using the notation
j��T� � j��0� � j����)
 

j���� � �2e
Z d4�

�2��4
��� � eA��2�n�jP0j���P2 �m2�

� �2e
Z d4P

�2��4

�
1�

e

�P 	 @�2
P�@	F	� � 	 	 	

�




�
P� �

e
P 	 @

P
F�
 � 	 	 	
�


 2�n�jP0j���P2 �m2�; (18)

where the first factor arises from the Jacobian for the
change of variables. In the hard thermal limit where we
can neglect masses and assume P� @, the leading con-
tribution to the current occurs only at order e2 and takes the
form
 

j����HTL � �2e2
Z d4P

�2��3
��P2�n�jP0j�




�
��� �

P�@�

P 	 @

�
P	

P 	 @
F�	: (19)

Using the standard integral

 

Z 1
0
dxxn�x� �

�2T2

6
; (20)

and integrating the current (19), we obtain the temperature
dependent hard thermal effective action to be

 ����HTL �
e2T2

12

Z
d4x

Z d�

4�
F��

p̂�p̂�

�p̂ 	 @�2
F��; (21)

where we have labeled the variable of integration in (19) as
p and have defined

 p̂ � � �1; p̂�; (22)

and
R
d� denotes the angular integration over the unit

vector p̂.
The integrand of the effective action in (21) is manifestly

gauge invariant and Lorentz invariant, but appears to be
manifestly nonlocal as well. The locality/nonlocality of the
hard thermal effective action can be best understood in
terms of the kinematic momentum. In this variable, the
hard thermal current (19) takes the form

 j����HTL � �2e
Z d4p

�2��3
p���p2�n�jP0j�; (23)

and we see that all the nonlocality of the current (and,
therefore, the effective action) is contained in the general-
ized energy P0 and manifests through the dependence of
the integrand on the distribution function n�jP0j�. To
understand the nonlocal behavior of P0 better, let us write
(11) as

 P� � p� � eA�; (24)

where in the hard thermal regime, we can identify

 A ��x; p̂� �
1

p̂ 	 @
p̂�F�� � A� �

1

p̂ 	 @
@�p̂ 	 A: (25)

In this regime, we recognize A� to correspond to the class
of gauge invariant potentials [19] which are, in general,
path dependent and nonlocal. For example, using the re-
tarded path integral form for the operator 1

p̂	@ [22], we can
explicitly express these potentials as

 A ��x; p̂� � �
Z t

�1
dt0F��t

0;x� p̂�t� t0��

� �
Z t

�1
dt0F��x

0�t0��; (26)

where eF� � ep̂�F�� denotes the Lorentz force four vec-
tor

 eF� � e�p̂ 	 F;F�; F � E� p̂
 B; (27)

with E, B representing the electric and the magnetic fields,
respectively. It follows, therefore, that
 

eA0�x; p̂� � �e
Z t

�1
dt0p̂ 	 E�x0�t0��;

eA�x; p̂� � �e
Z t

�1
dt0�E�x0�t0�� � p̂
 B�x0�t0���;

(28)

can be interpreted in this case as the energy and momentum
exchanged between the particle and the field along a
trajectory parallel to p. As is clear, in general the gauge
invariant potentials are nonlocal. However, we note from
(25) that in the static limit (when the background field is
static) A0 and, therefore, P0 is local. It then follows from
(23) that although the hard thermal current as well as the
effective action are nonlocal in general, they become local
only in the static limit. It is interesting to remark here that
integrating by parts (21) and using (25), the hard thermal
effective action may be expressed in terms of the gauge
invariant potentials in the simple form

 ����HTL �
m2

ph

2

Z
d4x

Z d�

4�
A��x; p̂�A

��x; p̂�; (29)

wheremph �
eT��

6
p represents the thermal mass of the photon.

The form (29) is reminiscent of the gauge invariant mass
generated in the Schwinger model (at zero temperature)
[23].
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III. EFFECTIVE ACTION FOR YANG-MILLS
THEORY

The derivation of the hard thermal effective action (and
its properties) for the Yang-Mills theory follows in a com-
pletely parallel manner to the discussion in the last section.
Therefore, we only give a brief description of the essential
steps involved in such a derivation. As in Sec. II, let us
consider a complex scalar field in a given representation of
SU�N� interacting with a background non-Abelian gauge
field. The Lagrangian density has the form (compare with
(1))

 L � ��@� � igA
a
�T

a���y�@� � igA�bTb���m2�y�:

(30)

Here the scalar field is a matrix of SU�N� and Ta, a �
1; 2; 	 	 	 ; N2 � 1 represent the generators of the group (in
the representation to which the scalar fields belong) sat-
isfying the commutation relations

 �Ta; Tb� � ifabcTc; (31)

with fabc denoting the structure constants. Following the
discussion in Sec. II, we can write the one-loop effective
action as (see (3))

 � � iTr lnH; (32)

with the Hamiltonian given by

 H �
1

2m
���� � gA

a
�T

a���� � gA�bTb� �m2�: (33)

We note that Tr in (32) denotes summing over a complete
set of states as well as a sum over the matrix indices of the
group.

The effective action in (32) can now be given a proper
time representation as in (5) and the dynamical proper time
evolutions for the coordinates and momenta can be deter-
mined to be
 

dx�

d�
� �i�x�;H� �

p�

m
;

dp�
d�
� �i�p�;H� �

g
m
Fa��Tap�;

(34)

where Fa�� denotes the non-Abelian field strength tensor

 Fa�� � @�A
a
� � @�A

a
� � gf

abcAb�A
c
�; (35)

and we have identified the kinematic momentum to be

 p� � �� � gA
a
�T

a: (36)

We note that since the generators Ta do not commute (see
(31)), in this case, in addition to the usual equations of
motion (34) for the coordinates and momenta of the parti-
cle, we will also have

 

dTa

d�
� �i�Ta;H� � �

g
m
fabc�p 	 Ab�Tc: (37)

Together with (37), therefore, the equations in (34) de-
scribe a ‘‘spinning’’ particle in the internal space and this
‘‘spin’’ becomes an additional degree of freedom in this
case. (We mention here again that we have disregarded the
ordering of the factors which are not relevant in the hard
thermal regime.) Furthermore, we remark here that the
expectation value of the generators in the semiclassical
limit (for large quantum numbers) can be identified with
the color charge of the classical particle [24,25].

As in the last section, we note that neither the canonical
momentum nor the kinematic momentum is conserved.
However, we can determine a generalized momentum
(see (11)) which is conserved in the following way. Let
us define a derivative operator

 

~D� � @� � gfabcAb�Tc
@
@Ta

: (38)

It is easy to see that acting on the space of functions of the
kind fa�x; p�Ta, this gives

 

~D��fa�x; p�Ta� � �D�f�x; p��aTa; (39)

where the covariant derivative is defined to be

 �D�f�x; p��
a � @�f

a � gfabcAb�f
c: (40)

With these and (34) as well as (37), it can be shown that the
conserved generalized momentum takes the form
 

P� � p� � Y� � p� �
1

1� K
Kp�

�
1

1� K
p�; (41)

where in the present case

 K �
g

p 	 ~D

�
Fa��T

ap�
@
@p�

�
: (42)

Although these generalized conserved momenta are, in
general, nonlocal, as in (15) it can be verified that

 P�P
� � p�p

�: (43)

Therefore, following the analysis of the previous section,
we can write the temperature dependent part of the current
in the hard thermal regime as (see (23))

 j�a���HTL � �2g
Z d4pdT

�2��3
Tap���p2�n�jP0j�: (44)

Here
R
dT denotes the integration over the spin degrees of

freedom (color charge). Once again we emphasize here
that the hard thermal current and, therefore, the action will
be nonlocal in general simply because P0 (defined in (41))
has this behavior.

To understand this nonlocal behavior better, we note that
in the hard thermal regime, we can write (see (41))

 P� � p� � gAa
�Ta; (45)
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where with the help of (39) we find

 A a
��x; p̂� �

�
1

p̂ 	D
p̂�F��

�
a
� Aa� �

�
1

p̂ 	D
@�p̂ 	 A

�
a
:

(46)

Here D� represents the covariant derivative defined in
(40). The gauge covariant potentials in (46) represent a
natural extension of the class of invariant potentials in (25).
These non-Abelian potentials, which are in general non-
local and path dependent, generate correctly the leading
hard thermal contributions to all orders in g. Furthermore,
as in the case of QED, we note that when the background
field is static, the generalized energy in (45) has the simple
local form

 P0 � p0 � gAa0T
a; (47)

so that only in this limit, the hard thermal current as well as
the effective action become local. In fact, in this limit only
the gluon self-energy is leading at high temperature. In
general, since P0 is conserved, n�jP0j� is also constant
under � evolution. Using this fact, it can be readily shown
that the hard thermal current (44) is covariantly conserved,

 D�j
�a���
HTL � @�j

�a���
HTL � gf

abcAb�j
�c���
HTL � 0: (48)

As a result, the hard thermal effective action, which is
obtained by functionally integrating the hard thermal cur-
rent is gauge invariant. The explicit form of the hard
thermal effective action for the Yang-Mills fields can be
written as [3,4]

 ����HTL�
N�gT�2

12

Z
d4x

Z d�

4�
F��a

�
p̂�p̂

�

�p̂ 	D�2

�
ab
Fb��: (49)

The similarity of the above action with (21) is worth
noting. It is interesting to observe that integrating this
expression by parts, we can rewrite the hard thermal effec-
tive action (49) in terms of the gauge covariant potentials
(46) in the simple form

 ����HTL �
m2

gl

2

Z
d4x

Z d�

4�
Aa

��x; p̂�A�a�x; p̂�; (50)

where mgl �
���
N
6

q
gT is the thermal gluon mass, in complete

analogy with (29). Alternatively, one could have started
from a manifestly gauge invariant form like (50), which
represents a natural generalization of the QED action (29).
Then, noticing that the overall multiplicative factor in (50)
can be uniquely determined by an explicit evaluation of the
gluon self-energy, one would be readily led to the well
known hard thermal effective action (49).

IV. CONCLUSION

In this work, we have discussed the hard thermal effec-
tive actions and their properties from the point of view of
Schwinger’s proper time approach. We have shown that the
nonlocalities of the current as well as the effective action
can be understood from the behavior of a set of generalized
momenta, P�, which are conserved (even in the presence
of interactions) and include the exchange of energy and
momentum between the background fields and the particle
along its trajectory. These conserved momenta are in gen-
eral nonlocal, but satisfy the condition P�P� � p�p�,
where p� denotes the kinematic momentum. As a result,
the Lorentz invariant effective actions at zero temperature,
which are functions of P2, will be local as expected. On the
other hand, at finite temperature, Lorentz invariance is
broken because the rest frame of the heat bath defines a
preferred reference frame. Consequently, the thermal ef-
fective actions will depend on the nonlocal energy P0

through the distribution function. It is precisely this feature
that generates the nonlocal behavior of the effective action
in the hard thermal loop regime. An exception occurs only
when the background is static, in which case the exchanged
energy is local, and this is reflected in the local forms of the
corresponding hard thermal effective actions. Although our
discussion has been completely within the context of gauge
field backgrounds, this analysis holds as well when the
background involves scalar fields. The approach outlined
in this paper may also be useful to study the properties of
effective actions describing nonequilibrium systems at
high temperature [26].
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