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Using diagrammatic methods, we show how the Ward identity can be used to constrain the ladder kernel
in transport coefficient calculations. More specifically, we use the Ward identity to determine the
necessary diagrams that must be resummed using an integral equation. One of our main results is an
equation relating the kernel of the integral equation with functional derivatives of the full self-energy; it is
similar to what is obtained with two-particle irreducible (2PI) effective action methods. However, since we
use the Ward identity as our starting point, gauge invariance is preserved. Using power counting
arguments, we also show which self-energies must be included in the resummation at leading order,
including 2 to 2 scatterings and 1 to 2 collinear scatterings with the Landau-Pomeranchuk-Migdal effect.
We show that our quantum field theory result is equivalent to the one of Arnold, Moore, and Yaffe
obtained using effective kinetic theory. In this paper we restrict our discussion to electrical conductivity in
hot QED, but our method can in principle be generalized to other transport coefficients and other theories.
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I. INTRODUCTION

Transport coefficients are measures of the efficiency at
which a conserved quantity is transported on ‘‘long’’ dis-
tances (compared to microscopic relaxation scales) in a
medium. For example, electrical conductivity character-
izes the diffusion of charge due to an external electric field
and shear viscosity characterizes the diffusion of momen-
tum transverse to the direction of propagation. In real
nonrelativistic systems (e.g. interacting electron gas in a
lattice), transport coefficients are almost impossible to
calculate, because systems are strongly interacting and
no simple closure exists; but in hot, weakly interacting
theories, they can in principle be evaluated. The computa-
tion of these quantities is important from a theoretical point
of view: since they characterize linear deviations away
from equilibrium but are computed from well-known equi-
librium field theory tools, they could be used as a bench-
mark for testing nonequilibrium field theories, which are
less well developed than equilibrium ones (but see the
recent developments in Refs. [1–3]). They could also
have an influence on the physics of the early universe,
such as electroweak baryogenesis (see for example [4,5])
and the formation and decay of primordial magnetic fields
(see for example [6–8]). Shear viscosity also attracted a lot
of attention lately in the heavy ion community, partly due
to the results on elliptic flow (seemingly implying a low
viscosity, see for example [9,10] and the references
therein) and its exact computation in a strongly coupled
super Yang-Mills theory [11]. The above examples show
the importance of having a good theoretical handle on
transport coefficients.

The first calculation of transport coefficients in relativ-
istic scalar theories can be found in [12]. Their calculation
is based on Kubo relations, i.e. relations expressing trans-
port coefficients in terms of retarded correlation functions
between various conserved currents in the low momentum,
low frequency limit. The correlation functions are directly
evaluated using finite temperature quantum field theory
and thus provide a microscopic calculation of transport
coefficients; but as is explained in [13,14], their calculation
is incomplete. Because of the use of resummed propagators
(to regularize so-called pinch singularities), an infinite
number of ladder diagrams must be resummed to get the
leading-order result. This program has been carried out
explicitly in [13,14] for shear and bulk viscosities in scalar
theories. The shear viscosity result has since been repro-
duced using the real-time formalism [15–17], direct ladder
summation in Euclidean space [18], and 2PI effective
action methods [19]. The results of both shear and bulk
viscosities have been reproduced using quantum kinetic
field theory derived from the closed-time-path 2PI effec-
tive action [20].

Order of magnitude estimates of transport coefficients in
gauge theories based on phenomenology appeared more
than 20 years ago in [21], but a complete leading-order
calculation in hot gauge theories just came out recently
[22–25]. One of the main reasons for this is the subtlety of
the power counting involved, i.e. which scattering pro-
cesses should be included at leading order. In gauge theo-
ries, in addition to 2! 2 scatterings with a soft momentum
exchange, the presence of collinear singularities makes the
1! 2 scatterings as important as the 2! 2 ones [26–29].
Moreover, interference effects between the various col-
linear emissions must also be taken into account at leading
order; this is called the Landau-Pomeranchuk-Migdal
(LPM) effect [29–33]. The calculations in Refs. [22–25]
are based on kinetic theory and consistently include the
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physics of pinch singularities, collinear singularities, and
the LPM effect. Let us mention that these calculations are
also very involved technically, since the inclusion of pinch
singularities implies the use of an integral equation and the
inclusion of collinear singularities and the LPM effect
implies the use of another integral equation embedded in
the first one.

The equivalence between the quantum field theory ap-
proach and the kinetic theory approach in transport coef-
ficients calculations was shown in [13,14] in the case of
scalar theories; but due to the complications mentioned
previously, a similar equivalence has been lacking in gauge
theories. There exist some attempts at computing transport
coefficients in hot gauge theories from quantum field the-
ory using different approaches, such as direct ladder sum-
mation in Euclidean space [18,34,35], dynamical
renormalization group methods [36], and 2PI effective
action methods [37], but as far as we know, none of these
approaches go beyond leading log order accuracy (i.e. with
corrections suppressed by O�g ln�g�1��) or the large Nf
approximation.

The goal of this paper is to do a leading-order calcula-
tion of transport coefficients in hot gauge theories using
purely diagrammatic methods. More precisely, we show
the equivalence between quantum field theory and kinetic
theory for transport coefficient calculations in hot gauge
theories, thus justifying the effective kinetic theory results
of Arnold, Moore, and Yaffe [23,24] from first principles.
This nontrivial check is reason enough for doing this
calculation, but there are other reasons as well that go
beyond kinetic theory. For example, in cases where the
configuration of the field itself is important (e.g. instanton)
or unphysical particles with indefinite metric appear, then
kinetic theory is inappropriate and one must rely on quan-
tum field theory. Also, quantum field theory might be the
only way of computing transport coefficients beyond lead-
ing order; according to [23], doing the calculation using
kinetic theory would require a whole new machinery. It is
not clear if calculations going beyond leading order can be
converted to a linearized Boltzmann equation. Finally,
showing that the calculations are grounded and feasible
in quantum field theory is important in itself. It could give
the necessary impetus for other quantum field theory meth-
ods (e.g. closed-time-path 2PI effective action [20] or the
dynamical renormalization group [36]) to complete a
leading-order calculation and provide other insights into
the problem. In view of the applications mentioned pre-
viously, we think it is interesting and important to pursue
this work.

In this paper, we restrict ourselves to quantum electro-
dynamics (QED) and electrical conductivity; we address
the case of shear viscosity in a future paper [38]. The rest of
the paper is organized as follows. Section II presents our
notation and some background material on transport coef-
ficients, both in scalar and gauge theories. Following the

work of Ref. [34], Sec. III presents the derivation of the
Ward identity in the limit appropriate for transport coeffi-
cient calculations. It also presents the constraint on ladder
kernels that can be obtained from the Ward identity. Power
counting arguments are shown in Sec. IV, in order to
determine which rungs should be kept in the resummation.
The final expression for electrical conductivity, including
collinear physics and the LPM effect, is presented in
Sec. V. We finally conclude in Sec. VI. Technical details
of some aspects of the calculations are relegated to the
appendices.

II. BACKGROUND MATERIAL

A. Notation and useful formulas

We present here our notations and some useful formulas
that are routinely used throughout the analysis. Latin in-
dices run from 1 to 3 and represent space components
while Greek indices run from 0 to 3 and represent space-
time components. Boldface, normal, and capital letters
denote 3-momenta, 4-momenta, and Euclidean 4-
momenta, respectively. We use the metric convention
��� � �1;�1;�1;�1�. Sums over Matsubara frequencies

are written as
R d4P
�2��4
� T

P
i�p

R d3p
�2��3

, where P � �i�p;p�
and �p � 2n�T (bosons) or �p � �2n� 1��T (fermions)
with n an integer. The subscriptsB, F attached to a quantity
refer to its bosonic or fermionic nature (except for self-
energies and widths, where we use a special notation). The
subscripts R, I mean real or imaginary part and the super-
scripts ret, adv, cor mean retarded, advanced, or autocor-
relation (i.e. average value of the anticommutator). A bar
over a quantity means that the gamma matrix structure is
explicitly taken out (e.g. G��k� � �� �G�k�).

We give a list of various finite temperature field theory
quantities that are used in the rest of the paper. We give
their explicit expressions in momentum space and not their
basic definitions in terms of fields (see for example
[39,40]) because the latter are not useful for our purposes.
Free spectral densities are given by [41]:

 �B�k� � sgn�k0�2����k0�2 � E2
k�; (1)

 �F�k� � �2���k
0 � Ek�h��k̂� � 2���k0 � Ek�h��k̂��;

(2)

where Ek � jkj, h	�k̂� � ��0 
 � � k̂�=2, and k̂ � k=jkj.
Note that since we consider systems where the temperature
is much larger than any other scale, we put m � 0 in the
above and all subsequent expressions when the momentum
of the excitation is hard. From CPT, it can be shown that
the spectral densities satisfy �B��k

0� � ��B�k
0� and

�F��k� � �F�k� (in the massless limit). At finite tempera-
ture, any excitation propagating in a medium has a finite
lifetime due to numerous collisions with on-shell thermal
excitations. The effect of this finite lifetime is to turn the
delta functions in Eqs. (1) and (2) into Lorentzians, giving
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[13,18]:

 �B�k� �
1

2Ek

�
�k

�k0 � Ek�2 � ��k=2�2

�
�k

�k0 � Ek�
2 � ��k=2�2

�
; (3)

 �F�k� �
�

�k
�k0 � Ek�

2 � ��k=2�2
h��k̂�

�
�k

�k0 � Ek�2 � ��k=2�2
h��k̂�

�
: (4)

The widths are given by �k � �ret
I �k

0 � Ek�=Ek and �k �
tr�6k�ret

I �k
0 � Ek��=2Ek, where ��k� and ��k� are the bo-

sonic and fermionic self-energies, respectively. Note that
when the momentum k is soft, perturbation theory must be
reorganized and partial resummation of spectral densities
is necessary (also called hard thermal loop (HTLs) resum-
mations [42–44]). These resummations give rise to screen-
ing thermal masses and may also produce Landau
damping. In gauge theories, HTLs are also essential to
obtain gauge invariant results (see Sec. II C).

The time-ordered (or ‘‘uncut’’) propagators can be ex-
pressed in terms of the spectral densities [41]:

 

GB=F�k� � i
Z d!
�2��

�B=F�!�

�

�
1	 nB=F�!�

k0 �!� i�
	

nB=F�!�

k0 �!� i�

�
; (5)

where nB=F�k0� are the usual Bose-Einstein or Fermi-Dirac
distribution functions. The anti-time-ordered propagators
are just the complex conjugate of the time-ordered ones.
Wightman (or ‘‘cut’’) propagators are given by [41]:

 ��B=F�k� � �1	 nB=F�k
0���B=F�k�; (6)

 ��B=F�k� � 	nB=F�k
0��B=F�k�: (7)

The propagators (5)–(7) are the four propagators of the
closed-time path or ‘‘1-2’’ formalism [45,46], with the
correspondence G � G11, G � G22, �� � G12, and
�� � G21. Switching to the Keldysh (or r, a) basis, we
can also write down the physical functions (see for ex-
ample [39]):

 iGra
B=F � iGret

B=F�k� � GB=F�k� � ��B=F�k�; (8)

 iGar
B=F � iGadv

B=F�k� � GB=F�k� � ��B=F�k�; (9)

 iGrr
B=F � iGcor

B=F�k� � ��B=F�k� � ��B=F�k�: (10)

TheGaa
B=F is identically zero in the Keldysh basis. Note also

that any vertex in this basis must involve an odd number of
a’s (see for example [47]). One can see that from the
expression of the generating functional in the closed-
time-path formalism, Z �

R
D�	� exp�i

R
c dt

R
d3x�L�

Jc	��. Because of the integration over the closed-time
path, the Lagrangian is effectively L � L�	1� �L�	2�,
where 	1 and 	2 are fields living on the time-ordered and
anti-time-ordered contours, respectively. From this we
conclude that any interaction term is odd under the inter-
change of	1 and	2. Switching to the Keldysh basis using
	r � �	1 �	2�=2 and 	a � 	1 �	2, we see that any
interaction must have an odd number of a’s, since only 	a
is odd under	1 $ 	2. As a final remark, to get the explicit
forms for free or resummed propagators, substitute in the
appropriate spectral density (c.f. Eqs. (1)–(4)).

The cutting rules we use are the ones that can be found in
[41,48,49] and are analogous to the zero-temperature ones.
The rules are:

(1) Draw all the cut diagrams relevant to the problem
considered, where cuts separate the unshaded (i.e.
‘‘1’’) and the shaded (i.e. ‘‘2’’) regions.

(2) Use the usual Feynman rules for the unshaded re-
gion assigning GB=F�k� to the uncut lines. For the
shaded region, use the conjugate Feynman rules
assigning GB=F�k� to the uncut lines.

(3) If the momentum of a cut line crosses from the
unshaded to the shaded region, assign ��B=F�k�. If
the momentum of a cut line crosses from the shaded
to the unshaded region, assign ��B=F�k�.

(4) Divide by the appropriate symmetry factor and
multiply by an overall factor of �i.

The various shadings given by the cutting rules are not all
independent. First, the ‘‘vanishing of all circlings’’ relation
[41,48,49] says that the sum of all possible cuts of a given
diagram is zero:

 

X
ai�1;2

Ga1a2...an
B=F � 0: (11)

Equation (11) can be rearranged so as to have the same
form as a (generalized) optical theorem and is thus related
to unitarity. The vanishing of all circlings relation is only
based on the observation that all propagators can be de-
composed into a positive frequency part and a negative
frequency part. Second, the Kubo-Martin-Schwinger
(KMS) relations express the proportionality between vari-
ous pairs of shadings. For example, for 2-point functions
we have [50]:

 G12
B=F�k� � 	e


k0
G21
B=F�k�: (12)

For 4-point functions, the relations are [51,52]:
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 G2111
B=F �k1; k2; k3; k4� � 	e

�
k0
1G1222

B=F �k1; k2; k3; k4�;

G1211
B=F �k1; k2; k3; k4� � 	e

�
k0
2G2122

B=F �k1; k2; k3; k4�;

G1121
B=F �k1; k2; k3; k4� � 	e

�
k0
3G2212

B=F �k1; k2; k3; k4�;

G1112
B=F �k1; k2; k3; k4� � 	e

�
k0
4G2221

B=F �k1; k2; k3; k4�;

G2211
B=F �k1; k2; k3; k4� � e�
�k

0
1�k

0
2�G1122

B=F �k1; k2; k3; k4�;

G2121
B=F �k1; k2; k3; k4� � e�
�k

0
1�k

0
3�G1212

B=F �k1; k2; k3; k4�;

G2112
B=F �k1; k2; k3; k4� � e�
�k

0
1�k

0
4�G1221

B=F �k1; k2; k3; k4�;

(13)

where 
 is the inverse temperature and energy-momentum
requires k1 � k2 � k3 � k4 � 0. The relations (12) and
(13) are only based on the (anti) periodicity in imaginary
times of the Green’s functions and are thus only valid in
equilibrium.

B. Transport coefficients in relativistic scalar field
theory

A natural starting point for evaluating transport coeffi-
cients using quantum field theory is a Kubo type relation.
These relations express transport coefficients in terms of
long distance correlations between conserved currents.
Restricting ourselves to electrical conductivity (�), we
have [12–14,18,22,53]:

 � �


6

lim
k0!0;k�0

Z
d4xeik�xhji�t;x�ji�0�ieq; (14)

where j��x� is the electric current density. Other Kubo
relations exist for shear and bulk viscosity [12–
14,18,22]. Equivalently, one can express these Kubo rela-
tions in terms of derivatives of the spectral density, itself
equal to twice the imaginary part of the corresponding
retarded correlator. Note that the averages are done with
respect to an equilibrium density matrix, even though
transport coefficients are nonequilibrium quantities.

To compute transport coefficients using these relations,
one needs to expand the retarded 2-point function pertur-
batively. As explained in detail in Refs. [13,14], an infinite
number of ladder diagrams contribute to the transport
coefficient, even at lowest order. The reason for this is
the low frequency limit in the Kubo relation. This limit
gives rise to products of propagators G�p� with the same
momentum (see Fig. 1). Since finite temperature propaga-
tors possess four poles (one in each quadrant), one faces
situations when the integration contour is ‘‘pinched’’ be-
tween two poles on opposite sides of the real axis in the
complex p0 plane. In equations, we have (Ep is the on-shell
quasiparticle energy):

 Z d0p
�2��

GB�p�GB�p� �
Z d0p
�2��

Gret
B �p�G

adv
B �p�

�
Z d0p
�2��

�
1

�p0 � i�� � Ep

�

�

�
1

�p0 � i�� � Ep

�
�

1

�
(15)

which diverges when � goes to zero. This divergence is
symptomatic of the infinite lifetime of the excitation. In a
medium, excitations constantly suffer collisions from on-
shell excitations coming from the thermal bath, resulting in
a finite lifetime. Thus, the use of resummed propagators
regularizes these ‘‘pinch’’ singularities, effectively replac-
ing 1=� with 1=�I�p�. The explicit coupling constants that
now appear in the denominator change the power counting
dramatically and make the resummation of an infinite
number of ladder diagrams necessary [13,14].

This resummation is done by rewriting the infinite sum
of ladder diagrams in terms of an effective vertex, itself the
solution to an integral equation. Schematically, we have for
electrical conductivity:

 � �


6

Z d4k

�2��4
IF�k�F �k�DF�k�; (16)

 D F�k� � IF�k� �
Z d4p

�2��4
K�k; p�DF�p�; (17)

where K �MF . See Fig. 2 for a graphical representa-
tion of Eqs. (16) and (17). The symbol F represents a pair
of ‘‘side rail’’ propagators (note that the ‘‘ladder’’ diagram
in Fig. 2 is on its side, meaning that the side rails are on the
top and bottom of the diagram). In the limit q! 0, the two
side rail propagators that hook up M to DF have the same
momentum and pinch, producing a 1=�I�p� factor. The
‘‘rungs’’ M are 4-point functions that must be of the same
order as F�1 but otherwise arbitrary. The effective vertex

 

p+q

p

q q
+ + + (...)

FIG. 1. Examples of ladder diagrams, where the gray squares
represent 4-point functions called rungs. When the external
momentum q goes to zero, the two side rail propagators have
the same momentum and produce a pinch singularity.

 

= +where

F DI D I F DM

FIG. 2. Schematic representation of Eqs. (16) and (17). The
symbols refer directly to the equations: I is an external current
insertion, M is a rung, F represents a pair of side rail propa-
gators, and D is an effective vertex.
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D encodes the information about the infinite resummation
of ladder diagrams. If we close it with an external current
insertion I (with an additional factor of F to connect
them), we get the Kubo relation (16). Note that because
of the F factor, the transport coefficient gets a nonanalytic
behavior in the coupling constant. This is expected, since
transport coefficients are roughly proportional to the mean
free path and thus inversely proportional to the scattering
cross section of the processes responsible for transport.

To write down the appropriate integral equation (17) and
solve it are the main tasks of transport coefficient calcu-
lations. Although it can become very involved numerically
(especially for gauge theories), there is no conceptual
problem with solving the integral equation. On the other
hand, to know which rungs contribute at leading order is
difficult and requires detailed power counting arguments.
This is the approach adopted in [13], where they find that a
certain (finite) set of rungs are necessary and sufficient to
compute the shear and bulk viscosities at leading order in a
g	3 � �	4 theory.

C. Additional complications in gauge theories

Gauge theories are considered to be the most successful
theories on the market to describe the fundamental inter-
actions of nature. So for ‘‘real’’ applications (e.g. viscous
hydrodynamic evolution of the quark-gluon plasma
(QGP)), the need to extend transport coefficient calcula-
tions to gauge theories is obvious. From experience, we
know that gauge theories are more complicated than scalar
theories, and the present calculations are no exceptions. We
make a list of the main complications that arise when
computing transport coefficients in hot gauge theories.

Preserving gauge invariance is an important problem
when dealing with gauge theories. In practice, Ward iden-
tities tell us how nongauge invariant quantities (such as
propagators and vertices) must be related to each other so
as to preserve gauge invariance. We show in Sec. III how
Ward identities are used to this effect.

Another complication, not specific to gauge theories, is
related to the presence of different species of particles
(electrons, photons, etc.) and particles with different sta-
tistics. The fact that there are fermions in the theory means
that the tools developed in [13] must be slightly modified to
take into account the fermionic nature of the particles.
These complications are not major and rather technical in
nature. We show in Sec. V how the tools in [13] must be
modified in the presence of these complications.

The distinction between hard (O�T�) and soft (O�eT�)
momenta is also particularly important in hot gauge theo-
ries (e is the electromagnetic coupling constant). In par-
ticular, it is shown in [42–44] that the theory must be
partially resummed when soft momenta are present to get
gauge invariant results. These HTL resummations give rise
to screening thermal masses and modify the form of the
propagators (vertices are also modified but this not neces-

sary for our purposes). For numerical purposes (as in
[23,24]), the expressions of HTL-resummed propagators
are required. In the present paper, our goal is to reproduce
the Boltzmann equation of Arnold, Moore, and Yaffe
[23,24] and we never use the explicit form of the propa-
gators; the calculations of Sec. V are based on very general
properties that do not depend on HTL resummation, such
as even/odd properties of spectral densities, KMS condi-
tions, and unitarity. In this sense, this technical complica-
tion does not concern us.

But surely the most important complication comes from
the fact that, in gauge theories, transport coefficients are
sensitive to soft and collinear physics even at leading order
[23,24]. In scalar theories, explicit power counting shows
that soft momenta and collinear singularities do not have
any effect [13]. As with pinch singularities, collinear sin-
gularities come from the multiplication of two propagators
with momenta p and p� q that are nearly collinear (i.e.
p � q�O�e2T2�):

 Z d0p
�2��

GB�p�GB�p� q� �
Z d0p
�2��

Gret
B �p�G

adv
B �p� q�

�
Z d0p
�2��

�
1

�p0� i�� �Ep

�

�

�
1

�p0� q0� i�� �Ep�q

�

�
1

q0� �Ep�q�Ep� � 2i�
: (18)

In the limit q! 0 (pinch singularities), the expression
diverges as 1=� and we get back Eq. (15). In the case
where q is nearly on shell but nonzero and the angle
between the quasiparticles is small (i.e. pq � e), we
have Ep�q � Ep 	 jqj and the integral diverges as 1=2

pq

(or 1=� in the perfectly collinear and massless case). These
collinear singularities must be regulated by including a
finite width in the propagators. As with the pinch singu-
larity case, the introduction of coupling constants in the
denominator changes the power counting dramatically.
This collinear enhancement affects an infinite class of
diagrams: this is the well-known LPM effect (see for
example [29,32,33] for a discussion of this effect in the
context of photon production). Because there are now two
types of singularities, there are two resummations to do.
While in scalar theories there is an infinite number of
ladder diagrams and a finite number of different rung types,
in gauge theories there are an infinite number of ladder
diagrams (due to pinch singularities) and an infinite num-
ber of different rung types (due to collinear singularities).
We come back to these issues and the subtleties of power
counting in gauge theories in Sec. IV.
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III. WARD IDENTITY CONSTRAINTS ON THE
LADDER KERNELS

A. Ward identities for charge conservation

As mentioned in Sec. II C, the task of finding which
rungs contribute at leading order is not easy. The purpose
of the present section and the next one is to show that there
exists a guiding principle that can help us find the structure
of the rungs.

A necessary piece of information in our demonstration is
the Ward identity for the effective vertex, as derived for the
first time for the case of an electric current insertion in
Ref. [34]. We show here the essential steps. The starting
point is the usual Ward identity for charge conservation in
Euclidean space

 Q�D
�
F �K;K �Q� � G�1

F �K� �G
�1
F �K �Q�; (19)

where DF is a fermionic amputated effective vertex. The
momentum convention for Eq. (19) is shown in Fig. 3. To
go from Euclidean space to Minkowski space, we need to
analytically continue K and Q towards real energies. The
proper choice here is dictated by the physics of pinch
singularities and the Kubo relation. To have pinch singu-
larities, one needs the multiplication of two propagators
with different boundary conditions, namely
Gret
F �k�G

adv
F �k� q� or Gadv

F �k�G
ret
F �k� q�; the Kubo rela-

tion requires the evaluation of a retarded current-current 2-
point function. These two requirements uniquely fix the
analytic continuation to K ! k0 � i�, K �Q!
k0 � q0 � i�, and Q! q0 � 2i�. With this analytic con-
tinuation, Eq. (19) becomes

 q�D
�
F �k� i�; k� q� i�� � G�1

Fret�k� �G
�1
Fadv�k� q�:

(20)

Taking the necessary limits q0 ! 0 and q! 0
(c.f. Eq. (14)) and usingG�1

Fret=adv�p� � ��
0�p0 	 i�p=2� �

� � p� (valid when p is nearly on shell), we get

 lim
q!0

q�D
�
F �k� i�; k� q� i�� � i�0�k � 2i�ret

I �k�:

(21)

The last equality is valid near k0 � k. This last equation

relates the effective vertex of the integral equation to the
imaginary part of the on-shell retarded self-energy in the
limit relevant to transport in the case of an electric current
insertion. Note that we used resummed retarded/advanced
propagators because of the need to regularize pinch singu-
larities. As a final remark, note that it is possible to repeat
the above derivation for a T�� insertion [38]. This is
particularly important when calculating shear viscosity
from Kubo relations.

B. Derivation of the constraint

In this section, we show that there exists a relation
between the kernel of the integral equation (17) and the
imaginary part of the on-shell self-energy. The ladder
kernel being a 4-point function and the self-energy being
a 2-point function, the relation between the two must
necessarily involve functional derivatives with respect to
propagators (i.e. ‘‘opening’’ of lines in a Feynman dia-
gram). Such relations have been obtained using 2PI effec-
tive action methods [19,37]. Here we derive similar
constraints but starting from a more physical point of
view, namely, the Ward identities of the previous section.

In the following, we restrict ourselves to electrical con-
ductivity (i.e. only one integral equation is involved), but
the discussion can be generalized to viscosity with some
effort (although the result is not as clean cut as for the
electrical conductivity) [38]. Starting from the integral
equation (17) in Euclidean space,

 D �
F �K;K �Q� � I�F �K;K �Q�

�
Z d4P

�2��4
K�K;P;Q�D�

F �P;P�Q�

(22)

our goal is to isolate the kernel and express it in terms of
known quantities. Multiplying both sides by Q� and using
Eq. (19), we get
 

Q�D
�
F �K;K �Q� � Q�I

�
F �K;K �Q�

�
Z d4P

�2��4
M�K;P;Q�

� �GF�P�Q� �GF�P��; (23)

where we have separated the kernel into a rung part and a
side rail part, K�K;P;Q� �M�K;P;Q�GF�K�GF�K �
P�. Note that this is a schematic notation and it does not
reflect correctly the Dirac matrix structure of the integral
equation; one must be aware of this fact when doing
explicit calculations. To make further progress, it is neces-
sary to analytically continue towards real energies. This
step is delicate, since the sum over Matsubara frequencies
must be done first. As explained in more detail in the
appendix, the Matsubara sum can be done using the sum-
mation formula found in [18], with M replaced by the
spectral representation of a general 4-point function. The

 j µ

k−q

k

q

FIG. 3. Momentum convention for the Ward identity
(Eq. (19)). The dotted line stands for an insertion of an electric
current and the blob represents the amputated fermionic effective
vertex DF.
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physics of the Kubo relation and pinch singularities can
then be implemented by doing the same analytic continu-
ation as for the Ward identities (see Sec. III A). The result
is that the integral equation keeps its form in Minkowski
space and is similar to the results of Jeon [13] (suitably
generalized to fermions). Taking the q! 0 limit and using
the Ward identity (21), we get

 2i�ret
I �k� �

Z d4p

�2��4
M�k; p��Gadv

F �p� �G
ret
F �p�� (24)

with the understanding that k and p are on shell in the
pinching pole limit. Using the definition of the spectral
density ��F �p� � i�Gret

F �p� �G
adv
F �p��, we can rewrite the

integral equation as

 2�ret
I �k� �

Z d4p

�2��4
M�k; p���F �p�: (25)

Here �ret
I �k� is the full (imaginary) self-energy and M is

the coherent addition of all possible rungs. Since �ret
I and

��F are known quantities, Eq. (25) expresses a constraint on
the rung part of the ladder kernel M. To get a more useful
expression, we need to invert Eq. (25). Let us functionally
differentiate both sides with respect to ��F �q�

 

��2�ret
I �k��

���F �q�
�
Z d4p

�2��4

�
�M�k; p�
���F �q�

�
��F �p� �M�k; q�:

(26)

All cut/uncut propagators can be expressed in terms of the
spectral density (c.f. Eqs. (5)–(7)), thus differentiating with
respect to ��F �q� can be interpreted as the opening of a
fermion line in a Feynman diagram. Such a diagrammatic
interpretation is of course not perfect, since ��F is only
proportional to fermionic propagators. Some distribution
functions are left behind when interpreting Eq. (26) dia-
grammatically, but since we are only interested in the
diagrammatic structure of M, a proportionality relation
is sufficient for our purposes.

Equation (26) can be further reduced. The key observa-
tion is that M is an addition of Feynman diagrams made of
an arbitrary number of fermion propagators. The following
relation

 

Z d4p

�2��4

�
�A�k; q�
���F �p�

�
��F �p� � �A�k; q� (27)

is valid for any Feynman diagram A (in particular for M
and �ret

I ), where � is the number of fermion propagators in
A. In words, it means that the ‘‘inverse operator’’ of a
functional derivative with respect to a fermion propagator
is an integration and a multiplication by a fermion propa-
gator (with the same momentum present in the function we
differentiate with). It is easy to see that Eq. (27) is true in
simple examples (both for bosons and fermions).

Equation (27) cannot be applied directly to Eq. (26),
because the momenta in the functional derivative and in the

spectral density are not the same. In order to apply the
inverse operator (27) and thus use the special condition that
M is a Feynman diagram, we need to manipulate Eq. (26).
Let us functionally differentiate Eq. (26) a second time,
giving
 

�M�k;q�
���F �r�

�
�M�k; r�
���F �q�

� �
Z d4p

�2��4

�
�2M�k;p�

���F �r���
�
F �q�

�

���F �p� �
�2�2�ret

I �k��
���F �r���

�
F �q�

: (28)

Note that this last equation expresses the ‘‘symmetrized’’
first order functional derivative of the rung kernel in terms
of second functional derivatives of the rung kernel and self-
energy. Plugging Eq. (28) back into Eq. (26), we get
 

��2�ret
I �k��

���F �q�
��

Z d4p

�2��4

�
�M�k;q�
���F �p�

�
��F �p�

�
Z d4p

�2��4

�
�2�2�ret

I �k��
���F �p���

�
F �q�

�
��F �p�

�
Z d4p

�2��4
Z d4l

�2��4

�
�2M�k;l�

���F �p���
�
F �q�

�

���F �l��
�
F �p��M�k;q�: (29)

Written in this form, Eq. (29) can be simplified using the
inverse operator. For convenience, we introduce the fol-
lowing notation

 M �
X1
��1

M�; �ret
I �

X1

�1

�ret
I
; (30)

where the sums over � and 
 are over the number of
fermion propagators (note that the M�’s or �R

I
 can be
sums of diagrams in themselves). These definitions mean
that, in general, M and �ret

I are ‘‘blobs’’ containing dia-
grams of all orders; these diagrams can be reorganized in
terms of their number of fermion propagators. Applying
Eqs. (27) and (30) to Eq. (29) and doing some algebra, we
obtain
 X1
��1

�
�Z d4l

�2��4

�
�M��k; l�
���F �q�

�
��F �l�

�
�1� ��
�

�
��2�ret

I��k��
���F �q�

�
�
�1� ��
�

M��k; q�
�
� 0: (31)

This last equation is valid component by component, i.e.
for each value of the number of fermion propagators �.
This is a constraint equation, implementing the condition
that M is a Feynman diagram and the use of the inverse
operator. Plugging Eq. (31) back into the first integral
Eq. (26) and using Eq. (30), we get

 M ��k; q� �
�
��2�ret

I��k��
���F �q�

�
!M�k; q� �

�
��2�ret

I �k��
���F �q�

�

(32)
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valid for all values of�. The second equality is obtained by
summing over � on both sides and using Eqs. (30). This is
the desired constraint on the ladder kernel. Note that it is
possible to obtain relations similar to Eq. (32) for shear
viscosity [38]. So even if we restrict ourselves to the case
of electrical conductivity in QED in this paper, our method
is general and can in principle be applied to other transport
coefficients and other theories.

C. Interpretation of the constraint

As pointed out in Sec. II B and II C, one of the hardest
tasks in computing transport coefficients by diagrammatic
methods is to find the right rung kernel in Eq. (17). In other
words, the ultimate goal is to find all the appropriate rungs
that must be included in M so as to obtain the transport
coefficient at the desired level of accuracy. The usual
procedure is to consider all possible rungs cut in all pos-
sible ways and use power counting arguments to show
which ones contribute at, say, leading order. This way to
proceed is already involved in scalar theories; in gauge
theories, it would quickly become hard to manage.

Equation (32) provides a way to restrict the number of
possible cut rungs that must be included in M. It says that
the full rung kernel is proportional to the functional de-
rivative of the imaginary part of the full retarded on-shell
self-energy. This result means that any rung kernel (a 4-
point function) is obtained by opening a fermionic line in
an imaginary self-energy (a 2-point function). The recipe
to find M is thus to select a certain set of imaginary self-
energies (using, for example, an expansion in coupling
constants) and open the fermion lines in these self-energies

to get the rungs. An example of such a procedure applied to
one-loop self-energies in QED is shown in Fig. 4. Since we
are dealing with a quantum mechanical system, all such
openings must be summed coherently. This is a strong
constraint on the rung kernel.

A few remarks are in order here. The above constraint
implements the physics of transport coefficients (i.e. pinch
singularities due to the low frequency, low momentum
limit) and is useful for restricting the number of possible
cut rungs: it is a necessary condition to get leading-order
rungs. In this case, power counting is used to verify if the
rungs obtained from the constraint contribute at leading
order. For electrical conductivity, this verification is done
in Sec. IVA. If other singularities are present, then the
constraint is not sufficient and must be supplemented with
additional power counting arguments. This is the case in
gauge theories, where collinear singularities make rungs
with number changing processes as important as those
without these processes. These additional power counting
arguments are presented in Sec. IV B.

The constraint Eq. (32) expresses rungs in terms of
functional derivatives of self-energies. Since a few self-
energies can give rise to many rungs, it could be more
convenient to work directly on the self-energies in some
cases. This is particularly relevant when, because of the
presence of collinear singularities, an infinite number of
rungs are needed at leading order. Such an analysis could
rapidly become unmanageable; as shown in Sec. IV B,
using power counting to carefully select the relevant self-
energies before opening them makes the analysis easier.

The constraint (32) is also essential to preserve gauge
invariance in our formalism. To see that more clearly, let us

 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 4. Rungs obtained by functionally differentiating with respect to a fermionic spectral density the self-energies in the left column
(c.f. Eq. (32)). Power counting arguments show that all these rungs contribute at leading order except diagrams (e) and (f), because
massless three-body on-shell decays are suppressed. All diagrams can be converted into 2! 2 scatterings with a soft exchange except
(h) and (i), which are part of the 1! 2 collinear scatterings discussed in [23,24,29].
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compare our formalism to the 2PI formalism. Expressions
similar to Eq. (32) were obtained using 2PI effective
actions methods [19,37], with notable differences. In 2PI
methods, the ‘‘constraint’’ is in coordinate space and
comes naturally from standard functional relations. The
important point is that the kernel M2PI of the integral
equation is given by the functional derivative of the self-
energy with respect to resummed propagators, where the
self-energy is itself given by the functional derivative of all
amputated 2PI diagrams (�2) with respect to resummed
propagators:

 M 2PI�x; y; a; b� � 2
���x; y�
�GB�a; b�

� 2
�

�G�a; b�

�
2i

��2

�GB�x; y�

�
: (33)

To obtain Eq. (33), no reference is made to the low fre-
quency, low momentum limit or pinch singularities. In that
sense, the constraint in [19,37] is too general for the prob-
lem at hand. We also mention that there seem to be gauge
invariance issues with 2PI methods [54–56]. Briefly, this is
because the 2PI effective action methods involve the use of
resummed propagators, i.e. only a certain class of top-
ologies are resummed. On the other hand, gauge theories
require Ward identities to be satisfied. Since Ward identi-
ties require cancellations between different classes of top-
ologies (resummed propagators and vertices), they are
necessarily violated in the 2PI formalism. Note that it is
shown in [57] that a complete, self-consistent system of
equations for the dynamics of QED or QCD can be ob-
tained using higher order effective actions, but it has never
been implemented in practice for transport coefficients.

In contrast, our method does not make any reference to
2PI effective actions and starts directly from symmetry
principles, the Ward identity being the expression of these
symmetries for quantum mechanical amplitudes. The
physical limit that is used to obtain transport coefficients
(q! 0) is explicitly implemented in our constraint
(Eq. (32)). In addition, the constraint contains, by construc-
tion, exactly those diagrams required to produce a gauge
invariant result for the electrical conductivity in QED; in
other words, it tells us which self-energy must be re-
summed in the side rail propagators for each rung present
in the kernel so as to keep everything transverse. This
constraint is not as general as the constraint obtained
from 2PI methods (compare Eqs. (32) and (33)) or from
general considerations of gauge invariance, but it is more
powerful in the sense that it contains the relevant physics to
calculate the electrical conductivity in QED.

IV. POWER COUNTING

Equation (32) gives us an infinite number of self-
energies from which rungs can be obtained by opening
lines. To make progress, we need a selection criterion

based on power counting to isolate the rungs that contrib-
ute at leading order. Naively, one could do an expansion in
coupling constants and keep only the lowest order dia-
grams, but this procedure turns out not to be sufficient.
As pointed out in Sec. II C, due to the presence of collinear
singularities, there is a restricted but infinite class of dia-
grams that must be resummed to get leading-order results.
The goal of this section is to present power counting argu-
ments to obtain the leading-order electric conductivity. For
the purpose of this section, we divide the rungs into two
categories: the ones containing collinear singularities and
the ones that do not. In kinetic theory language, these
correspond to 1� N ! 2� N and 2! 2 scatterings, re-
spectively (we come back to this last point in Sec. V).

A. Power counting without collinear singularity

We first consider the case of no collinear singularity.
According to Eq. (32), the rungs are obtained by opening
fermion lines in the imaginary part of the retarded self-
energy of the electron. At one loop, the imaginary part is
zero since an on-shell massless excitation cannot decay
into two on-shell massless excitations. It is thus necessary
to go to two loops for a leading-order result. The two-loop
imaginary retarded self-energies are shown in Fig. 4, with
their corresponding rungs. Note that there are many more
cuts that correspond to imaginary two-loop self-energies.
We consider these other cuts when writing down the 4� 4
matrix integral equation (c.f. (40)); for the moment, we are
only interested in the rung topology. Let us check the
power counting size of each rung.

Consider rung (a) in Fig. 4, reproduced in Fig. 5 with
momentum labels. The expression for the rung is:

 M �a� � �ie
4
Z d4l

�2��4
��F �k� l��

�
F �p� l�G


B�l�GB�l�;

(34)

where for clarity we omitted Dirac matrices and Lorentz
indices (irrelevant for noncollinear power counting). If all
momenta are hard, then the rung isO�e4� (this is true for all
rungs considered here). In the case of a soft bosonic
exchange l�O�eT�, the story is different. Each bosonic
propagator is now O�e�2T�2� (note that there is no con-
tribution from the Bose-Einstein distribution since l is off
shell) and there is a phase space suppression of e2 (i.e. two
integrals are killed by the delta functions inside the cut

 

(a) (g)
k

k

l

l

p

p

k−l p−l

k

k

l k−l−p

p

p

k−l

p+l

FIG. 5. Momentum labels used to do the power counting of
rungs (a) and (g) (c.f. Fig. 4).
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propagators, leaving d2l�O�e2T2�). Collecting all
powers, we get that rung (a) is O�e2� for a soft exchange.
This is the usual Coulomb divergence in scattering theory
and is the dominant part of the integral. Rungs (b) and (c)
also contain a Coulomb divergence; the power counting is
done in the same way and gives O�e2�.

The structure of rung (d) is very similar to rung (a), with
the role of bosons and fermions interchanged. The only
difference in the power counting comes from the fact that
the ex]changed soft excitation is now a fermion. Since a
(soft) fermion propagator is O�e�1T�1� (instead of
O�e�2T�2� for a soft boson propagator), rung (d) is sup-
pressed by two additional powers of e compared to
rung (a), giving O�e4�. Rungs (e) and (f) are necessarily
higher order than the others and should not be considered.
This is due to the presence of three-point vertices with their
three legs on shell and massless, corresponding to kine-
matically forbidden or highly suppressed processes.

The power counting of rung (g) in Fig. 4 is slightly more
involved. The expression for the rung is (the momentum
convention is shown in Fig. 5):
 Z d4p

�2��4
M�g� � �ie4

Z d4p

�2��4
Z d4l

�2��4
��B �l�

� ��B �k� l� p�G

F�k� l�GF�p� l�;

(35)

where we explicitly write the integration over p coming
from the integral equation (c.f. Eq. (17)). We consider the
case where the side rail momenta k and p are both hard and
nearly on shell (i.e. k2 � p2 �O�e2T2�) while the loop
momentum l is soft. In such a kinematical regime, the
dominant contribution comes from when the propagator
momenta satisfy �k� l�2 � �p� l�2 �O�e2T2�. For these
conditions to be satisfied, the angles kl and pl must be
O�e�, implying an e2 suppression in both phase space
integrations (this is because d4p � dp0jpj2 sindjpj�
dd	�O�e2� when �O�e�). Another way to see the
phase space suppression in d4l is to notice that the two
delta functions inside the cut propagators kill two integrals
over l, leaving only d2l�O�e2�when l is soft. Accounting
for all powers of e, we have an e4 coming from the four
explicit vertices, e2 � e2 from the phase space integra-
tions, and e�2 � e�2 coming from the two fermion propa-
gators (note that the fermion propagators are not
O�e�1T�1� because their upstairs momenta are hard).
Rung (g) is thus O�e4�. The power counting and size of
rungs (j), (k), and (l) are similar to rung (g). Finally,
rungs (h) and (i) are suppressed except in the very special
kinematical regime where the electron is collinear to the
exchanged photon; they are part of the ‘‘collinearly singu-
lar’’ rungs and will be considered shortly.

From the above power counting, we get that the rungs
with a Coulomb divergence (i.e. (a), (b), (c)) are O�e2� and
the rungs without this divergence (i.e. (d), (g), ( j), (k), (l))
are O�e4�. Naively, one would expect only rungs (a)–(c) to

contribute at leading order, but it turns out that there exists
another suppression mechanism that is only effective for
these rungs. To understand this suppression, let us look at
the 2! 2 collision term of the linearized Boltzmann equa-
tion of Arnold, Moore, and Yaffe [22] (we show in Sec. V
how to obtain this equation, c.f. Eq. (49)):
 

Cu�k� �
1

2

Xf;s;h
v;m;n

Z d3p

�2��32Ep

d3l

�2��32El

d3l0

�2��32El0

� jMuvmn�k; p; l; l0�j2�2��4�4�k� p� l� l0�

� �nu�k�nv�p��1	 nm�l���1	 nn�l0��

� ��u�k� � �v�p� � �m�l� � �n�l0��; (36)

where the sum is over flavors (f), species (s), and helicities
(h), the Muvmn’s are the 2! 2 scatterings relevant for the
calculation, and the �’s represent small deviations away
from equilibrium distribution functions. The key observa-
tion to understand the suppression is that rungs (a), (b), and
(c) correspond to 2! 2 processes for which both incident
excitations undergo a soft scattering (k� p � q, where q
isO�eT�) without changing their species types (u � m and
v � n); see Fig. 6 for the correspondence between rungs
and scattering processes. In such a case, there is a partial
cancellation between the �’s in the collision term [22]:
 

�u�k� � �u�p� � �q � r�u�k� �O�q2�

�O�eT� �O�q2�: (37)

Since in the Kubo relation (16) the term ��u�k� � �v�p� �
�m�l� � �n�l0�� is squared, the overall suppression is e2.

 

k

p l’

lu

v

m

n
2
1

+

2 2

+

+ +

2

+

2

+

+

(b) (c) (d)

(f)(e)

(a)

(g) (h)

 
Σ

flavors
species,

helicities,

,C (k) = u    
v,m,n

uvmn| M      (k,p;l,l’) | 2

FIG. 6. Collision term of the linearized Boltzmann equation
including only leading-order 2! 2 scatterings [23,24]. The
labels u–n represent the species (fermion or photon), flavor,
and helicity of the excitations (here u � electron). A tedious
calculation shows the equivalence between the scattering pro-
cesses and the rungs of Fig. 4. The correspondence goes as
follows (the letters refer to diagrams in Figs. 4 and 6, respec-
tively): �a� � �b�2 and �d�2, �b� � �e�2 and �f�2, �c� � �a�2 and
�c�2, �d� � �g�2 and �h�2, �g� � �g��h�, �j� � �e��f�, �i� � �a��b�
or (c)(d), �j� � �c��d� or (a)(b).
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Taking into account this additional suppression, rungs (a),
(b), and (c) are O�e4�.

In summary, rungs (a)–(c), (d), (g), and (j)–(l) in Fig. 4
all contribute at leading order for electric conductivity,
although the contribution of rungs (a) and (b) are effec-
tively zero due to Furry’s theorem. This completes the
power counting for leading-order rungs corresponding to
2! 2 scattering processes in QED. Note that the Ward-
like identity constraint is also applicable to scalar theories;
it can easily be shown that taking all the two-loop imagi-
nary self-energies of g	3 � �	4 gives the necessary
leading-order rungs [13]. We can conjecture that it is
necessary and sufficient to use the Ward identity constraint
and an expansion in coupling constants to get all rungs of a
given accuracy that do not depend on another singularity
(such as collinear singularities). On the other hand, the
constraint only implements the physics of pinch singular-
ities and thus cannot give precise information about rungs
containing collinear singularities.

B. Power counting with collinear singularities

Let us now come back to the problem of collinear
singularities. As explained in Sec. II C, collinear singular-

ities appear when two propagators G�k� and G�k� p�
nearly pinch, i.e. when the angle between k and p is kp �
O�e�. Thus we must look for cut rungs containing number
changing processes and pairs of nearly pinching propaga-
tors. By inspection, we find that the only rung topologies
satisfying those criteria are the ones with vertex correc-
tions, such as rungs (h) and (i) in Fig. 4.

Let us check the power counting size of rung (h), repro-
duced with momentum labels in Fig. 7 (rung (i) is done in a
similar way). The expression corresponding to rung (h) is:

 Z d4p

�2��4
M�h�DF�p���ie4

Z d4p

�2��4
Z d4l

�2��4
��B�
�l�

���B���p���
�GF�k� l��

�

���F �k�p� l��

DF�p���; (38)

where we explicitly write the integration over p and the
effective vertex coming from the integral equation
(c.f. Eq. (17)). The integral over dl0 is dominated by the
kinematical range where the two fermionic propagators
k� l and k� p� l nearly pinch. In such a regime, ex-
pression (38) becomes:

 Z d4p

�2��4
M�h�DF�p� � �ie

4
Z d4p

�2��4
Z d3l

�2��3
��B�
�l��

�
B���p�

� ��
�

�6k�6 l����6k� 6p�6 l�

p0 � �Ek�l � Ek�l�p� �
i
2 ��k�l � �k�p�l�

�
�
DF�p���: (39)

The external legs are hard and nearly on shell due to pinch
singularities, i.e. k� �k� p� � T and k2 � �k� p�2 �
O�e2T2�. We also assume that the exchange photon p is
hard (otherwise the rung would be subleading due to too
much phase space suppression); it is also on shell since it is
cut. The nearly pinching conditions are given by �k� l�2 �
O�e2T2� and �k� p� l�2 �O�e2T2�. This is equivalent to
the statement that l2, �k � l� and �p � l� must be O�e2T2� or
that the electron on the upper rail must be collinear with the
exchange photon. In particular, it implies that pl �O�e�,
thus restricting the phase space of p to an O�e2� region
since d4p � dp0jpj2 sindjpjdd	�O�e2� when �
O�e�.

Up to now, we have not specified the vertex correction
momentum l: it can be either hard or soft. Let us first
consider the case when l is hard. In this momentum regime,
the power counting size of rung (h) is e4 � e2 � e2 �

���B�
�l�� � ��
��6k�6 l����6k� 6p�6 l��
� � e�2, where

the e4 comes from the four explicit vertices, e2 � e2

from the (small angle) restriction on the phase space of p
and l, and e�2 from the nearly pinching propagators. Since
l is hard, the bosonic cut propagator is O�e0� and is
proportional to g�
. In this case, the Dirac structure re-
duces to a scalar product and generates an additional e2

suppression. Collecting all powers of e, we get that
rung (h) is O�e8� when l is hard.

The situation is different when l is soft. In this case, the
power counting size of rung (h) is e4 � e2 � e3 �

���B�
�l�� � ��
��6k�6 l����6k� 6p�6 l��
� � e�2, where

the e4 comes from the four explicit vertices, e2 from the
restriction on the phase space of p, e3 from the soft
integration over l, and e�2 from the nearly pinching propa-
gators. Since l is soft, the cut propagator is HTL resummed
and is no longer proportional to g�
. There is thus no
additional e2 suppression coming from the Dirac structure
when l is soft. The power counting size of ��BHTL�l� � �1�
nB�l0���BHTL�l� is also variable and depends on the mo-

 

p

k+p

k+p

k

k

l

(h)

α β
δ

λ

FIG. 7. Momentum labels used to do the power counting of
rung (h) (c.f. Fig. 4).

LEADING-ORDER CALCULATION OF ELECTRIC . . . PHYSICAL REVIEW D 75, 025014 (2007)

025014-11



mentum flowing through it. For soft spacelike momenta,
Landau damping gives rise to an O�e2� imaginary self-
energy. In this situation, �BHTL�l� ��I�l�=�l2 � �I�l��2 �
e�2 and ��BHTL�l� � e

�3. Collecting all powers, we find
that rung (h) is O�e4� in the collinear regime. On the other
hand, for null or soft timelike momenta, �I�l� �O�e3� (no
Landau damping) and �BHTL�l� � e�1, making the rung
subleading.

More generally, rungs obtained by opening lines on self-
energies with any number of vertex corrections (as shown
in Fig. 8) could be leading order (see below for an explicit
example of power counting with two self-energy correc-

tions). The only restriction is that one should not open a
pinching propagator; since pinch singularities occur for
pairs of propagators, opening (removing) one of them
just cancels the effect and would thus make the rung
subleading. With this restriction in mind, opening the
self-energies in Fig. 8 results in the rungs of Fig. 9.
Before going further, let us verify the power counting
size of the rung in Fig. 7 with an additional vertex correc-
tion either on the upper or lower rail. It modifies Eq. (38) in
the following way: it adds two explicit vertices (e2), one
integral over soft 3-momenta (e3), two pinching propaga-
tors (e�2), and one cut propagator with soft spacelike

 

+

+ +

+

+ (...)

+ (...)

+ + (...)

T T

T

T

T

T

gT

T T

gT

T

FIG. 8. Self-energies considered in our leading-order electrical conductivity calculation. Soft photons are indicated by thick lines; all
other excitations are hard. In each diagram, the hard incoming electron is collinear to the hard photon. Any number of soft vertex
corrections must be included due to the presence of nearly pinching pairs of propagators; this is the diagrammatic depiction of the LPM
effect. The propagators indicated by vertical arrows are the only ones that can be opened without breaking a pair of nearly pinching
propagators.

 

+ + + (...)

+ + (...)

+ (...)

+

+

FIG. 9. Possible rung topologies containing 1! 2 collinear processes obtained by opening (allowed) fermion lines in the self-
energies of Fig. 8. Soft photons are indicated by thick lines; all other excitations are hard. The leading-order rungs are in the first row
and column; all rungs with at least one self-energy correction on both the upper and lower rails are subleading because of the
impossibility of having upper and lower pairs of propagators pinch at the same time.
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momentum (e�3). Collecting together the newly intro-
duced powers of e, we see that adding a vertex correction
results in anO�1� correction. This is true for any number of
vertex corrections.

There is one further simplification that can be used to
reduce the number of rungs in Fig. 9. To see this simplifi-
cation, rungs must be expressed in the Keldysh basis. In
this basis, diagrams are expressed in terms of retarded,
advanced, and correlation functions (c.f. Eq. (8)) and it is
thus easier to isolate pinching contributions. This imposes
constraints on the r, a structure of rungs. In particular,
the 4-point rungs must be M�k;�k;�p; p� �
Maarr�k;�k;�p; p� or Mrraa�k;�k;�p; p� in order for
the side rails to pinch (a similar argument is used by the
authors of [15,16] to simplify their integral equation). To
have nearly pinching contributions from the collinear elec-
tron, we also need an alternation of retarded (ra) and
advanced (ar) propagators on each side of the hard col-
linear photon. Figure 10 shows typical rungs of Fig. 9 in the
Keldysh basis submitted to the above constraints. As can
be seen from the figure, rungs with vertex corrections on
both the upper and lower rails always contain an aa
propagator and are thus zero. Other r, a combinations are
possible, but they do not pinch and are thus subleading. In
contrast, rungs with vertex corrections only on the upper or
lower rail can have a pair of pinching propagators and are
thus leading order.

This infinite number of rungs with arbitrary number of
vertex corrections must be resummed using another inte-
gral equation. This is the diagrammatic implementation of
the LPM effect [29,32,33]. Physically, the LPM effect
arises because of coherence effects in collinear photon
emission/absorption. In the process, the electron can suffer
an arbitrary number of collisions with soft photons coming
from the medium; since the formation time of the emitted/
absorbed photon is of the same order as the mean free time
between soft scatterings, then all the processes must be
added coherently. We will see more clearly in Sec. V how

the rungs in Fig. 9 are related to these 1� N ! 2� N
collinear processes.

V. DERIVATION OF THE INTEGRAL EQUATION

Sections III B and IV show what rungs, in the realm of
all possible rungs, should be resummed in order to obtain
the electrical conductivity at leading order. A visual sum-
mary of the necessary rungs is shown in Fig. 11. These
rungs can be resummed using the integral equation (17) in
order to get the electrical conductivity. As explained in
Sec. IV, the rungs fall in two categories: those correspond-
ing to 2! 2 scatterings (i.e. without collinear singularity)
and those corresponding to 1! 2 collinear scatterings (i.e.
containing collinear singularities). Note that there is a
finite/infinite number of rung types corresponding to
2! 2/1! 2 scatterings, as stated in Sec. II C.

The goal now is to write down the appropriate integral
equation and show its equivalence to the leading-order
results of Arnold, Moore, and Yaffe [23,24] obtained using
an effective kinetic theory. The plan is to separate the
analysis of collinear and noncollinear rungs in Eq. (17)
according to K � �M�N �F , where N and M cor-
respond to the collinear and noncollinear rungs,
respectively.

A. Integral equation without collinear singularity (M)

For simplicity, let us first consider the case without any
collinear physics. The diagrams that need to be resummed
are shown in Fig. 11. To write down the integral equation,
we follow the general diagrammatic method of Ref. [13].
In this method, all possible ways of cutting the effective
vertex and the kernel are considered, resulting in a 4� 4
integral matrix equation:

 D �
F �k� � I

�
F �k� �

Z d4p

�2��4
M�k; p�F�p�D�

F �p�: (40)

We use boldface letters here to emphasize the fact that D
and I are 4 component column vectors and K �MF is a
4� 4 matrix. See Fig. 12 for the graphical representation
of this equation. We again emphasize that, here and in the
following, the order of the various fermionic components is
not respected; for example, the effective vertex D�

F �p� has
a Dirac structure and should be sandwiched between the
two fermionic propagators contained in F�p�, something
that is not apparent from the present notation. Only explicit
calculations show that the Dirac structure all works out.
The matrix M corresponds to the rungs of the ladder
diagrams and F corresponds to the side rails. The explicit
form of F is:

 

(a)

a r r r
a a

a r

a

r

k

k

p

p

If this is an
ra propagator...

... then this
one must be ar

(b)

a r
a a

r ra

a rrra

a a

FIG. 10. Typical rung topologies for collinear processes ex-
pressed in the Keldysh basis. To have a leading-order contribu-
tion, the rungs must be Maarr�k;�k;�p; p� or
Mrraa�k;�k;�p; p� and must contain an alternation of ra
and ar propagators. Taking into account those constraints, it is
easy to see that for all r, a structures, there is always an aa
propagator in topology (b); it is thus suppressed compared to
topology (a).
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 F �p� �

GF�p�GF�p� ��F �p��
�
F �p� GF�p���F �p� ��F �p�GF�p�

��F �p��
�
F �p� GF�p�G


F�p� ��F �p�G


F�p� GF�p��

�
F �p�

GF�p���F �p� ��F �p�G

F�p� GF�p�GF�p� ��F �p��

�
F �p�

��F �p�GF�p� GF�p��
�
F �p� ��F �p��

�
F �p� GF�p�GF�p�

0
BBB@

1
CCCA

�
1

�p

�2n��F 2�1� n���F �1� 2n���F �1� 2n���F
�2n��F �2n��F �1� 2n���F �1� 2n���F
�1� 2n���F �1� 2n���F ��1� n���F � n��F � 2�1� n���F
�1� 2n���F �1� 2n���F �2n��F ��1� n���F � n��F �

0
BBB@

1
CCCA; (41)

where we have used n � nF�p
0� and �	F � �	F �p

0� and
taken the pinch limit (q! 0) in the last line. In matrix
form, Eq. (40) has a complicated structure and is quite
cumbersome. In the scalar case, it is shown in [13] that the
4� 4 integral matrix equation can be reduced to a one-
dimensional integral equation using a special transforma-
tion. This is expected, since one could start directly from
the (one-dimensional) Euclidean integral equation, do the
Matsubara sum, and do the analytic continuation, resulting
in a one-dimensional integral equation for real energies
that should be equivalent to Eq. (40) (see for example [18]
for such an approach). Thus following Ref. [13], we de-
compose the side rail matrix (41) into outer products:

 F �p� � w�p�uT�p� � h�p�jT�p�; (42)

where the vectors w�p�, u�p�, h�p�, and j�p� are given by:
 

wT�p� �
2nF�p

0���F �p�
�p

�
1 1 �1�e
p

0
�

2
�1�e�
p

0
�

2

�
;

uT�p� �
�
�1 �1 ��1�e�
p

0
�

2
��1�e
p

0
�

2

�
;

hT�p� �
2��F �p�

�p

�
0 0 1

4
e�
p

0

4

�
;

jT�p� � � 0 0 1 e
p
0
�: (43)

 

= +

where

Basic integral equation:

=

= +

+

+ +

+

+ +

+

+ +

Collinear integral equation:

Resummed self−energies: + + +

+ +

FIG. 11. Diagrammatic summary of our leading-order calculation of electrical conductivity in hot QED. The basic integral equation
(c.f. Eq. (17)) is due to the usual pinch singularities; its solution (represented by a gray half circle) must be substituted in the initial
Kubo relation to get the conductivity. All the rungs included in the kernel of the basic integral equation (represented by a gray
rectangle) are shown. These rungs can be divided in two categories: those corresponding to 2! 2 scatterings (first and second lines)
and those corresponding to 1! 2 collinear scatterings (third line). The collinear rungs represent an infinite number of vertex
corrections (represented by a gray triangle) that are resummed using the collinear integral equation (c.f. Eq. (50)). Also shown are the
self-energies that must be resummed in the side rail propagators in order to preserve gauge invariance, as dictated by Eq. (32).

JEAN-SÉBASTIEN GAGNON AND SANGYONG JEON PHYSICAL REVIEW D 75, 025014 (2007)

025014-14



This decomposition into outer products helps in simplify-
ing Eq. (40). To see that, substitute Eq. (42) into Eq. (40)
and iterate a few times. Multiplying the result by uT�k� on
both sides and noting that jT�p�I�p� � 0, uT�p�h�p� � 0,
jT�p�w�p� � 0, jT�p�M�p; l� / jT�p�, and M�p; l�h�l� /
h�p�, it is possible to show that the term h�p�jT�p� in the
decomposition (42) gives no contribution when iterating.
The integral equation thus becomes:
 

uT�k�D�
F �k� � uT�k�I�F �k� �

Z d4p

�2��4
�uT�k�M�k; p�w�p��

� �uT�p�D�
F �p��: (44)

We can relabel the reduced effective vertex by D�
F �k� �

uT�k�D�
F �k�. Since only the first component of I�F �k� is

nonzero, we have uT�k�I�F �k� � �I
�
F �k�. If we define

M0 � uT�k�M�k; p�w�p� as our reduced kernel, the result-
ing integral equation becomes:

 D �
F �k� � �I

�
F �k� �

Z d4p

�2��4
M0�k; p�D�

F �p�: (45)

This last equation can be further reduced. Using the con-
dition of unitarity (11) to get rid of some M components,
the KMS relations for 4-point functions (13) and the rela-
tions M02 �M

12, M20 �M
21, M22 �M

22, and
M32 �M

32 (these last relations must be checked explic-
itly for each rung), a tedious calculation shows that
Eq. (45) reduces to:
 

Di
F�k� � �I

i
F�k� �

Z d4p

�2��4
� �nF�p0��e�
k

0
� 1�

� �M22�k; p� � e

k0

M32�k; p��

� �e
p
0
� 1� ���F �p��

Di
F�p�
�p

; (46)

where the Mij’s (i; j � 0; . . . ; 3) refer to the matrix com-
ponents of M (correspond to the different ways of cutting
the rung kernel, see Fig. 12), we defined ��F �p� � 6p ���F �p�
and we used the fact that D / �i. Equation (46) is the
fermionic version of Eq. (A15) first obtained in [13] for
scalar theories. The fact that only ‘‘completely cut’’ com-
ponents of M appear in Eq. (46) is consistent with the

Ward identity constraint (32). However, it is still necessary
to go through all the analysis to get the right proportion-
ality factor, since the constraint (32) is a proportionality
relation when interpreted in terms of diagrams. The reason
why it is important to consider all possible cuts of M is
because there are many ways to get an imaginary part at
finite temperature; for example, we have 2Im�11 � �11 �
�22 � �12 � �21 for any (time-ordered) two-point func-
tion (a consequence of unitarity).

As can be seen from Fig. 4, the rungs are all made of 4-
point functions with two external vertices in the shade and
two out of the shade. Since cut propagators represent
nearly on-shell thermal quasiparticles, the rungs can be
naturally interpreted as 2! 2 scattering processes. A tedi-
ous calculation shows that the sum of all the leading-order
rungs in Fig. 4 can be converted into the square of a
scattering matrix, where the scattering processes are given
in Fig. 6. It is easy to see that diagrammatically, starting
from the scattering processes (see caption of Fig. 6 for
details). In its present form, the effective vertex in Eq. (46)
is a matrix in spinor space; for the Kubo relation (16) to be
a scalar equation, we want Di

F�k� to be a vector in spinor
space. Multiplying Eq. (46) from the left with �us�k̂� (or
equivalently �vs�k̂�, see [18] for their definition) and defin-
ing Di

F�k� � �us�k̂�Di
F�k�, we get:

 

Di
F�k���I

i
F�k��

Z d4p

�2��4
d4l

�2��4
d4l0

�2��4

��2��4��4��k�p� l� l0��e�
k
0
�1�

�

�
1

2

Xf;s;h
v;m;n

jMuvmn�k;p;l;l0�j2

� ���m�l� ��
�
n �l
0� ���F ��p�

�
Di
F�p�
�p

; (47)

where the Muvmn’s are the 2! 2 scattering processes
shown in Fig. 6. The sum is over flavors (f), species (s),
and helicities (h). Note that for electrical conductivity, v
can only be an electron or a positron, otherwise the result-
ing rung would not connect with the fermionic effective
vertex (see Fig. 2). Equation (47) is formally equivalent to
the linearized Boltzmann equation obtained in [23,24],

 

=

FIG. 12. Graphical representation of the integral equation (40). The inhomogeneous term I�p� is not shown explicitly. It is a column
vector with only the first component being nonzero, since it is an operator insertion and is thus pointlike (i.e. it can only be in the shade
or out of the shade).
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with all leading-order 2! 2 scatterings included. To show
this more explicitly, we define the deviation from equilib-
rium �i�k� � Di�k�=�k [13,14] and substitute it into
Eq. (47). We also use the delta functions contained in the

cut propagators to put the integrated momenta on shell. We
remark here that at finite temperature, both positive and
negative energies appear in the cut lines. The resulting
integral equation is:

 

�IiF�k� � �k�iF�k� �
Z d3p

�2��3
d3l

�2��3
d3l0

�2��3
�2��4��4��k� p� l� l0�

�

�
1

2

Xf;s;h
v;m;n

jMuvmn�k; p; l; l0�j2
nv�p0��1	 nm�l0���1	 nn�l00��

�1� nF�k0��
��iv�p� � �

i
m�l� � �

i
n�l
0��

�
(48)

with the understanding that �� � 0 (i.e there is no bosonic effective vertex). Using the fact that
P
vmnjMuvmn�k; p; l; l0�j2 is

invariant under the change of labels p$ �l0, l$ l0, and the relation �k � �1� e�
k
0
����k� (where ���k� is a Wightman

self-energy that can be expressed in terms of 1
2

P
vmnjMuvmn�k; p; l; l0�j2), we finally get:

 

��1� nF�k0��IiF�k� �
1

2

Z d3p

�2��3
d3l

�2��3
d3l0

�2��3
�2��4��4��k� p� l� l0�

Xf;s;h
v;m;n

jMuvmn�k; p; l; l0�j2

� nF�k
0�nv�p

0��1	 nm�l
0���1	 nn�l

00�� � ��i�k� � �iv�p� � �
i
m�l� � �

i
n�l
0��: (49)

This last equation is identical to the one obtained by
Arnold, Moore, and Yaffe [23,24] using effective kinetic
theory.

B. Integral equation with collinear singularities (N )

The case with collinear singularities can be studied with
the tools developed in the previous section. The only
difference comes from the cut rungs that must be included
in the 4� 4 integral equation. In Fig. 12, the rung matrix is
made of 4-point functions cut in all possible ways. For
collinear singularities, power counting shows that an infi-
nite number of 3-point functions, corresponding to an
infinite number of vertex corrections (see Fig. 13), is
needed at leading order. Fortunately, this infinite number
of 3-point functions has a simple structure and is thus
manageable. In analogy to the ‘‘usual’’ transport coeffi-
cient calculation, we can define an effective vertex
V F�k; p� that satisfies the following integral equation:

 V F�k; p� � IF�k; p�

�
Z d4q

�2��4
N coll�k; p; q�F �k; p; q�V F�p; q�;

(50)

where N coll is a rung with a single soft photon exchange
and the external photon is collinear with the electron. See
Fig. 14 for an illustration of this integral equation. This
resummation is relevant for photon production including
the LPM effect and is done in great detail in [29,58].
Instead of using the closed-time path or ‘‘1-2’’ formalism,
they use the r/a formalism and are able to put the integral
equation in a form convenient for numerical purposes.

Coming back to our initial problem, we need to find the
components of the 4� 4 rung matrix. In the case of 4-point
functions, the 16 entries of the rung matrix are given by the
different ways of cutting a rung with 4 external vertices.
The collinear rungs considered in Fig. 13 are 3-point
functions with one internal vertex. The cuts coming from
the three external vertices fill 23 � 8 entries of the rung
matrix and each entry has two cuts due to the internal
vertex. Since the rung matrix is not completely filled, the
reduction procedure used in Sec. VA to get Eq. (46) could
be spoiled and the whole technique would break down.
Fortunately this is not a problem, because each of the two
topologies considered in Fig. 13 fill different parts of the
rung matrix. It is easy to check that the discussion preced-
ing Eq. (46) is still valid in the present case.

 

+ + + (...)

+ + + (...)

FIG. 13. Leading-order rungs necessary for the calculation of electrical conductivity. This infinite series of rungs can be resummed
into an effective vertex V F�k; p� using the integral equation (50).
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Applying the reduction procedure of the preceding sec-
tion to the topologies shown in Fig. 13, we thus get an
equation similar to Eq. (46):
 

Di
F�k� � �I

i
F�k� �

Z d4p

�2��4
�nF�p0��e�
k

0
� 1�

�N 22�k; p��e
p
0
� 1� ���F �p��

Di
F�p�
�p

; (51)

where the N ij’s (i; j � 0; . . . ; 3) refer to the matrix com-
ponents of N (correspond to the different ways of cutting
the rung kernel, see Fig. 12). Note that N 32 is automati-
cally zero for a 3-point function; this is why it is not present
in the above equation. The only cuts left after the reduction
procedure are shown in Fig. 15. Of the four cuts shown,
only the ones in the left column are included in N 22; the
ones in the right column are part of the 2! 2 scatterings
considered in Sec. VA and are left out of the collinear
analysis. The collinear rungs (a) and (c) can be written as
N 22�a� � ��iV

�
F��

�
B���k� p���iV

�
1!2�

 and N 22�c� �

��iV�1!2��
�
B���k� p���iV

�
F�
, i.e. as a multiplication of

a bare 1! 2 vertex V�1!2 and an effective vertex V �
F. Note

that rungs (a) and (c) are complex conjugate of each other;
this is a consequence of the trace over the fermion structure
in the Kubo formula, which allows us in this case to freely
interchange the Dirac structure of the two vertices. The
sum of N 22�a� and N 22�c� is thus twice the real part of
N 22�a�. Following the procedure of Sec. VA, we multiply
the left-hand side of Eq. (51) with �us�k̂� and get:

 

Di
F�k� � �I

i
F�k� �

Z d4p

�2��4
d4l

�2��4
�2��4��4��k� p� l��e�
k

0
� 1�

�

�Xf;s;h
v;m

2 Re�V�
FV

1!2��vm�k;p; l���B �l� ��

�
F �p�

�
Di
F�p�
�p

; (52)

where Di
F�k� � �us�k̂�Di

F�k�. The expression �V�
FV

1!2�� can be viewed as 1! 2 matrix elements squared, where one of

the elements is an effective amplitude that takes into account the LPM effect. This equation is formally equivalent to the
linearized Boltzmann equation of Arnold, Moore, and Yaffe [23,24], including the 1! 2 collinear scatterings and the
LPM effect. To make a closer connection to their results, we again define the deviation from equilibrium �i�k� � Di�k�=�k
and follow the procedure in Sec. VA. The final result is:
 

��1� nF�k
0��IiF�k� �

1

2

Z d3p

�2��3
d3l

�2��3
�2��4��4��k�p� l�

Xf;s;h
v;m

2 Re�V�
FV

1!2��vm�k;p; l�

� �nF�k0��1	 nv�p0���1	 nm�l0����i�k� ��iv�p� ��im�l���

�
Z d3p

�2��3
d3l

�2��3
�2��4��4��k�p� l�

Xf;s;h
v;m

2Re�V�
FV

1!2��vm�k;p; l�

� �nF�k
0�nv�p

0��1	 nm�l
0����i�k� ��iv�p� ��

i
m�l���: (53)

This last equation is identical to the linearized Boltzann
equation with the transverse momenta nonintegrated of
Arnold, Moore, and Yaffe [23,24] obtained using kinetic
theory.

VI. CONCLUSION

In this paper, we have derived the integral equations
needed for the calculation of electrical conductivity in
QED starting from basic quantum field theory. A visual

 

(a) (b)

(c) (d)

FIG. 15. Cut rungs left after the reduction procedure of
Sec. VA. The cuts in the left column are included in N 22; the
others were already included in the noncollinear analysis.

 

= +

k

p

k−p

k

p

k−p

k+q

p+q

q

FIG. 14. Illustration of the integral equation (50). The kernel
N coll is made of only a single soft photon exchange.

LEADING-ORDER CALCULATION OF ELECTRIC . . . PHYSICAL REVIEW D 75, 025014 (2007)

025014-17



summary of our calculation is presented in Fig. 11. With
power counting arguments and a constraint on the ladder
kernel due to the Ward identity, we have included all the
necessary rungs for a leading-order result. Our calculation
includes rungs corresponding to 2! 2 and 1! 2 collinear
scatterings, including the LPM effect. An important point
of our method is that since we used the Ward identity from
the onset, gauge invariance is explicitly enforced through-
out the calculation. Specifically, the constraint on the lad-
der kernel tells us which rungs must be included in the
integral equation for each of the self-energies resummed in
the propagators. We have finally shown the equivalence
between our results and the ones of Arnold, Moore, and
Yaffe obtained from an effective kinetic theory.

As a final remark let us mention that, even if the present
paper is restricted to the case of electrical conductivity in
hot QED, the Ward identity constraint can in principle be
applied to other gauge theories and other transport coef-
ficients. Of course, to generalize our calculation to non-
Abelian gauge theories is challenging, because of the
presence of ghosts and of an even subtler power counting.
This is the subject of future research. The shear viscosity
case is also more complicated than the electrical conduc-
tivity case, due to the presence of both fermionic and
bosonic effective vertices leading to coupled integral equa-
tions. The extension of our calculation to shear viscosity is
in progress [38].
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APPENDIX: ANALYTIC CONTINUATION OF THE
INTEGRAL EQUATION

In this appendix we show in more detail the steps needed
to go from the integral equation in Euclidean space (23) to
the one in Minkowski space (24). As is well known from
finite temperature field theory (see for example [50]), one
must do the sum over Matsubara frequencies before doing
the analytic continuation from imaginary energies to real
energies. An elegant way of doing this sum is presented in
Ref. [18]. Briefly, the method gives a formula for the
summation of expressions of the type

 

T
X
i�p

F�i�p� � T
X
i�p

M�i�k; i�p; i�q�GF�i�p�

�DF�i�p; i�p � i�q�GF�i�p � i�q�; (A1)

where GF�i�p� and GF�i�p � i�q� are resummed propa-
gators (the momentum convention is shown in Fig. 16) and
the i�’s are discrete frequencies. This kind of expression is
precisely what appears in the integral equation (23), since
the two propagators on the side rails are resummed (to
regularize pinch singularities). The idea is to replace the
sum over discrete frequencies by a contour integration with
a contour encircling those frequencies; the contour is then
deformed to encompass the branch cuts coming from the
resummed propagators and other possible poles contained
in F�z�. The resulting summation formula is [18]
 

T
X

even=odd �p

F�i�p� � 

X

poles

nB=F�zi�Res�F; z � zi�

	
X
cuts

Z 1
�1

d�
�2�i�

nB=F���Disc�F�;

(A2)

where � is a parameter specifying the position along the
branch cut.

To be able to do the Matsubara sum present in Eq. (23),
we need to know the analytic structure of DF and M. As
argued in [18] from induction, DF has only the singular-
ities of the product ofGF�i�p�GF�i�p � i�q� and thus does
not contribute to the sum. On the other hand, the M factor
contains poles and must be considered in the sum. The
problem is that we do not know a priori the precise form of
the kernel M, since this is the object we want to put a
constraint on. The way around this difficulty is to replace
M with the spectral representation of a general 4-point
function, of which we know the pole structure without
specifying its exact form. The program is thus to express
the kernel M in spectral form, insert it in the integral
equation (23), do the sum over Matsubara frequencies
using Eq. (A2), and do the analytic continuation towards
real energies.

In the imaginary-time formalism of finite temperature
field theory, the (Euclidean) 4-point function is the thermal
average of a time-ordered product of four bosonic/fermi-
onic fields (in the following, we suppress spatial variables

 

iω1 iω3

iω2 iω4

iνk iνp

iνk iνq− iνp iνq−

iνq

a) (b)(

FIG. 16. Momentum convention used for (a) The summation
formula (A2) and the integral equation (A11). (b) The general 4-
point function (A8).
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for simplicity):

 M ��1; �2; �3; �4� � hT�	a1
��1�	a2

��2�	a3
��3�	a4

��4��i;

(A3)

where the �i’s are imaginary times and the	ai are bosonic/

fermionic fields. The ai’s are labels that denote the tem-
poral order of the fields. Since there are four fields, the
T-product can be expanded into 4! possible time orderings.
For simplicity, let us consider a particular time ordering
(�1 > �4 > �2 > �3):

 M a1a4a2a3
� ��1 � �4���4 � �2���2 � �3�h	a1

��1�	a4
��4�	a2

��2�	a3
��3�i: (A4)

Extracting the time dependence of the Heisenberg operators and averaging with respect to an equilibrium density matrix
� � e�
Ĥ, we get
 

Ma1a4a2a3
� ��1 � �4���4 � �2���2 � �3� � Tr�e�
ĤeĤ�1	a1

�0�eĤ��4��1�	a4
�0�

� eĤ��2��4�	a2
�0�eĤ��3��2�	a3

�0�e�Ĥ�3�: (A5)

Inserting complete sets of energy eigenstates (with eigenvalues Emi
) between each bosonic/fermionic operator and

rearranging, we obtain

 M a1a4a2a3
� ��1 � �4���4 � �2���2 � �3� �

X
mi

�e�Em1
�
��3��1�e�Em4

��1��4�e�Em2
��4��2�e�Em3

��2��3��

� hm1j	a1
�0�jm4ihm4j	a4

�0�jm2ihm2j	a2
�0�jm3ihm3j	a3

�0�jm1i; (A6)

where i runs from 1 to 4. To get other time orderings, we only need to make permutations of the ai’s and the �i’s. Since the
integral equation (23) is in momentum space, we need the spectral representation M in momentum space. We thus take the
Fourier transform of Eq. (A6):

 M a1a4a2a3
�i!1; i!2; i!3; i!4� �

Z 


0
d�1

Z 


0
d�2

Z 


0
d�3

Z 


0
d�4ei!1�1ei!2�2ei!3�3ei!4�4 �Ma1a4a2a3

��1; �2; �3; �4�:

(A7)

Note that the Fourier transform goes from 0 to 
 and not �1 to 1, since the presence of the medium breaks Lorentz
invariance and imposes periodic (antiperiodic) boundary conditions on the imaginary time. Consequently, the frequencies
i!i are discrete and are even (odd) for bosons (fermions). Doing the Fourier transform and manipulating the expression, we
get

 M a1a4a2a3
�i!1; i!2; i!3; i!4� � �!1;!2;!3;!4

�Y4

j

Z dkj
�2��

�2����k1 � k2 � k3 � k4�

�

�

�
�1423

�i!4 � i!2 � i!3 � �k4 � k2 � k3���i!2 � i!3 � �k2 � k3���i!3 � k3�

�
�4231

�i!2 � i!3 � i!1 � �k2 � k3 � k1���i!3 � i!1 � �k3 � k1���i!1 � k1�

�
�2314

�i!3 � i!1 � i!4 � �k3 � k1 � k4���i!1 � i!4 � �k1 � k4���i!4 � k4�

�
�3142

�i!1 � i!4 � i!2 � �k1 � k4 � k2���i!4 � i!2 � �k4 � k2���i!2 � k2�

�
; (A8)

where �!1;!2;!3;!4
is a Kronecker delta and we have intro-

duced the 4-point thermal Wightman functions [59]

 �1234�k1; k2; k3; k4� �
X
mi

eEm1


�Y4

j�1

hmjj	aj�0�jmj�1i

�

�

�Y3

j�1

�2����kj � �Ej�1 � Ej��
�

(A9)

satisfying the (generalized) KMS condition

 �1234�k1; k2; k3; k4� � ��1�e
k1�2341�k1; k2; k3; k4�:

(A10)

Equation (A8) is identical to the one obtained in [59]
and gives the pole structure of one possible time ordering
and its circular permutations. As before, we obtain other
time orderings by permutation. Note that we could have
expressed Eq. (A8) in terms of 4-point spectral den-
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sities (i.e. linear combinations of 4-point thermal
Wightman functions) [59], but we prefer to leave it in
this form.

With the spectral form (A8) (and all the other time
orderings), it is possible to do the Matsubara sum in the

integral equation (23). The summation should be done for
all the 24 time orderings of the 4-point function, but for
simplicity we only show the summation of the �1423 term.
Inserting the first term of Eq. (A8) in Eq. (23) (with the
momentum convention shown in Fig. 16), we get

 Q�D
�
F �i�k; i�k � i�q� � T

X
�p

Z d3p

�2��4

�Y4

j

Z dlj
�2��

�2����l1 � l2 � l3 � l4�
�
�1423

�

�GF�i�p��Q�D
�
F �i�p; i�p � i�q��GF�i�p � i�q�

��i�k � l423��i�p � i�k � i�q � l23��i�p � l3�

�
; (A11)

where we dropped the inhomogeneous term (which vanishes in the q� ! 0 limit) and we used the shorthand notation
lij � li � lj. Note that the notation is symbolic and does not respect the Dirac structure of the equation. Using the
summation formula (A2) and remembering that i�k is odd, i�p is odd, and i�q is even in �, we obtain

 

Q�D
�
F �i�k; i�k � i�q� �

Z d3p

�2��4

�Y4

j

Z dlj
�2��

�2����l1 � l2 � l3 � l4�
�
�1423

�

�nF��i�k � i�q � l23�D��i�k � i�q � l23;�i�k � l23�

��i�k � l423���i�k � i�q � l2�
�

nF��l3�D��l3;�i�q � l3�

��i�k � l423��i�k � i�q � l2�

�
Z 1
�1

d�
�2�i�

nF���
� D��� i�; �� i�� i�q�

��i�k � l423���� i�� i�k � i�q � l23���� i�� l3�

�
D��� i�; �� i�� i�q�

��i�k � l423���� i�� i�k � i�q � l23���� i�� l3�

�

�
Z 1
�1

d�
�2�i�

nF���
� D��� i�� i�q; �� i��

��i�k � l423���� i�� i�k � l23���� i�� i�q � l3�

�
D��� i�� i�q; �� i��

��i�k � l423���� i�� i�k � l23���� i�� i�q � l3�

��
; (A12)

where we used the shorthand notation D�a; b� � GF�a��Q�D
�
F �a; b��GF�b�. In the above expression, the propagator

GF�l3� has no i� prescription and is thus undefined. This problem can be cured by assigning a small imaginary part to the
integrated momenta li, provided that it does not violate the delta function constraint. This is allowed since the 4-point
function is an analytic function and it will remain so no matter how the imaginary parts are assigned [60]. In the present
case, two possible choices are l3 ! l3 	 2i�; the remaining momenta can be adjusted in many ways so that the delta
function constraint is satisfied. It is important to note here that this internal assignment of imaginary parts must always be
‘‘less important’’ than the i�’s coming from the analytic continuation of i�k and i�q, because the latter encode the physics
of transport coefficients. Doing the analytic continuation i�k ! k0 � 2i�, i�q ! q0 � 4i� and doing the integration, the
integral equation for M1423 becomes:

 lim
q!0

q�D
�
F �k

0 � i�; k0 � q0 � i�� �
Z d3p

�2��4

�Y4

j

Z dlj
�2��

�2����l1 � l2 � l3 � l4�
�
�1423

�

�
��nB��l23� � nF��k0 � l23��D��k0 � l23 � i�;�k0 � l23 � i��

�k0 � l423 � i���k0 � l2 � i��

�
; (A13)

where nonpinching pieces have been dropped and the q! 0 limit has been taken. Note that the result is independent of the
i� prescription for l3. It can be shown by explicit calculations that this independence on the assignment of imaginary parts
on internal momenta holds for all time orderings.

We can do the same exercise with other time orderings. Collecting all terms together and rearranging, the complete
Matsubara summed integral equation is (spatial variables are still suppressed here and the q! 0 is implicit)
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q�D
��k0� �

Z d3p

�2��3
Z dp0

�2��
�1� nF�p

0��Gret
F �p

0�q�D
��p0�Gadv

F �p
0�

�

�
�1� e
k

0
�
Z dl1
�2��

Z dl2
�2��

�
�2341 � �2314 � �3241 � �3214

�k0 � l2 � i���k
0 � l1 � i��

�

� �1� e�
k
0
�
Z dl1
�2��

Z dl2
�2��

�
�1324 � �1342 � �3124 � �3142

�k0 � l2 � i���k
0 � l1 � i��

��
: (A14)

The arguments of the �’s are �a1a2a3a4
�l1; l2; p0 � l1 � k0� on the second line and �a1a2a3a4

�l1; l2; p0 � l2 � k0� on the third
line. To make sense of this equation, let us compare it to the integral equation obtained by Jeon [13] (suitably generalized to
fermions):
 

q�D��k0� �
Z d4p

�2��4

�
nF�p0��1� e
k

0
��M33 � e�
k

0
M23��1� e�
p

0
�
q�D

��p0�

�p

�

�
Z d4p

�2��4
�1� nF�p

0��Gret
F �p�q�D

��p�Gadv
F �p� � ��1� e


k0
�nF�p

0��1� e�
p
0
�M33

� �1� e�
k
0
�nF�p

0��1� e�
p
0
�M23�; (A15)

whereM33 andM23 represent (completely cut) kernels. Comparing Eqs. (A14) and (A15), we clearly see that they have the
same structure. This is normal, since they both represent the same physics. We can thus infer from this that the double
integrals over l1 and l2 in Eq. (A14) are the general spectral representation of (completely cut) kernels. The fact that kernels
(4-point functions) are represented by double integrals (3-point functions) in Eq. (A14) is normal, because there are only
two independent momenta in the q! 0 limit. The similarity between Eqs. (A14) and (A15) also shows that the Euclidean
integral equation keeps its form when going to Minkowski space.
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