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We uniquely determine the infrared asymptotics of Green functions in Landau gauge Yang-Mills
theory. They have to satisfy both the Dyson-Schwinger equations and functional renormalization group
equations. Then, the requirement of consistency fixes the relation between the infrared power laws of
these Green functions. We discuss consequences for the interpretation of recent results from lattice QCD.
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I. INTRODUCTION

In the past decade much progress has been made in the
understanding of the low energy sector of QCD. This
progress has been achieved both with continuum methods
and lattice computations. In the continuum, nonperturba-
tive functional methods have been used: Dyson-Schwinger
equations (DSEs) and functional renormalization group
equations (FRGs). Both frameworks are truly ab initio
approaches in the sense that they can be derived rigorously
from the full effective action of QCD; for reviews see [1–
7]. Although both frameworks constitute an infinite hier-
archy of coupled equations, they allow for the extraction of
scaling laws for Green functions in the deep infrared [8–
12]. These scaling laws are related to important properties
of the low energy limit of QCD, such as confinement and
chiral symmetry breaking.

The basic Green functions of Yang-Mills (YM) theory
are the ghost and gluon propagators. In Landau gauge,
these functions are connected to fundamental properties
of the theory. A running coupling can be constructed from
a renormalization group invariant combination of the cor-
responding dressing functions [8]. Furthermore, the ghost
dressing function gives access to the status of global gauge
symmetry: an infrared diverging ghost unambiguously sig-
nals an unbroken symmetry corresponding to a well-
defined global color charge [13]. This criterion is an in-
tegral part of the Kugo-Ojima confinement scenario [14]
and can be expressed as

 p2hC�p� �C��p�i ���!p2!0
1; (1)

with the ghost/antighost fields C, �C. It is identical to the
‘‘horizon condition’’ derived by Zwanziger [15] from con-
siderations of the impact of the Gribov horizon on corre-
lation functions. Within the same framework, Zwanziger
also derived a remarkable condition for the gluon propa-
gator [16],

 hA�p�A��p�i ���!p2!0
0; (2)

where A�p� denotes the gauge field. Such an infrared
vanishing gluon propagator violates the Osterwalder-

Schrader axiom of reflection positivity [17] and therefore
implies gluon confinement [16].

The behavior (1) and (2) has first been seen in a DSE
study [8]. This result has been confirmed and extended
within further DSE computations, e.g. [10,18–20], sto-
chastic quantization, e.g. [9,21], as well as FRG computa-
tions [11,22–24]; for related work see also [25–28]. In all
these studies a nonrenormalization theorem for the ghost-
gluon vertex [29] is used, leading to

 p2hA�p�A��p�i ! �p2�2�;

p2hC�p� �C��p�i ! �p2���;
(3)

with � 2 �1=2; 1�. It has been argued in [10] that (3) is the
only consistent solution. Equation (3) has been extended to
a self-consistent solution of the (untruncated) tower of
DSEs in continuum Yang-Mills theory [12]: for proper
vertices Z�2n;m�0;as with n ghost legs, n antighost legs, and m
gluon legs, the infrared asymptotics is given by

 Z�2n;m�0;as �p
2� � �p2���2n;m� � �p2��n�m��; (4)

where � is the exponent of the ghost dressing function
�n � 1; m � 0� as defined in (3).

It is interesting to compare the continuum result (3) with
results from lattice QCD [30–37]. On the available finite
volumes, most lattice results for the gluon propagator
disagree with (2) in that they favor an infrared finite
propagator, i.e.

 p2hA�p�A��p�i � �p2�1: (5)

Extrapolations towards the infinite volume limit cannot yet
unambiguously distinguish between an infrared finite, e.g.
[38], or weakly vanishing propagator [36].

The situation is worse for the ghost dressing function.
Whereas some simulations give an infrared diverging ghost
[35,39], other authors interpret their results as pointing
towards an infrared finite ghost dressing function [37], i.e.

 hC�p� �C��p�i � �p2�0: (6)

Clearly, (5) and (6) together do not agree with the contin-
uum result (3). Instead, they have been proposed as a
second possible solution of the continuum DSEs [37].
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In this work we shall show that the infrared asymptotics
of Landau gauge Yang-Mills theory is uniquely fixed by
DSE and FRG. Such a combined analysis has been sug-
gested in [7]. We first discuss the relations between these
two sets of equations in the next section. Then a general
infrared analysis of the DSEs for the ghost and gluon
propagators as well as for the ghost-gluon vertex is per-
formed. For illustrational purposes we rederive parts of the
result (4) in a slightly different way than in the original
analysis [10,12]. This allows us to also explore the con-
sequences of the proposals (5) and (6). In the following
section we perform a similar analysis within the FRG, and
show that (5) and (6) cannot simultaneously solve the DSE
and FRG equations. Consequently, they cannot survive the
infinite volume/continuum limit of lattice gauge theory. In
Sec. V we show instead that self-consistency of DSEs and
FRGs enforces the unique solution (4) for the infrared
asymptotics of pure Yang-Mills theory. We briefly discuss
the extension of the present analysis to QCD and the
electroweak sector of the standard model. In our conclud-
ing section we discuss the consequences of this result.

II. FUNCTIONAL RELATIONS

A quantum field theory or statistical theory can be
defined uniquely in terms of its renormalized correlation
functions. They are generated by the effective action �, the
generating functional of 1PI Green functions. For the
present work we consider pure Yang-Mills theory with
the classical gauge fixed action

 Scl �
1

2

Z
trF2 �

1

2�

Z
�@�A��2 �

Z
�C � @�D� � C (7)

in the presence of an additional scale k; see [7] for a
detailed discussion. The propagation is modified via
k-dependent terms,

 �Sk �
1

2

Z
A�a Rab��A

�
b �

Z
�CaR

abCb; (8)

where Rab�� and Rab are k-dependent regulator functions.
Within the standard choice, k is an infrared cutoff scale,
and the functions R cut off the propagation for momenta
smaller than k. Here we also consider more general R that
only have support at about the momentum scale k. Such
regularizations allow for a scanning of the momentum
behavior of Green functions. The regularized effective
action �k is expanded in gluonic and ghost vertex functions
and reads schematically

 �k��	 �
X
m;n

1

m!n!2 ��2n;m�k
�CnCnAm; (9)

in an expansion about vanishing fields � � �A;C; �C�. In
(9) an integration over momenta and a summation over
indices are understood. The effective action �k satisfies
functional relations such as the quantum equations of

motion, the DSEs; symmetry relations, the Ward or
Slavnov-Taylor identities (STI); as well as functional RG
or flow equations (FRGs). All these different equations
relate to each other; for a detailed discussion see [7].
Indeed, the Slavnov-Taylor identities are a projection of
the quantum equations of motion, whereas flow equations
can be read as differential DSEs, or DSEs as integrated
flows. Written as a functional relation for the effective
action �k, the DSE reads, e.g. [7],

 

��k
��
��	 �

�Scl

��
��op	; (10)

where the operators �op are defined as

 �op�x� �
Z
d4yG��i

��	�x; y�
�

��i�y�
���x�; (11)

and

 G�1�2
��	 �

�
1

��2�k ��	 � Rk

�
�1�2

(12)

is the full field-dependent propagator for a propagation
from �1 to �2. Specifying to pure YM theory, the field is
given by � � �A;C; �C�. The functional derivatives in (10)
act on the corresponding fields and generate one-loop and
two-loop diagrams in full propagators. The functional DSE
(10) relates 1PI vertices, the expansion coefficients of �k,
to a set of one-loop and two-loop diagrams with full
propagators and full vertices, but one classical vertex
coming from the derivatives of Scl. We emphasize that
the DSE (10) only implicitly depends on the regularization
via the definition of the propagator in (12). For Yang-Mills
theory a diagrammatic representation is given in Fig. 1.
The rhs is given in powers of the field-dependent fully
dressed propagator G����	, and its derivatives, as well as
the field-dependent bare vertices. The momentum scaling
of Green functions is directly related to the scaling of these
building blocks.

The flow equation for the effective action of pure Yang-
Mills theory reads [7,11]

 @t�k��	 �
1

2

Z d4p

�2��4
G��
ab ��	�p; p�@tR

ba
���p�

�
Z d4p

�2��4
Gab��	�p; p�@tR

ba�p�; (13)

where t � lnk. The flow (13) relates the cutoff scale de-
rivative of the effective action to one-loop diagrams with
fully dressed field-dependent propagators. We can contrast
the diagrammatic representation of the DSE in Fig. 1 with
that of the functional flow (13), given in Fig. 2. The rhs is
given by the field-dependent fully dressed propagator
G����	 and the regulator insertion @tR. Here, the momen-
tum scaling of Green functions solely depends on the
scaling of G and @tR. If we choose the regulator function
R such that it has the RG and momentum scaling of the
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related two-point function, the flow is RG invariant [7], and
only depends on full vertices and propagators, including
the regulator term. The standard use of (13) is to take a
regulator function R�p2� which tends towards a constant in
the infrared and decays sufficiently fast in the ultraviolet,
and hence implements an infrared cutoff. In the present
context, there is another interesting choice for R: let R only
have support at momenta p about the scale k, and R / ��2�0
at momenta p2 
 k2. Then the regulator term does not
change the theory, �k ’ �0, and (13) only entails the
(change of the) momentum dependence of Green functions
of �0. This provides the resolution of the momentum
dependence at p2 of the full effective action �0 directly
from the flow equation at k2 � p2.1 We shall detail this
choice later. It is also worth noting that the relation be-
tween DSE and FRG is natural in an NPI formulation [7],
which leads to a mixture of the scaling relations derived
from (10) and (13).

In the present work we investigate the leading infrared
behavior of vertices and propagators constrained by the
consistency of (10) and (13). Here it is important to note
that the DSEs derived from (10) also depend on bare or
classical vertices, whereas the flow equations derived from
(13) solely depend on full vertices. In other words, both
sets of equations are linked by resummations. This allows
us to extract nontrivial information of the theory from a
finite set of vertex DSEs and FRGs that would require a
whole infinite tower of either DSEs or FRGs if restricting
the analysis to either of the functional equations. We
analyze the leading infrared behavior of (10) and (13) for
momenta and cutoffs,

 p2; k2 � �2
QCD: (14)

To that end we introduce dressing functions Z�2n;m�k for one
particle irreducible Green functions with n ghost legs, n
antighost legs, and m gluon legs via
 

��2n;m�k �p1; . . . ; p2n�m� � Z�2n;m�k �p1; . . . ; p2n�m�

�T �2n;m��p1; . . . ; p2n�m�: (15)

The expansion coefficients ��2n;m�k of the effective action
have been defined in (9). The T �2n;m� denote the tensor

structure of the respective Green functions, and carry their
canonical momentum dimension. The coefficient Z�2n;m�k is
the dressing function of the leading infrared tensor struc-
ture. Then, following the IR analysis in [11,24], the asymp-
totic vertex functions can be expanded about the leading
asymptotics at a vanishing cutoff k � 0:
 

Z�2n;m�k �p1; . . . ; p2n�m� � Z�2n;m�0;as �p1; . . . ; p2n�m�

� �1� �Z�2n;m��p̂1; . . . ; p̂2n�m��;

(16)

where p̂i � pi=k, and the asymptotic infrared part Z�2n;m�0;as

only depends on ratios of monomials and possible loga-
rithmic dependencies. Inserting the parametrization (16)
into the flow (13) and solving for �Z�2n;m�, one can prove
that �Z�2n;m� solely depends on p̂i. This suffices to fix the
relations between the anomalous scalings of the vertex
functions Z�2n;m�0;as independent of the �Z�2n;m�.

In our analysis we are only interested in the global
scaling behavior for the dressing functions Z�2n;m�0 , that is,
modulo logarithmic scaling,

 Z�2n;m�0;as ��p1; . . . ; �p2n�m� � ��2n;mZ�2n;m�0;as �p1; . . . ; p2n�m�:

(17)

We emphasize that, in principle, additional logarithmic
scalings should be included in (17). However, even if
present, additional logarithmic scalings do not change the
relations between the �n;m and are therefore irrelevant for
the purpose of the present investigation. We also add that,
in practice, self-consistent logarithmic scaling laws are
hardly possible and have not been found yet.

Specifically interesting for the Kugo-Ojima/Gribov-
Zwanziger confinement scenario are the exponents �0;2

and �2;0 of the inverse gluon dressing function Z�0;2� and
inverse ghost dressing function Z�2;0�. The conditions (1)
and (2) read

 

∂ tΓk [φ ] = 1
2

−

FIG. 2. Functional flow for the effective action. Filled circles
denote fully dressed field-dependent propagators (12). Crosses
denote the regulator insertion @tR.

 

δ
δ δ

δΓk [φ ]
A = S [φ ]

A + + + ,
δ

δ
δ

δ
Γk [φ ]

C = S [φ ]
C +

FIG. 1. Functional DSE for the effective action. Filled circles denote fully dressed field-dependent propagators (12). Empty circles
denote fully dressed field-dependent vertices, and dots denote field-dependent bare vertices.

1Such a single mode regulator cannot be used to solve the
theory by successively integrating out degrees of freedom.
However, it proves useful for studying fixed point solutions [40].
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 �2;0 > 0; �0;2 <�1: (18)

We close this section with a remark on the interpretation of
the scaling analysis derived from the combined functional
relations (10) and (13). In principle, such an analysis
produces the most singular scaling of all diagrams involved
and is not sensitive to either the cancellations between
different diagrams or to cancellations within a given dia-
gram. However, to affect the infrared behavior of the Green
functions in a consistent way, such cancellations have to
work in the whole tower of DSEs and FRGs and therefore
can only be driven by symmetries. In the present case we
consider such a possibility as highly unlikely. We will
come back to these points at the end of Sec. V.

III. INFRARED ANALYSIS OF THE GHOST AND
GLUON DSES

The Dyson-Schwinger equations for the ghost and gluon
propagators are given diagrammatically in Fig. 3. The
infrared behavior of these propagators can be analyzed as
follows [9,10,12,41]: We choose the external momentum
scale p2, according to (14), to be much smaller than any
other scale, i.e. p2 � �QCD, where �QCD �O�200 MeV�
is the nonperturbative scale of Yang-Mills theory generated
via dimensional transmutation. The loop integrals on the
right-hand side of the DSEs are dominated by momentum
configurations, where the internal loop momentum q is of
the same order as the external momentum, i.e. p2 � q2.
The reason for this well-known behavior is the appearance
of at least one propagator in each loop with a denominator
proportional to �p� q�2. Thus a self-consistent solution of
the equations with a small external momentum can be
obtained by replacing all dressing functions inside the
loops with their infrared asymptotic behavior.

We exemplify this analysis with the ghost DSE. For the
sake of comparison with the literature, we switch to the
standard DSE notation, where the nonperturbative dressing

of the propagators is denoted by propagator dressing func-
tions G�p2� and Z�p2�:

 

1

Z�2;0�0 �p2�
� G�p2�;

1

Z�0;2�0 �p2�
� Z�p2�; (19)

and Zwanziger’s conditions (18) read

 lim
p2!0

G�p2� � 1; lim
p2!0

Z�p2�

p2 � 0: (20)

The DSE for the ghost propagator is given by

 

1

G�p2�
� ~Z3 � g

2Nc
Z d4q

�2��4

�
G�q2�Z�l2�

p2q2l2
pP �l�qZ�2;1�0 �p; q�; (21)

with the momentum routing l � �q� p�. The abbreviation
pP �l�q denotes a contraction with the transverse momen-
tum tensor pP �l�q � p�P���l�q�, and Z�2;1�0 �p; q� denotes
the dressing of the ghost-gluon vertex. The ghost renor-
malization constant ~Z3 absorbs all ultraviolet divergencies
from the loop integral, thus rendering the right-hand side of
the equation UV finite. This can be made explicit within a
momentum subtraction scheme. Here ~Z3 is evaluated at a
subtraction point p2 � �2, which we choose to be�2 � 0.
One obtains

 

~Z 3 �
1

G�0�
� g2Nc

Z d4q

�2��4
3

4

G�q2�Z�q2�

q4 Z�2;1�0 �0; q�;

(22)

and subsequently
 

1

G�p2�
�

1

G�0�
� g2Nc

Z d4q

�2��4

�

�
G�q2�Z�l2�

p2q2l2
pP �l�qZ�2;1�0 �p; q�

�
3

4

G�q2�Z�q2�

q4 Z�2;1�0 �0; q�
�
: (23)

Now the integral is UV finite and we replace the dressing
functions in the loop by their infrared expansion in terms of
the power laws

 Z�p2� � �p2���0;2 ; G�p2� � �p2���2;0 ;

Z�2;1�0 �p; q� � �q2��2;1 :
(24)

Here it does not matter whether the vertex function Z�2;1�0 is
represented by powers of �q2�, �l2� or, more realistically, by
powers of �p2 � q2 � l2�. The crucial point is that after
integration all powers of internal loop momenta will be
transformed into powers of the only external scale p2 for
dimensional reasons. This can be seen easily for the ex-
pansion (24), which leads to integrals that can be per-
formed employing

 

−1 = − 1 − 1
2

− 1
2

− 1
6

− 1
2

+

−1 = − 1 +

FIG. 3. Dyson-Schwinger equations for the gluon and ghost
propagator. Filled circles denote dressed propagators, and empty
circles denote dressed vertex functions.
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 Z
d4q
�q2�a�l2�b

q2l2
� �2 ��1� a���1� b����a� b�

��1� a���1� b���2� a� b�

� �p2�a�b: (25)

Plugging (24) into (23), performing the integration and
matching with the left-hand side, 1=G�p2� � �p2��2;0 , we
obtain two self-consistent solutions:

 �p2��2;0 �

�
�p2���0;2��2;0��2;1 ;
�p2�0:

(26)

In the first case, the loop integral dominates the right-hand
side, and the constant 1=G�0� is canceled by other terms
(see [10] for a detailed discussion). In the second case, this
constant does not vanish and dominates the right-hand side
of the equation in the infrared. We thus end up with two
possible conditions:

 �2;0 �

�
�1

2�0;2 �
1
2�2;1;

0;
(27)

from the ghost DSE. Either G�0� is divergent, in accor-
dance with the horizon condition (20), or it is finite as
proposed in [37] and violates (20). Strong arguments
against the latter possibility have been discussed in
[10,42], where it has been concluded that �2;0 > 0. For
the sake of argument, however, we will not use this result
here but proceed by exploring the consequences of both
options.

We would like to stress again that we could have ob-
tained the solutions (27) without explicitly solving the loop
integral: since the external momentum �p2� is the only
scale in our problem, all powers of internal momenta in
the loop have to translate into powers of external momenta
after integration for dimensional reasons. Thus, by simply
counting the infrared exponents of all loop propagators and
vertices, we also arrive at (27).

We proceed by analyzing the DSE for the gluon propa-
gator. Schematically we can write this equation as
 

1

Z�p2�
� Z3 ��tadpole�p

2� ��sunset�p
2� ��squint�p

2�

��gluon loop�p
2� ��ghost loop�p

2�; (28)

where the dressing loops appear in the same order as in
Fig. 3. The static tadpole term is absorbed in the process of
renormalization. We therefore have to analyze the infrared
behavior of the four remaining dressing loops. Counting IR
exponents in the loops, we arrive at

 �sunset�p2� � �p2��3�0;2��0;4 ;

�squint�p
2� � �p2��4�0;2�2�0;3 ;

�gluon loop�p2� � �p2��2�0;2��0;3 ;

�ghost loop�p
2� � �p2��2�2;0��2;1 :

(29)

The infrared leading term from the right-hand side has to

match the left-hand side 1=Z�p2� � �p2��0;2 of the DSE. We
thus obtain the expression
 

�0;2 � min�0;�3�0;2 � �0;4;�4�0;2 � 2�0;3;�2�0;2

� �0;3;�2�2;0 � �2;1�; (30)

and subsequently

 �0;2 � min
�
0; 1

4�0;4;
2
5�0;3;

1
3�0;3;�2�2;0 � �2;1

�
; (31)

as our final condition for the gluon exponent �0;2 from the
gluon DSE. In general, we expect �0;2 < 0 according to the
Kugo-Ojima and horizon conditions (1) and (20) and lat-
tice QCD (see e.g. [38]). It is interesting to note that for
negative �0;2 the contribution from the gluon loop, 1=3�0;3,
is never the leading one on the right-hand side of (30),
since it is always dominated by the contribution from the
squint diagram, 2=5�0;3. Thus any truncation of the gluon
DSE that assumes a leading gluon loop (see e.g. [43–45])
is in fact missing the dominant contribution in the infrared.

A further crucial ingredient is the DSE for the ghost-
gluon vertex. One version is derived from the DSE for
��=�A, and is given diagrammatically in Fig. 4.
Similarly to the ghost and gluon propagator DSE, we arrive
at
 

�2;1 
 min�2�2;0 � �0;2; 2�0;2 � �2;0; �2;2

� 2�0;2; �4;0 � 2�2;0�: (32)

The inequality takes into account that the exponents of the
two-loop diagrams in the vertex DSE may even be smaller
than those of the one-loop diagrams considered in (32).2

From (32) we conclude that

 �2;1 
 2�2;0 � �0;2: (33)

Equation (33) together with the FRG relation derived in the
next section suffices to uniquely fix the relations between
all �2n;m in a closed form.

Based on the conditions (27) and (31) and the exact
equality in (33), an infrared analysis of the DSEs for the
three-gluon vertex and the four-gluon vertex has been
performed in [12]. These results have been generalized to
any Green function with n external ghost legs, n antighost
legs, and m gluon legs:

 Z�2n;m�0;as �p
2� � �p2��n�m��; (34)

with � � �2;0 > 0. This expression solves (27) and (31)
and any other condition from the higher DSEs. In addition,
it solves the Slavnov-Taylor identities. Important aspects
of this solution are discussed in detail in [3]. Two of the
characteristic properties of (34) are that (i) contributions

2�2;1 can also be determined from the DSE for ��=�C or
��=� �C; see Fig. 1. However, the present analysis then turns out
to be more complicated even though two-loop terms are absent.
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from ghost loops always dominate the DSEs and (ii) it
leads to IR-fixed points in the running couplings from the
ghost-gluon (gh), three-gluon (3g), and four-gluon vertices
(4g). These couplings are defined via
 

	gh�p2� �
g2

4�
�Z�2;1�0 �p2�	2G2�p2�Z�p2�; (35a)

	3g�p2� �
g2

4�
�Z�0;3�0 �p2�	2Z3�p2�; (35b)

	4g�p2� �
g2

4�
�Z�0;4�0 �p2�	Z2�p2�; (35c)

where Z�1
0 � Z�0;2�0 and G�1 � Z�2;0�0 . The vertex dressing

functions Z�2;1�0 �p1; p2; p3�, Z�0;3�0 �p1; p2; p3�, and
Z�0;4�0 �p1; p2; p3� are evaluated at the symmetric momen-
tum point p2

1 � p2
2 � p2

3 � p2, which makes them func-
tions of p2 only.

From the tower of DSEs alone, it is difficult to prove that
(34) is unique. One way to search for a second possible
solution would be to assume �2;0 � 0 and �0;2 � �1 from
the start, corresponding to the behavior (5) and (6), as
proposed in [37]. From Eqs. (27) and (31) one obtains
consistency provided that one of the three vertices is
strongly divergent:

 �2;1 � �1 or �0;3 � �5=2 or �0;4 � �4: (36)

In the next section we will show that all options (36) lead
to inconsistencies in the functional renormalization group
equations.3 As discussed in Sec. II, any solution of the
tower of DSEs necessarily has to solve the tower of FRGs
as well. This provides tight constraints on possible solu-
tions, which are in fact sufficient to prove the uniqueness of
(34), as we shall see.

IV. INFRARED ANALYSIS OF GHOST AND GLUON
FLOWS

Now we repeat the infrared analysis within the FRG
framework; see [11,23,24]. We restrict ourselves to regu-
lator functions of the form

 Rk�p
2� � ��2�k �p

2�r�p2=k2�; (37)

where ��2�k is the corresponding two-point function ��2;0�k

for the ghost, and ��0;2�k for the gluon. Regulator functions

(37) guarantee the persistence of the standard RG scalings
in the presence of an IR cutoff, and are therefore best-
suited for the present studies. Within the parametrization
(16) and as a consequence of (37), propagators G�1�2

�p2�

take the asymptotic form

 G�1�2
�p2� �

1

��2�k �p
2�

1

1� r�p̂2�

’
1

��2�0;as�p
2�

1

1� �Z�2��p̂�

1

1� r�p̂2�
; (38)

where ��2�0;as is the leading infrared asymptotics of the two-
point function at a vanishing cutoff k � 0. Equation (38)
can be solely written in terms of p̂ and k dependences.
Then it reads

 G�1�2
�p2� �

1

k2�1���

1

��2�0;as�p̂
2�

1

1� �Z�2��p̂�

1

1� r�p̂2�
;

(39)

where � is either �0;2 (gluon) or �2;0 (ghost). The same
rescaling can be done with all vertex functions:

 ��2n;m�k �p1; . . . ; p2n�m� ’ k
2�dn;m��2n;m���2n;m�0;as �p̂1; . . . ; p̂2n�m�

� �1� �Z�2n;m��p̂1; . . . ; p̂2n�m��;

(40)

where dn;m carries the canonical momentum dimension,
e.g. d2;0 � d0;2 � 1, and ��2n;m�0;as is the leading infrared
asymptotics of the �2n;m�-point function at a vanishing
cutoff k � 0. One can already read off crucial information
from (40): the leading momentum scaling of the dressing
function is identical to its leading k scaling.

An interesting specific choice for (37) is a regulator
function Rk that only has support for momenta at about k2:

 Rk�p2� � ��2�0 �p
2��
�p2 � k2�; (41)

where �
�x� is proportional to a smeared-out � function at
x � 0, and the �Z�2n;m� only have support at momenta
p2
i 
 k2. With regulators (41), the momentum dependence

of ��2n;m�k agrees with that of ��2n;m�0 , and hence (41) falls
into the class (37). For regulators (41) only the strength of
the two-point function ��2�k ’ ��2�0 in the momentum win-
dow p2 
 k2 is changed. In particular, the infrared power
laws at k � 0 agree with those at k � 0. Therefore we can
directly read off the momentum dependence at the mo-
mentum scale p2 � k2.

 = + + + + + (. . . )

FIG. 4. Dyson-Schwinger equation for the ghost-gluon vertex, derived via Eq. (10). All internal propagators are taken to be fully
dressed. The ellipsis denotes two-loop diagrams, which are not needed for our analysis.

3Note that the second option together with (35b) leads to a
strongly divergent running coupling, 	3g � 1=p2, which appears
to disagree with the lattice results of [46].
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However, for a quantitative comparison of FRG with
DSE beyond the infrared power laws, the theory has to be
solved explicitly in both approaches. For the FRG this is
only possible with regulators (37) that provide a momen-
tum cutoff, in contrast to (41). Hence we proceed with a
true momentum regulator with (37). Within the parametri-
zation (40), integrated asymptotic flows for general verti-
ces read

 ��2n;m�0;as �p1; . . . ; p2n�m��Z
�2n;m��p̂1; . . . ; p̂2n�m�

’
Z k

0

dk0

k0
@t�

�2n;m�
k �p1; . . . ; p2n�m�; (42)

where the left-hand side follows from the representation
(16) as the difference ��2n;m�k � ��2n;m�0 . The leading mo-
mentum dependence on both sides has to agree. Within an
iteration about �Z�n;m� � 0 on the right-hand side (rhs) of
(42), one can indeed prove that �Z�n;m� is a function of
p̂i � pi=k [11]. Consequently, dividing the equation by
��2n;m�0;as leads to an equation only depending on ratios p̂i �
pi=k. Hence we arrive at

 �Z�2n;m��p̂1; . . . ; p̂2n�m� ’
Z k

0

dk0

k0

�
1

��2n;m�0;as

@t�
�2n;m�
k

�

��p̂01; . . . ; p̂02n�m�; (43)

where we have dropped the subleading terms.
Equation (43) defines consistently renormalized finite
DSEs [7]. In contrast to the DSEs (10), it solely depends
on full vertices but also involves an integration over the
cutoff scale k. The term @t�

�2n;m� on the rhs of (43) is
derived by taking �2n;m� derivatives of the rhs of the
flow (13), leading to a sum of one-loop diagrams with
dressed vertices and dressed propagators. For vertices
with �2n;m < 0, we have

 �Z�2n;m��0; . . . ; 0� � �1: (44)

Equation (44) simply entails that an infrared cutoff is
present and the divergent infrared behavior for k � 0 is
suppressed. From (44) we derive a relation between the
involved �i;j with i, j 
 n� 1, m� 2 in the flow of

��2n;m�k . The analysis for �2n;m � 0 within the integrated
flow (43) is slightly more involved. This is in one-to-one
correspondence to possible difficulties with bare terms in
the DSEs. However, as outlined above we can also directly
resolve the momentum behavior from (13) with regulators
(41), where these problems are absent. In fact, this proce-
dure already eliminates the possibility of solely dominating
bare terms in the DSEs.

We proceed with the analysis of the propagator FRGs.
For a classical vertex structure this analysis has been put
forward in [11]. The results for the propagator �’s and 	s
are identical to the analytical results from DSE and sto-
chastic quantization [9,10]. Moreover, it has been proven

in [11] that the integrated FRGs in this truncation result in a
consistent Bogoliubov-Parasuik-Hepp-Zimmerman
(BPHZ)-type renormalization procedure for the related
DSE equations. Such a procedure eliminates any ambiguity
due to the appearance of bare and dressed vertices in the
DSEs. It has been extended to general truncation schemes
in [7], and sustains general truncated DSEs with a fully
consistent UV renormalization. In combination, the DSE
and FRG results show that the classical vertex truncation is
self-consistent, and also quantitatively reliable.

Now we perform the consistency analysis of the full
theory. The propagator FRGs can be derived from Fig. 2
and are shown diagrammatically in Fig. 5.

We exemplify the analysis at the gluon propagator with
�0;2 < 0. As �Z�0;2� has to approach �1, the momentum
scaling of the k integral in (43) has to precisely cancel that
of 1=��0;2�0;as . On the rhs of (43) we can iterate the full ��2n;m�k

about those at k � 0, ��2n;m�0;as . Consequently, we can sum
over the �2n;m to identify the leading p̂ behavior. With the
regulator (41), this follows directly. Within this choice we
have ��2n;m�k / ��2n;m�0;as in the flow, and the relations between
the �2n;m are derived from simply counting powers of
momenta. Schematically, in Fig. 5 the first two ghost terms
for the integrated flow (42) of the gluon propagator read

 

�Z�0;2��p̂� ’ �
1

Z�0;2�0;as �p
2�

g2Nc
3

Z k

0

dk0

k0
Z d4q

�2��4
qP �p�q

p2q2l2

�
Z�2;1�0;as �p; q; l�

Z�2;0�0;as �q
2�

Z�2;1�0;as �p; l; q�

Z�2;0�0;as �l
2�

� @t

�
1

1� r�q̂02�

1

1� r�l̂02�

�
� � � � ; (45)

 

k k −1 = − −

+1
2

+1
2

−1
2

+

k k −1 = +

−1
2

+

∂

∂

FIG. 5. Functional renormalization group equations for the
gluon and ghost propagator. Filled circles denote dressed propa-
gators, and empty circles denote dressed vertex functions.
Crosses indicate insertions of the infrared cutoff function.
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where we have dropped the �Z-terms on the rhs, l � �q�
p�, q̂0 � q=k0, and the dots stand for the remaining dia-
grams in Fig. 5 and subleading terms. The full result can be
reinstated within an iteration about �Z � 0. Note also that
�Z � 0 for momenta which are suppressed by the regula-
tor on the rhs. The k0 integration is easily performed and
leaves us with
 

�Z�0;2��p̂� �
1

Z�0;2�0;as �p
2�

g2Nc
3

Z d4q

�2��4
qP �p�q

p2q2l2

�
Z�2;1�0;as �p; q; l�

Z�2;0�0;as �q
2�

Z�2;1�0;as �p; l; q�

Z�2;0�0;as �l
2�

�

�
1�

1

1� r�q̂2�

1

1� r�l̂2�

�
� � � � : (46)

The first and second lines in (46) equals the DSE contri-
bution if one of the vertex dressings is put to 1:

 �Z�2;1�0;as �
2 ! Z�2;1�0;as : (47)

The third line produces a BPHZ-type UV renormalization,
and thus furnishes a consistent RG scheme for truncated
DSEs. It does not interfere with the infrared asymptotics.
Hence the leading infrared behavior can be extracted from
the first line in (46). Using the infrared power laws (24), we
conclude that

 �0;2 
 2�2;1 � 2�2;0: (48)

The inequality originates in the left-out diagrams that
could lead to a more divergent infrared asymptotics. The
inclusion of �Z contributions does not change the relation
(48), but changes the numerical value of the �’s. For a
given truncation to the full FRGs, this leads to a regulator
dependence of the results which can be used to estimate the
reliability of the truncation invoked. However, it can be
shown that within a given truncation scheme a functional
optimization [7] implies that �Z does not contribute to the
momentum integrals for optimal regulators [7]. It is pre-
cisely this optimization which led to results identical to the
DSE results in the same truncation [11].

Repeating the above analysis for the remaining diagrams
of the gluon FRG in Fig. 5, we are led to the relation
 

�0;2 � min�2�2;1 � 2�2;0; 2�0;3 � 2�0;2; �0;4

� �0;2; �2;2 � �2;0�; (49)

which can be solved for �0;2,

 �0;2 � min
�
2�2;1 � 2�2;0;

2
3�0;3;

1
2�0;4; �2;2 � �2;0

�
: (50)

Equation (50) is already sufficient to rule out all three
options in (36). Indeed, if we insert (36) into (50) we arrive
at

 �0;2 


8><
>:
�2;
�5

3;
�2;

(51)

for the three options. However, (36) goes with �0;2 � �1.
The behavior (5) and (6), proposed in [37], is therefore
ruled out.

Now we use the combined DSE-FRG analysis to
uniquely determine the �’s without any further input. We
shall see that a self-consistent solution leads to �2;1 � 0.
To that end we also discuss the derivation of the �’s for the
ghost propagator and the ghost-gluon vertex. For general
regulators the infrared analysis for the ghost propagator is
intricate and we defer the reader to [11,24]. With the
choice (41) the result follows directly from the flow of
the ghost propagator. Analogously to (50) we get from
Fig. 5

 �2;0 � min��2;1 �
1
2�0;2; �2;2 � �0;2;

1
2�4;0�: (52)

The FRG relations (50) and (52) as well as the DSE
relations (27) and (31) for �2;0 and �0;2 are not closed, as
they also depend on vertex kappa’s. The ghost-gluon vertex
comprises the crucial information. It is protected by non-
renormalization which turns out to be powerful enough to
fix the whole system completely. Its flow is given by all
one-loop diagrams with regulator insertions and full verti-
ces (up to five-point vertices) with one external gluon line,
one ghost line, and one antighost line. Its flow is given
schematically in Fig. 6.

The infrared analysis of Fig. 6 with (43), or alternatively
employing (41), leads to

 �2;1 � min�2�0;2 � �2;0 � �0;3;
1
2�0;2 � �2;0; �0;3 � �2;2

� 2�0;2; �4;1 � �2;0; �2;3 � �0;2�;

(53)

from Figs. 6(a)–6(c), 6(f), and 6(g), respectively.
Figures 6(d) and 6(e) involve exactly one ghost-gluon
vertex, and the related anomalous scaling cancels on both
sides of Fig. 6. The surviving �’s cannot be negative, as this

 

k k = + +

(a) (b) (c)

+ + + +

(d) (e) ( f ) (g)

∂

FIG. 6. Functional renormalization group equations for the
ghost-gluon vertex. All propagators and vertices are fully
dressed. Only one possible insertion of the infrared cutoff
function per diagram is shown.
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spoils the self-consistency of the integrated flow. Hence
Figs. 6(d) and 6(e) lead to the constraints
 

�4;0 � 2�2;0 � 0; (54a)

�2;2 � �0;2 � �2;0 � 0: (54b)

Additionally, the nonrenormalization of the ghost-gluon
vertex [29] constrains

 �2;1 
 0; (55)

as at least one tensor structure of the ghost-gluon vertex has
a finite dressing. From the second term on the rhs of (53),
we extract

 �2;1 

1
2�0;2 � �2;0: (56)

We insert (56) in the first term of (49) and arrive at �0;2 

�0;2. Consequently, the bound in (56) has to be saturated
and

 �2;1 �
1
2�0;2 � �2;0: (57)

The DSE analysis leads to the constraint �2;1 

�0;2 � 2�2;0, (33). With (57) this turns into �2;1 
 2�2;1.
As �2;1 
 0, (55), we arrive at the unique solution

 �2;1 � 0; (58)

accompanied by the relation

 �0;2 � �2�2;0; (59)

for the dressing of ghost and gluon propagators in agree-
ment with [8].

V. UNIQUENESS OF INFRARED ASYMPTOTICS

The analysis of the last two sections for the propagators
and the ghost-gluon vertex can be extended to all �n;m. We
first derive the relations for the purely gluonic three- and
four-point functions. The flow of three- and four-gluon

vertices is given by all one-loop diagrams with regulator
insertions and full vertices (up to five- and six-point verti-
ces, respectively). For the three-gluon vertex the flow is
given schematically in Fig. 7.

Using Fig. 7 we arrive at
 

�0;3 � min�32�0;2; 3�2;1 � 3�2;0; �2;2 � �2;1 � 2�2;0; �2;3

� �2;0; �0;5 � �0;2�; (60)

from Figs. 7(a), 7(b), and 7(d)–7(f). Figure 7(c) leads to
the constraint

 �0;4 � 2�0;2 � 0; (61)

which already restricts the singular behavior of the four-
gluon vertex. We also remark that (60) puts a simple upper
bound on �0;3, namely

 �0;3 

3
2�0;2: (62)

This bound is the natural scaling of the vertex in the
presence of a fixed point for the coupling constant 	s.
Note, however, that a priori not all couplings as defined
in (35) run to a fixed point.

The same analysis can be done for the four-gluon vertex.
Its flow is given schematically in Fig. 8.

Similarly as for the three-gluon vertex, we derive from
Fig. 8 the anomalous scaling of the four-gluon vertex,

 �0;4 � min�4�0;3 � 4�0;2; 4�2;1 � 4�2;0; �0;5 � �0;3

� 2�0;2; �2;3 � �2;1 � 2�2;0; 2�0;2; 2�2;2

� 2�2;0; �0;6 � �0;2; �2;4 � �2;0; �2;2

� 2�2;1 � 3�2;0�;

(63)

from Figs. 8(a)–8(h) and 8(j), respectively. Figure 8(i)
leads to the constraint

 2�0;3 � 3�0;2 � 0: (64)

 

k k = + +

(a) (b) (c)

+ + +

(d) (e) ( f )

∂

FIG. 7. Functional renormalization group equations for the three-gluon vertex. All internal propagators are taken to be fully dressed.
Only one possible insertion of the infrared cutoff function per diagram is shown.
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The third term in the second line of (63) puts a bound on
�0;4,

 �0;4 
 2�0;2: (65)

Together with the constraint (61), this gives the unique
solution

 �0;4 � 2�0;2 (66)

and

 �0;3 �
3
2�0;2: (67)

Note that the scaling laws (66) and (67) are already gen-
erated by the diagrams involving ghosts. Indeed, this is
valid for all proper vertices and leads to the unique solution

 �2n;m � �n�m�� with � � �2;0; (68)

which we now prove: first, we observe that with (68) all
diagrams in the FRG have the same leading infrared
asymptotics. Let us assume for a moment that (68) is not
true for all proper vertices. Then at least one vertex has

 �2n0;m0
< �n0 �m0��: (69)

The vertex ��2n0;m0� occurs in diagrams of FRG for lower
vertex functions ��2n;m� with n0 � n � 1 or m0 �m � 1.
Necessarily, these vertices also satisfy (69) and disagree
with (68). Within an iteration, this enforces that all vertices
with n 
 n0 and m 
 m0 satisfy (69), in particular �0;4,
�0;3, �0;2, �2;1, �2;0. This contradicts the uniqueness of the
results (58), (59), (66), and (67) derived above, and hence
proves (68).

For the special case of the propagators, this relation has
been already derived in [8,10] with the help of additional
physical constraints. In [12] the self-consistency of (68) for
the whole tower of vertex DSEs has been shown. The
dominance of ghost loops in the tower of DSEs is equiva-
lent to the dominance of the Faddeev-Popov determinant
over the Yang-Mills action, as proposed in [21]. In the
present work we were able to extend these results to a proof
of uniqueness based on a self-consistency analysis of the
quantum equations of motion.

The above result hinges on a key structure valid for
general theories in the presence of a single dynamical
scale, and follows already from the structure of the func-
tional DSE (10), Fig. 1, and FRG (13), Fig. 2: any vertex
DSE comprises a sum of diagrams proportional to a subset
of the bare vertices of the theory at hand. Consistency with
the FRG, which only depends on dressed vertices, requires
that in all vertex DSEs at least one of these vertices, if
dressed, has �vertex � 0. In Landau gauge Yang-Mills the-
ory, this is the ghost-gluon vertex. In general, the above
criterion leads to more than one vertex with �vertex � 0.

As an example for this general pattern we extend the
pure gauge theory analysis to a YM-Higgs theory. The
functional DSE and FRG can be read off from (10) and
(13) with � � �A;C; �C; h� and an additional Higgs action
SHiggs �

1
2

R
�D�h�2 � V�h	. Under the assumption of a

single, dynamical mass scale, we deduce a unique relation
for a general vertex function ��2n;m;2l� with n ghost legs, n
antighost legs, m gluon legs, h Higgs lines,

 �2n;m;h � �n�m�� with � � �2;0;0: (70)

In particular, it follows that the Higgs propagator has a
constant dressing: �h � �0;0;2 � 0, as well as the �4 cou-
pling �0;0;4 � 0 required by the presence of vertices with
constant dressings in all DSEs. Note that �2n;m;l � 0 in-
cludes logarithmic scaling. Equation (70) is only valid in
the symmetric phase. In the spontaneously broken phase,
we expect a massive gauge field propagator, �0;2;0 � �1,
and massive Higgs propagators, �h � �1. Furthermore, as
a positive � � 0 for the ghost signals an unbroken (color)
symmetry, we conclude � 
 0 in agreement with the con-
verse of the Higgs theorem [14]. Because of the additional
mass scale, some if not all other vertices may scale canoni-
cally, i.e. �2n;m;h � 0. The present infrared analysis then
shows consistently �2n;m;h � 0; no singular scaling occurs.
This is in marked contrast to massless Yang-Mills theory.

In the case of full QCD, including dynamical quarks, the
present infrared analysis has interesting consequences
which shall be published elsewhere. Finally, we discuss
the caveat mentioned at the end of Sec. II. From the above

 

k k = + + + +

(a) (b) (c) (d) (e)

+ + + + +

( f ) (g) (h) ( i) ( j )

∂

FIG. 8. Functional renormalization group equations for the four-gluon vertex. All internal propagators are taken to be fully dressed.
Only one possible insertion of the infrared cutoff function per diagram is shown.
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analysis it is clear that nontrivial cancellations always have
to occur in an infinite subset of diagrams. It is hard to see
which symmetry should be responsible for such a behavior,
as constraints from gauge symmetry, i.e. STIs, are re-
spected by the solution (68).

VI. CONCLUSIONS

In this work we used Dyson-Schwinger equations and
functional renormalization group equations to analyze the
infrared behavior of proper vertices of SU�Nc� Yang-Mills
theory. We have shown that the structure of these func-
tional relations is sufficiently different to generate tight
constraints for infrared anomalous dimensions of these
vertices. The caveats of this construction have been dis-
cussed at the end of Secs. II and V. The constraints are
powerful enough to enforce a unique solution (4) and (68)
for the infrared behavior of proper vertices in the presence
of only one external scale. Thus the Kugo-Ojima criterion
(1) is satisfied ensuring a well-defined global color charge.
A further consequence is the fixed point behavior of the
running coupling in the infrared, since this behavior is
implied by the solution (4) via the nonperturbative defini-
tions in Eqs. (35). In turn, the proposal (5) and (6) in [37] is
excluded.

We emphasize that both the similarities as well as the
differences of DSEs and FRGs were crucial for our results.
This structure is certainly useful beyond the present inves-
tigation, for example, if devising truncation schemes.
Implicitly this criterion was already used in previous
works: the coinciding results for the infrared asymptotics
from DSE [8–10,12] and FRG [11,22,24] are nontrivial as
the functional equations are sufficiently different. This
agreement strongly supports the quantitative reliability of
the results.

The present consistency analysis not only uniquely fixes
the infrared asymptotics but also excludes certain trunca-
tion schemes of DSEs and FRGs: e.g. we have shown that
truncation schemes of the gluon DSE in Landau gauge
Yang-Mills theory relying on an infrared leading behavior
of the gluonic one-loop diagram, as e.g. assumed in
[44,45], miss the leading infrared behavior. In addition,

truncation schemes that assume all terms in the gluon DSE
to be equally leading [43] are excluded as well.

It would be desirable to reproduce (4) from lattice QCD.
To this end one has to address some caveats in comparing
infrared results from the lattice with those of a continuum
approach. Lattice simulations are necessarily performed at
finite volume and finite lattice spacing, and one has to
carefully perform both an infinite volume and a continuum
limit extrapolation. These procedures are currently under
debate [36,38,47–49]. It is interesting, however, that the
procedure of [36] gives �0;2 
 �1:04 in agreement with
(1). Unfortunately, direct lattice calculations in the infrared
scaling region p < 100 MeV are extremely expensive in
terms of CPU time and have not yet been performed in four
dimensional Yang-Mills theory. This is different in three
dimensions, where lattice results are in good agreement
with the corresponding power-law analysis in the contin-
uum [50].

Furthermore, gauge fixing is implemented differently: in
the continuum theory one uses either the Faddeev-Popov
method [51] or stochastic gauge fixing [21], whereas on the
lattice a gauge fixing functional is extremized. Because of
the presence of Gribov copies, this might affect the infrared
behavior of Green functions. These effects are currently
under investigation in the continuum [21] and on the lattice
[30,32,34,52–54]. The effects seem to be much stronger
for the ghost than for the gluon propagator. This nicely
corresponds to the fact that lattice and continuum solutions
agree much better for the gluon than for the ghost.

The present analysis can be extended to full QCD, and
reveals an interesting structure. Related results will be
published elsewhere.
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