
Dispersion relations in noncommutative theories

Tiago Mariz* and J. R. Nascimento†

Departamento de Fı́sica, Universidade Federal da Paraı́ba, 58051-970, João Pessoa, PB, Brazil

Victor O. Rivelles‡

Instituto de Fı́sica, Universidade de São Paulo, Caixa Postal 66318, 05315-970, São Paulo, SP, Brazil
(Received 4 October 2006; published 24 January 2007)

We present a detailed study of plane waves in noncommutative abelian gauge theories. The dispersion
relation is deformed from its usual form whenever a constant background electromagnetic field is present
and is similar to that of an anisotropic medium with no Faraday rotation nor birefringence. When the
noncommutativity is induced by the Moyal product we find that for some values of the background
magnetic field no plane waves are allowed when time is noncommutative. In the Seiberg-Witten context
no restriction is found. We also derive the energy-momentum tensor in the Seiberg-Witten case. We show
that the generalized Poynting vector obtained from the energy-momentum tensor, the group velocity and
the wave vector all point in different directions. In the absence of a constant electromagnetic background
we find that the superposition of plane waves is allowed in the Moyal case if the momenta are parallel or
satisfy a sort of quantization condition. We also discuss the relation between the solutions found in the
Seiberg-Witten and Moyal cases showing that they are not equivalent.
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I. INTRODUCTION

The fact that coordinates and momenta do not commute
in quantum theory leads naturally to the proposal that
coordinates should also be noncommuting. This would
introduce a new scale in the theory which could be used
to regulate the divergences in quantum field theory [1] but
the success of the renormalization program lead to the
dismissal of proposals like this. More recently, however,
noncommuting coordinates were found in several settings
involving string theory. In particular, there is a decoupling
limit of open strings in the presence of D-branes where the
effective gauge field theory is defined in a noncommutative
space-time induced by the Moyal product [2]

 A�x� ? B�x� � e�i=2����@x�@
y
�A�x�B�y�jy!x; (1.1)

where ��� is the noncommutativity parameter [3]. The
effect of noncommutativity in quantum field theory is to
add phase factors in the vertices which produce a mixture
of infrared and ultraviolet divergences usually breaking
down renormalizability [4]. The only theories which are
known to be free of such a mixing are the supersymmetric
ones [5].

In this context the action for an Abelian gauge field is

 S � �
1

4

Z
d4xF̂�� ? F̂��; (1.2)

where F̂�� � @�Â� � @�Â� � i�Â�; Â�� and the brackets
denote a Moyal commutator. This action is invariant under
a non conventional gauge transformation

 �Â� � @��̂� i�Â�; �̂�: (1.3)

It is possible to use the Seiberg-Witten map [2]

 Â � � A� �
1

2
���A��@�A� � F���; (1.4)

to get a gauge field A� with the conventional gauge trans-
formation and an action written in terms of the conven-
tional field strength. In this picture, the action is expressed
as a power series in the noncommutativity parameter and,
to first order in �, it is given by

 S � �
1

4

Z
d4x

�
F��F�� � 2���F��

�
F�	F	�

�
1

4

��F��F��

��
: (1.5)

In the same way that plane waves can be found in
ordinary non-Abelian gauge theories [6] they can also be
found in noncommutative theories [7]. A discussion of
waves in more general noncommutative space-times can
be found in [8,9]. Noncommutativity breaks Lorentz in-
variance spontaneously due to the existence of a constant
matrix ��� and this means that light waves may no longer
travel with the velocity of light. In the absence of a back-
ground electromagnetic field the usual dispersion relation
is found, whether the noncommutativity is induced by the
Moyal product or by the Seiberg-Witten map. If a constant
electromagnetic background is present the dispersion rela-
tion is changed [10–13]. This clearly opens a new window
to detect Lorentz violations effects due to noncommuta-
tivity. There are several proposals to find out Lorentz
violation and use them as evidence for quantum gravity
effects [14]. In particular, Lorentz violation due to non-
commutativity and quantum gravity effects can be found in
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the standard model [15], high energy gamma ray bursts
[16], Cerenkov [17] and synchrotron [18] radiation, among
many other examples. It is relevant now to study system-
atically the modifications induced by noncommutativity in
the dispersion relations and that is the aim of this paper.

In the next section we will study plane wave solutions
and the corresponding dispersion relations in the Seiberg-
Witten map context. We will obtain the complete disper-
sion relation when an electromagnetic background is
present. We find that group and wave velocities have the
same magnitude and that the group velocity is not in the
direction of the wave vector. To find out the direction in
which the energy is being propagated we compute the
energy-momentum tensor in Sec. III. We choose the
energy-momentum tensor which is conserved and gauge
invariant but is neither symmetric nor traceless. We then
show that the group velocity and the generalized Poynting
vector obtained from the energy-momentum tensor are not
in the same direction. All these effects are similar to those
characteristic of an anisotropic medium. No analogue of
Faraday rotation or birefringence is found since the polar-
izations travel with the same velocity.

In Sec. IV we look for plane wave solutions in the Moyal
product context. We show that there are plane wave solu-
tions to all orders in � and derive the dispersion relation.
The anisotropic effects also show up in this case. Now we
find that the background and the noncommutativity are no
longer arbitrary and that there are restrictions when the
noncommutativity involves time. In the next section we
discuss the equivalence of both pictures. We show that
plane waves in one picture do not correspond to plane
waves in the other one if the background is the same. We
also show what is the Moyal picture solution correspond-
ing to plane waves in the Seiberg-Witten context.

Next we show that two plane waves in the Moyal picture
case can obey the superposition principle if their four-
momenta satisfy ���p�k� � 2n�, with n an integer.
They obey the usual dispersion relation. In particular, if
the momenta are in the same direction they can form a
wave packet. Finally, in the last section, we present some
conclusions and further discussions.

II. SEIBERG-WITTEN MAP PICTURE

In this section we will study some exact solutions to the
field equation coming from the action (1.5), that is,

 @�F
�� � ���F�

��@�F�
� � @�F�

�� � 0: (2.1)

Clearly, a constant background F���x� � B�� � constant
is a solution. For a plane wave we assume that F���x� �
~F���kx�. Then the Bianchi identity contracted with k� tell
us that

 k2 ~F0�� � k
�k� ~F0�� � k

�k� ~F0�� � 0; (2.2)

where F0 denotes differentiation with respect to kx. Now

using the field Eq. (2.1) we get

 k2 ~F0�� � 2��� ~F�
�k�k� ~F0�� � 0: (2.3)

The field Eq. (2.1) implies that k� ~F0�� is of order � and
since F and F0 differ by a factor of i, the second term in
(2.3) can be disregarded. Then k2 ~F0�� � 0. We then con-
clude that for a plane wave the usual dispersion relation
k2 � 0 holds. After using the Bianchi identity back in the
field equation we get k� ~F0�� � 0 showing that the plane
wave is transversal like in the commutative case.

Let us now consider the case of a superposition of a
constant background B�� and a plane wave ~F���kx�. Then
the field Eq. (2.1) becomes

 k� ~F0�� � ����B�� � ~F�� ��k� ~F0�� � k� ~F0�� � � 0: (2.4)

The quadratic terms in ~F can be disregarded once we use
the Bianchi identities to turn them into the form k� ~F0��

and then using the fact that it is of order �. The equation of
motion then reduces to

 

~k � ~F0�� � 0; (2.5)

where

 

~k � � k� � �
��B��k� � ��

�B�
�k�: (2.6)

This is quite interesting since the Bianchi identity is writ-
ten with respect to k� as

 k� ~F0�� � k� ~F0�� � k� ~F0�� � 0; (2.7)

while the field equation is written with respect to the
modified wave vector ~k�. If we now contract the Bianchi
identity with ~k� we get k�~k� � 0 or

 k2 � �2���B��k�k�: (2.8)

Since k�~k� � 0 we can use (2.6) to get ~k2 � �k2. Notice
that (2.8) is the first sign that the plane wave velocity may
not be equal to the velocity of light in the presence of a
background.

To solve (2.8) we take k� � �!; ~k� so that ~k can be used
to decompose all vectors in components parallel and per-
pendicular to it, ~V � VLk̂� ~VT with ~k � ~VT � 0, and k̂ �
~k=j ~kj. We also introduce the vectors ~� and ~~� as �ij � �ijk�k

and �0i � ~�i, respectively, and use the vectors ~E and ~B for
the background B0i � Ei and Bij � �ijkBk, respectively.
An analogous decomposition is used for ~F��. With this
notation (2.8) takes the form
 

~k2

!2 � 1� 2
�
~ET �

~~�T �
1

!
~k � � ~BT 	

~~�T�
�

� 2
�
~BT � ~�T �

1

!
~k � � ~ET 	 ~�T�

�
; (2.9)

which gives the dispersion relation
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 !�j ~kj�1� ~ET �
~~�T� ~BT � ~�T� k̂ � � ~BT	

~~�T� ~ET	 ~�T��:

(2.10)

This reproduces the results found in [10–12,19] for several
particular cases.

Notice that the frequency is now dependent on the
direction of wave vector, a characteristic of anisotropic
media. We can also compute the phase and group velocities
for each mode. The phase velocity can be found to be
 

vp � 1� ~ET �
~~�T � ~BT � ~�T � k̂ � � ~BT 	

~~�T � ~ET 	 ~�T�

�
!

j ~kj
; (2.11)

and also depends on the wave vector direction. The group
velocity is given by
 

~vg � �1� ~ET �
~~�T � ~BT � ~�T�k̂� ~�L ~ET � EL

~~�T � �L ~BT

�BL
~�T � ~B	 ~~�� ~E 	 ~�; (2.12)

and it is not in the same direction as the wave vector. It has
a component in the direction of the wave vector which has
the same magnitude of the phase velocity and a transversal
component which is first order in �. Then, both phase and
group velocities have the same magnitude vg � vp to
order �. Notice also that (2.6) defines a modified wave
vector
 

~~k � j ~kj��1� 2EL ~�L � 2 ~BT � ~�T�k̂� ~�L ~ET � EL
~~�T

� �L ~BT �BL
~�T � ~E 	 ~�� ~B	 ~~��: (2.13)

We can compute its vector product with the group velocity
up to order �2. The result is nonvanishing meaning that the
modified wave vector and the group velocity are not in the
same direction. It remains to be seen whether the plane
wave energy is transported along the direction of ~vg. This
will be done in next section.

Since k�~k� � 0 the field Eq. (2.5) reduces to ~k� ~A� � 0

so that the polarization is orthogonal to ~k. To have a better
understanding of this point let us rewrite the Bianchi
identity (2.7) in vectorial form as

 

~k � ~~B � 0; (2.14)

 

~k	 ~~E�! ~~B � 0; (2.15)

and the field Eq. (2.5) as

 

~~k � ~~E � 0; (2.16)

 

~~k	 ~~B� ~! ~~E � 0: (2.17)

From (2.14) we learn that the magnetic field is transversal
to ~k and can be determined by (2.15) in terms of the

transverse electric field ~~ET . Then (2.16) tell us that the

vector field is transverse to ~~k so that its longitudinal com-

ponent with respect to ~k, ~EL, can be found in terms of ~~ET .
Finally, (2.17) just reproduces the dispersion relation

! ~!� ~k � ~~k � 0, so that ~~ET is not determined. We thus
find that the plane wave is transversal and has 2 degrees of
freedom and both polarizations travel with the same
velocity.

To untangle the relative directions of the several vectors

involved let us notice that ~~E and ~~B are orthogonal to each
other and we can use their directions to define two orthogo-
nal directions. The third orthogonal direction is then de-

fined by ~~E	 ~~B. Then taking the scalar product of ~~B with

(2.15) we find that ~k has a component along ~~E	 ~~B. A

similar conclusion holds for ~~k. From (2.14) we find that ~k

can have a component along ~~E and similarly from (2.16) ~~k

can have a component along ~~B. Notice that in the pure
plane wave case, without any background, (2.14), (2.15),
(2.16), and (2.17) reduce to the same relations found in the

absence of noncommutativity. Then ~~E, ~~B and ~k � ~~k are
mutually orthogonal vectors.

The next task is to find out the direction in which energy
is being transported. To do so we will compute the energy-
momentum tensor.

III. THE ENERGY-MOMENTUM TENSOR

The usual properties of the energy-momentum tensor
usually do not hold in noncommutative field theories due to
the presence of ���. A theory which is invariant under rigid
translations gives rise to a conserved energy-momentum
tensor T�� which may not be symmetric. However, it can
be symmetrized by the Belinfante procedure. Lorentz in-
variance, on the other hand, also gives rise to a conserved
tensor, M���, such that @�M

��� � T�� � T��. In a
Lorentz invariant theory M��� is conserved and T�� is
symmetric but in noncommutative theories we expected to
find out an antisymmetric part for T��. Alternatively, we
could enforce a symmetric T�� in noncommutative theo-
ries but then its conservation is compromised [20]. Also,
the energy-momentum tensor obtained before and after the
Seiberg-Witten map may not be the same [20–24]. Other
properties are discussed in [25].

We are interested in finding the direction where the
energy is flowing so we need a locally conserved energy-
momentum tensor. After the Seiberg-Witten map, the ca-
nonical energy-momentum tensor is [22]

 Tc�� � 2��
�@�A� � 
��L; (3.1)

where ��� �
�S
�F��

, S is the action (1.5) and L its

Lagrangian. Notice that Tc�� is neither symmetric nor
traceless. It is conserved on-shell but it is not gauge invari-
ant. We can apply a sort of Belinfante procedure [22] and
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add a total derivative to Tc�� in order to get

 T�� � 2��
�F�� � 
��L; (3.2)

which is also neither symmetric nor traceless, but is gauge
invariant. It is also conserved @�T�� � 0 if the equations
of motion are used. Its explicit form is
 

T�� �
�

1�
1

2
���F��

�
F��F�� � F�����F�

F�

� F�����F�
F� � ���F��F�

F�

�
1

4
��

�F��F
2 � 
��L; (3.3)

and agrees with the results of [22,23]. After a lengthy
calculation we can find its components
 

T00 �
1

2
�1� ~� � ~B�� ~E2 � ~B2� � � ~~� � ~E� ~E2

� � ~� � ~E�� ~E � ~B�; (3.4)

 

T0i � �1� ~~� � ~E� ~� � ~B�� ~E	 ~B�i �
1

2
� ~E2 � ~B2�� ~~�	 ~B�i

� � ~E � ~B�� ~�	 ~B�i; (3.5)

 

Ti0 � �1� ~~� � ~E� ~� � ~B�� ~E	 ~B�i �
1

2
� ~E2 � ~B2�� ~�	 ~E�i

� � ~E � ~B�� ~~�	 ~E�i; (3.6)

 

Tij � ��1� ~� � ~B� ~~� � ~E��EiEj � BiBj�

�
1

2
� ~E2 � ~B2��~�iEj � Bi�j� � � ~E � ~B��Bi ~�j � �iEj�

� �ij
�

1

2
�1� ~~� � ~E�� ~E2 � ~B2� � � ~� � ~B� ~B2

� � ~~� � ~B�� ~E � ~B�
�
: (3.7)

Some pieces were already known, in particular, cases. For

instance, when ~~� � 0, (3.4) agrees with the result in [23].
The presence of an antisymmetric part in the energy-

momentum tensor requires some care. We can still inter-
pret Ti0 as a sort of generalized Poynting vector and T00 as
an energy density because T�� is locally conserved. Notice
that T00 does not seem to be positive definite. The non-
commutative contributions proportional to ~E2 and ~B2 are
harmless because ���F�� 
 1 and 1

2 �
~E2 � ~B2� is larger

than them. The noncommutative term with ~E � ~B is also
small than the commutative term 1

2 �
~E2 � ~B2� because ~E �

~B � 1
2 �
~E2 � ~B2�. So, somewhat surprisingly, the energy

density (3.4) is positive definite for small
noncommutativity.

To find out the direction of the energy flux let us ma-
nipulate (2.14), (2.15), (2.16), and (2.17). We can use (2.15)

to find that

 

~~B 2 �
~k2

!2
~~E

2
�

1

!2 �
~k � ~~E�2: (3.8)

By (2.9) we know that ~k2=!2 � 1�O���. From (2.17) we

find that ~k � ~~E � � 1
~!
~~B � � ~k	 ~~k�, but from (2.13) we get

that ~k	 ~~k is of order � and so is ~k � ~~E. Then, from (3.8) we

find that also ~~E
2
� ~~B

2
is of order �.

Consider first the case of vanishing background. Since ~~E

and ~~B are orthogonal to each other and ~~E
2
� ~~B

2
� 0 only

the first term of Ti0 contributes and the energy flux is in the

direction of ~~E	 ~~B. We can now take a time average and
only the quadratic terms will survive. This means that all
noncommutative contributions vanish and we get the com-
mutative Poynting vector as a result. We can also take the
time average of T00. All noncommutative contributions are
cubic in the fields and vanish. We get the same energy
density as in the commutative case. It is quite interesting
that in the absence of a background the noncommutative
plane wave behaves like in the commutative case.

Let us return to the case where the background is
present. Now ~E2 � ~B2 is no longer of order � but propor-
tional to the background fields and the plane wave. Also,
~E � ~B no longer vanishes because of the background con-
tribution. So Ti0 will in general have all terms present.
Even if we take a time average many terms will survive.
This means that the direction of the energy flux will be the
direction ~E	 ~B plus small noncommutative corrections.
Notice also that both ~E and ~B depend on the background so
the direction of the energy flux will be background
dependent.

We can now check whether the energy flux is in the
direction of the group velocity. We can take the vector
product of the time averaged Ti0 with the group velocity to
order �2 and verify that it does not vanish. Therefore, the
direction of the Poynting vector and the group velocity do
not coincide. Also, the vector product with either the wave

vector ~k or the modified wave vector ~~k does not vanish
confirming the anisotropic properties produced by the
background. Since the polarizations travel with the same
velocity neither Faraday rotation nor birefringence is
present.

IV. MOYAL PRODUCT PICTURE

In the Moyal product picture the field equation derived
from (1.2) is

 D̂ �F̂
�� � @�F̂

�� � i�Â�; F̂
��� � 0: (4.1)

The solution for a constant background is [7]

 Â � � �
1

2
B��x

�; (4.2)

TIAGO MARIZ, J. R. NASCIMENTO, AND VICTOR O. RIVELLES PHYSICAL REVIEW D 75, 025020 (2007)

025020-4



with B�� again constant. Notice that B�� does not need to
be antisymmetric. The field strength is given by

 F̂ �� � B�� �
1

4
���B��B��; (4.3)

and it satisfies the field Eq. (4.1) to all orders in �. Notice
also that the field strength can vanish by an appropriate
choice of the background.

For a plane wave we choose [7]

 Â ��x� � ~A��kx�; (4.4)

and we find that F̂�� � k� ~A0� � k� ~A0� to all orders in �
since the commutator term in (4.1) does not give any
contribution. The field equation then reads

 k2 ~A0� � k�k� ~A0� � 0; (4.5)

and we find a solution if k2 � 0 and k�Â� � 0. Then a
transversal plane wave is also a solution to all orders in �.

Remarkably, the superposition of a constant background
(4.2) and a plane wave (4.4) also constitutes a solution to all
orders. To show this we first notice that the field strength is
given to all orders in � by

 F̂ �� � B�� �
1

4
���B��B�� � �k� ~A0� � �k� ~A0�; (4.6)

where

 

�k � � k� �
1

2
���B��k�: (4.7)

This means that the effect of the background on the wave
vector is to replace it by �k�. Now, by applying the covariant
derivative D̂� to the Bianchi identity

 D̂ �F̂�� � D̂�F̂�� � D̂�F̂�� � 0; (4.8)

and using the equation of motion (4.1) we find

 D̂ 2F̂�� � i�F̂�
�; F̂��� � i�F̂�

�; F̂��� � 0: (4.9)

For our solution we find, using (4.6), that the commutator
terms vanish so that D̂2F̂�� � 0.

On the other side, taking the covariant derivative of (4.6)
we find to all orders in � that

 D̂ �F̂�� � �k� ~F��; (4.10)

where ~F�� � �k� ~A0� � �k� ~A0�, so that D̂2F̂�� � �k2 ~F��.
Taking into account that D̂2F̂�� � 0 we find that �k2 � 0 or

 k2 � 2k�V� � V�V�; (4.11)

where

 V� �
1

2
���B��k�: (4.12)

Going back to the field equation we find, using (4.10),
that

 D̂ �F̂
�� � � �k� �k� ~A0�; (4.13)

so that �k� ~A� � 0.
Let us now focus on the plane wave contribution. Its

field strength is given by ~F�� � �k� ~A0� � �k� ~A0� and taking
into account (4.10) it satisfies

 D̂ �
~F�� � �k� ~F��: (4.14)

This means that the Bianchi identity (4.8) for ~F now
reduces to

 

�k � ~F0�� � �k� ~F0�� � �k� ~F0�� � 0; (4.15)

while the equation of motion becomes �k� ~F�� � 0. This
means that the electric and magnetic components are or-

thogonal to ~�k and not to ~k.
To find the dispersion relation from (4.11) we must first

notice that it gives a second degree equation for !. This
means that the solution will depend on the value of the
discriminant

 � � �2�~~k� V0 ~b�2 � j~�k	 ~bj2; (4.16)

where

 

~b � ~~�	 ~B; � � 1�
1

2
~E � ~~�: (4.17)

We could not find a closed form for a generic value of � so
we will analyze the possible solutions according to the
noncommutativity which is present. Since the second de-
gree equation has in general two solutions we choose the
one which reproduces the usual dispersion relation in the
commutative limit.

In the noncommutative magnetic case, that is when ~~� �
0, the discriminant (4.16) is always positive and it is easy to
find the solution

 ! � j ~kj
���������

�
1�

1

2
~B� ~�

�
k̂�

1

2
�k̂ � ~B� ~�

��������� 1

2
k̂ � � ~E 	 ~��

�
:

(4.18)

This result agrees with [26].
In the electric case, ~� � 0, the discriminant is not posi-

tive definite so we have to consider the effect of the
background. If the background is purely electric, ~B � 0,
then the discriminant is always positive and we have

 ! � j ~kj
jk̂� 1

2 �
~k � ~~�� ~Ej

1� 1
2
~~� � ~E

: (4.19)

In the case where the background is purely magnetic, ~E �
0, we find
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! �
j ~kj

�1� 1
4 �
~~�	 ~B�2�

� �������������������������������������������
1�

1

4
jk̂	 � ~~�	 ~B�j2

s

� k̂ � � ~~�	 ~B�
�
; (4.20)

and the plane wave solution exists only when 1� 1
4 jk̂	

� ~~�	 ~B�j2 � 0. Then, in the case of space-time noncom-
mutativity we find that there is a restriction for the exis-
tence of plane waves in a purely magnetic background. It is
curious that when time is noncommutative the quantum
theory is problematic since unitarity is lost [27] while here
we find a restriction already at the classical level. In the
other cases there are no restriction for the existence of
plane waves. Notice also that all dispersion relations de-
pend on the wave vector direction so in all cases the
presence of an electromagnetic background simulates an
anisotropic medium.

V. EQUIVALENCE OF BOTH PICTURES

The Seiberg-Witten map (1.4) is a change of variables
which preserves the gauge orbits. Since the physics can not
depend on the choice of variables we expect that the results
obtained in the two pictures should be equivalent.
However, taking the noncommutative dispersion relation
(4.11) to order �, and assuming that the background is the
same in both cases, we get k2 � 2k�V

�, and not k2 �

4k�V� as required by (2.8). We can also take the Moyal
picture solution of a constant background and a plane wave
(4.6) and apply the Seiberg-Witten map to it. The resulting
field strength is not of the form B�� � ~F���kx� but has
extra pieces linear in x� so it does not correspond to a
superposition of a background with a plane wave in the
Seiberg-Witten picture. Hence, the field configurations are
not equivalent. Since F�� is gauge invariant the terms
linear in x� can not be removed by a gauge transformation.
This shows that the solutions are inequivalent and it does
not make any sense to try to compare the results in different
pictures.

However we can find the solution in the Moyal picture
which is equivalent to the superpositions of a background
plus a plane wave in the Seiberg-Witten picture. It is given
by

 Â ��x� � ~A��kx� � V�x� ~A��kx� �
1

2
B̂��x�; (5.1)

with V� given by (4.12). Using the Seiberg-Witten map we
get

 A� � ~A�c�� �kx� �
1

2
B��x

�; (5.2)

where

 

~A�c�� �kx� � �1� �
�� ~A��kx�k�� ~A��kx� � �

�� ~A��kx�B̂��;

B�� � B̂�� �
3

4
B̂��B̂��: (5.3)

This means that F�� has the form B�� � ~F���kx� and
describes a plane wave. Notice that Â� and A� in (5.1)
and (5.2), respectively, are related by the Seiberg-Witten
map if the momentum is also transformed as k̂� � k� �
V�. Now we get the correct dispersion relation and polar-
ization condition for ~A� in the Seiberg-Witten picture.

VI. SUPERPOSITION OF PLANE WAVES

We now consider the superposition of two plane waves
with different momenta

 Â ��x� � Â1��kx� � Â2��px�; p� � k�: (6.1)

The field strength is easily found to be
 

F̂�� � k�Â1� � k�Â1� � p�Â2� � p�Â2�

� 2 sin
�
k�p

2

�
�Â1�Â2� � Â1�Â2��; (6.2)

where k�p � k��
��p�. The equation of motion takes the

form
 

k�k��Â
��
1 � p�p

��Â��2 � 2 sin
�
k�p

2

�
�k� � p��Â

��
1 Â

��
2

� 2 sin
�
k�p

2

��
Â1�p��Â

��
2 � Â2�k��Â

��
1

� 2 sin
�
k�p

2

�
�Â1� � Â2��Â

��
1 Â

��
2

�
� 0; (6.3)

and it is easily seen that there is a nontrivial solution if

 k�p � 2n�; k2 � p2 � 0; k�Â
�
1 � p�Â

�
2 � 0;

(6.4)

where n is an integer. This shows that it is possible to have
a superposition of two transversal plane waves in a non-
commutative theory if the wave vectors k� and p� are
parallel or satisfy k�p � 2n�. The dispersion relation is
the same as in the commutative case. In fact, this can be
easily generalized to a finite number of plane waves.

In the Seiberg-Witten picture there is no solution corre-
sponding to a superposition of plane waves. This is due to
the nonlinear terms present in the field Eq. (2.1).

VII. CONCLUSIONS

We have shown the existence of plane wave solutions in
noncommutative abelian gauge theories. In both pictures
they present a deformed dispersion relation in the presence
of a electromagnetic background. In the Seiberg-Witten
picture the dispersion relation is given by (2.10) while in
the Moyal picture it is given by (4.18), (4.19), and (4.20).
The dispersion relation depends on the wave vector direc-

TIAGO MARIZ, J. R. NASCIMENTO, AND VICTOR O. RIVELLES PHYSICAL REVIEW D 75, 025020 (2007)

025020-6



tion and presents similar properties to those found when we
consider the propagation of light in an anisotropic medium.
It is worth noticing that if ~� is not vanishing, that is, when
the noncommutativity involves time, there are restrictions
on the background for the existence of plane wave solu-
tions in the Moyal picture but not in the Seiberg-Witten
one. Remarkably, the Moyal picture allows solutions in-
volving a superposition of plane waves. In this case the
momenta are either parallel or satisfy (6.4).

In the Seiberg-Witten picture we also discussed the
energy-momentum tensor. It can be used to define a gen-
eralization of the Poynting vector and energy density to the
noncommutative case. The Poynting vector, the group
velocity, the wave vector and the modified wave vector
all point in different directions. Even so, the generalized
Poynting vector represents the transport of energy since it
obeys a continuity equation. This means that the effect of
the background electromagnetic field in the presence on

noncommutativity can be interpreted as an anisotropic
medium which presents neither Faraday rotation nor bire-
fringence effects.

We also showed that plane waves in one picture does not
correspond to plane waves in the other picture. This means
that extreme care must be taken when comparing results in
different pictures. Since there are many proposed tests for
Lorentz violation in several settings it is very important to
understand the noncommutative contribution to them. The
results presented here are just the first steps in this
direction.
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