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In this paper we present an effort to extend the LLM construction of 1=2 BPS states in minimal IIB
supergravity to configurations that preserve 1=4 of the total number of supersymmetries. Following the
same techniques we reduce the problem to that of a single scalar which satisfies a nonlinear equation. In
particular, the scalar is identified to be the Kahler potential with which a four dimensional base space is
equipped.
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I. INTRODUCTION

In supergravity, classical solutions that break some de-
gree of supersymmetry have been studied extensively [1–
5]. A particularly elegant study was given for type IIB 1=2
BPS in [5], where the phase space of nonrelativistic fer-
mions was shown to emerge. Not only the conserved
charges, angular momentum and five-form flux were
shown to agree with energy and particle number but also
the equivalence of the full dynamics was demonstrated in
[6,7]. The fermionic description of 1=2 BPS states in N �
4 SYM was obtained from matrix model reduction in [8,9].
The reduced matrix model and free fermion picture gave a
successful description of giant graviton configurations
[8,10–17].

The next step in constructing the full map between IIB
string theory with AdS5 � S5 asymptotics and N � 4
SYM theory is the consideration of the map between less
supersymmetric states on both sides. On the field theory
1=4 BPS states have been constructed in [18–20], while
even less supersymmetric brane configurations were con-
sidered in [21] and more recently in [22,23]. By reducing
the number of preserved supersymmetries by a factor of 2
one is able to double the dimensionality of the phase space
in which the states under consideration live.

Guided by the analysis of [5], where a two dimensional
phase space was explicitly shown, we present an effort to
enlarge the number of degrees of freedom by reducing the
number of preserved supersymmetries to 8. Unfortunately
the equation that we are called to solve in the end of our
analysis is highly nontrivial and this is where we are forced
to stop.

In the beginning of Sec. II we present our ansatz for the
metric and the self-dual five-form which has an SO�4� �
SO�2� symmetry. We then proceed to the dimensional
reduction of the Killing spinor equation which leads to a
differential equation and two projection equations for the
Killing spinor. In the following subsection we study the
constraints that the background geometry has to obey in
order for the Killing spinor to exist. In the last section we
argue that Einstein’s equations are guaranteed to be satis-
fied, after having checked the Bianchi identities for the
five-form, as a consequence of the integrability of the

Killing spinor equation. We have also included two appen-
dices that the reader might find helpful where, among other
things, we list the Fierz identities that we used in the main
text.

II. GEOMETRIES PRESERVING 1=4 OF THE
SUPERSYMMETRIES

The method that we will follow for studying the con-
straints imposed on the geometry by supersymmetry was
originally developed in [2–4,24,25]. Demanding the exis-
tence of a Killing spinor and constructing bilinear tensors
from that spinor one can find first order equations that
relate the fluxes to the metric and also impose constraints
on the metric. Studying then the integrability conditions for
the Killing spinor equation one can derive a set of field
equations that the fluxes and the background geometry
obey [26].

A. Reduction of the Killing spinor equation

Having in mind the extension of the LLM geometries [5]
to include one more angular quantum number we make the
following SO�4� � SO�2� symmetric ansatz for the metric
and self-dual five-form field of minimal IIB SUGRA in ten
dimensions
 

ds2 � g��dx�dx� � eH�Gd�̂2
3 � eH�Gd 2

F � F̂�1�2
dx�1 ^ dx�2 ^ d�̂3 � ~F�1����4

dx�1 ^ � � �

^ dx�4 ^ d : (1)

From the self-duality of the five-form F � ?10F and the
Bianchi identity we obtain the relations

 F̂ �
4!

2!
e2G�H ?6

~F d ~F � 0 dF̂ � 0 (2)

where the Hodge duality in (2) is meant to be taken with
respect to the six dimensional metric g�� that appears in
(1).

Following [5], the first step in the procedure is to dimen-
sionally reduce the ten dimensional Killing spinor equation

 DM� � rM��
{

480
�M1...M5FM1...M5

�M� � 0: (3)
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The product of this procedure will be a differential equa-
tion for the Killing spinor in six dimensions and two
algebraic equations that come from the reductions on S3

and S1 respectively. We decompose the ten dimensional
Dirac matrices with Lorentz indices as

 �� � �� � �̂1 � I2; � � 1 . . . 6

��̂ � I8 � �̂2 � ��̂; �̂ � 7; 8; 9

�10 � �7 � �̂1 � I2; �7 � �1 . . .�6

and the Weyl Killing spinor as

 � � � �
1
0

� �
� �� � " � ��

where � is an 8 component spinor on which the six dimen-
sional gamma matrices �� act and �� is a Killing spinor on
a sphere of unit radius and it satisfies

 r̂ â�� �
i�
2
�â��; a � 	1:

Under the above decomposition the ten dimensional Weyl
condition reads

 �11� � �1 . . . �10� � I8 � �̂3 � I2� � �) �̂3� � �:

For the dependence on the coordinates we have

 "�x�; �̂3;  � � e�{=2�n "�x�; �̂3�

which gives

 {@ " � �
n
2
":

It is useful to rewrite the second term in (3) as

 M �
{

480
�M1...M5FM1...M5

�
{

480

10�M1M2F̂M1M2

e��3=2��G�H��â b̂ ĉ"â b̂ ĉ

� 5�M1M2M3M4 � e��1=2��H�G� ~FM1M2M3M4
�

� �
1

8
F̂6 �̂2�1� �̂3�

where we used the duality (2) and the duality (A1) for the
six dimensional gamma matrices. We note that the spin
connection components that will be used in the reduction
are given by

 !�̂m�̂ � �
1
2e
�1=2��H�G�ê�̂ n̂e

�
m@��H �G�

! m � �
1
2e
�1=2��H�G�e�m@��H �G�:

The covariant derivatives on S3 and S1 are then given by
the expressions

 r�̂ � r̂�̂ �
1
4��̂�	@	�G�H�

r � @ �
1
4� �	@	�H �G�:

where r̂ denotes the covariant derivative on the three

sphere of unitary radius. Having collected all the necessary
ingredients for the reduction we obtain a differential equa-
tion and two projection conditions for the six dimensional
spinor "

 D �� � r�"� {N��" � 0 (4)

 D S3� �
�
{�
2
e��1=2��H�G� �

i
4
�	@	�H �G� � N

�
" � 0

(5)

 

D � �
�
{n
2
e��1=2��H�G� �

1

4
�7�

	@	�H �G� � {�7N
�
"

� 0 (6)

where

 N � �1
4F̂6 e

��3=2��G�H�:

We observe that the form of our equations looks very
similar to the ones that appear in [27] in the same context
of reduction. It is convenient to linearly combine the two
projectors (5) and (6) to obtain the equivalent ones

 D H" � �DS3 � {�7D �"

�

�
{�
2
e��1=2��H�G� �

n
2
e��1=2��H�G��7

�
i
2
�	@	H

�
" (7)

 

DG" � �DS3 � {�7D �"

�

�
{�
2
e��1=2��H�G� �

n
2
e��1=2��H�G��7

�
i
2
�	@	G� 2N

�
": (8)

As one can observe from (4), when computing the cova-
riant derivative of any bilinear constructed from " the
result will contain the flux. We have, in many cases, found
it useful to use (8) in order to eliminate the appearance of
the flux from the computation of exterior derivatives of the
bilinears. Equation (7) gives us linear relations between
bilinears of different ranks.

B. Geometry constraints implied by supersymmetry

As pointed out earlier the study of Eqs. (4)–(6) is made
simpler and more transparent with the introduction of bi-
linear forms which we list below

 f1 � �"�7" (9)

 f2 � { �"" (10)

 K� � �"��" (11)
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 L� � �"���7" (12)

 Y�	 � { �"����7" (13)

 V�� � �"���" (14)

 ���	 � { �"���	": (15)

and as we expect, since we are dealing with a spinor in six
dimensions we have the appearance of two 2-forms and a
3-form. An equivalent set of (complex) bilinears, and more
convenient when considering Fierz identities, is given by

 Z� � 1
2��f1 � {f2� � �"�"� (16)

 Z� � 1
2�f1 � {f2� � �"�"� (17)

 l�� �
1
2�L� � K�� � �"���"� (18)

 l�� �
1
2��L� � K�� � �"���"� (19)

 U��� �
1
2�V�� � {Y��� � �"����"� (20)

 U��� �
1
2�V�� � {Y��� � �"����"� (21)

 q	��	 � { �"	���	"	 (22)

where as usually

 "	 �
1
2�I8 	 �7�" �7"	 � 	"	:

Because of the duality relation (A1) that the Dirac matrices
satisfy, the three-form q� is self-dual while the three-form
q� is antiself-dual.

Using the differential equation (4) one can obtain the
differential identities that govern the forms listed in (9)–
(15)
 

r�f1 �
{
4

�"����
	�7 � �
	���7�"F
	e��3=2��G�H�

�
{

2 � 3!
"�
	��� �"������"F
	e��3=2��G�H�

�
1

2 � 3!
"�
	�������F
	e��3=2��G�H�

�
1

2
? �F ^���e��3=2��G�H�: (23)

 � �
1

3!
F�����

���e�1=2��G�H� (24)

 r�f2 �
1
2 �"��	g�
 � g�	�
�"F
	e��3=2��G�H�

� e��3=2��G�H�F�	K
	: (25)

 

r�K� � �
{
4
F
	e��3=2��G�H� �"����
	�� � ���
	���"

� e��3=2��G�H�f2F��

� e��3=2��G�H� 1

4
F
	"��
�
	Y


� (26)

 � e��3=2��G�H�f2F�� �
1
2e
�1=2��G�H�F��
�Y
� (27)

 r�L� �
{
4
F
	e��3=2��G�H� �"����
	�� � ���
	����7"

� e��3=2��G�H�
�
F	�Y	� � F	�Y	� �

1

2
g��F
	Y
	

�

(28)

 r�V�� � �e
��3=2��G�H�
g�
������F

�� � F������

� 2���
�F����: (29)

As one expects we have the appearance of higher rank
tensors on the right hand sides of the differential equations
for the bilinears when comparing to the analysis of [5]. We
now take a derivative of (15) giving us

 r
���	 � � �"����	N�
 � �
N���	�"

� 1
4e
��3=2��G�H�F
� �"����	�
��


� �
�
����	�":

After antisymmetrization we have that

 d�
	�� � 4f1e
��1=2��H�G� ~F
	��: (30)

The above equation, as we will see later after fixing the
form of f1, fixes the 4-form and it gives us the Bianchi
equation for it. One can then use the duality (2) to deter-
mine the 2-form F��, which at this point is not obvious
why it will satisfy the Bianchi identity. For the dual 3-form
we have the equation

 r
�?����	 � � �"����	�7N�
 � �
N���	�7�"

� �1
4e
��3=2��G�H�F
� �"����	�
��


� �
�
����	��7":

Antisymmetrizing the last equation in 
, �, �, 	 we obtain

 �d ?��
��	 � 2 �"����	
N � N�
��	��7" (31)

which as we see later constrains a 4-dimensional submani-
fold to a Kahler manifold.

The immediate consequences of the vector bilinears that
we formed is the proof of the existence of a Killing vector
for the six dimensional metric in (1) and a closed form. The
above can be seen by considering the symmetric part of
(26) which gives

 r��K�� � 0

and the antisymmetric part of (28) which leads to
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 r
�L�� � 0) dL � 0:

As we show in the appendix the vectors l	 are null and as a
consequence we have that

 L2 � �K2 � 2l� � l� (32)

 K � L � 0: (33)

We now follow an argument presented in [3] applied to our
chiral spinors. As we prove in the appendix using Fierz
identities we have the following relations

 il�q
� � 0 il�q� � 0

and the dualities of q	 imply that

 l	 ^ q	 � 0:

After the above observations we conclude that in a coor-
dinate system where the metric takes the form

 ds2 � e�e� � �abe
aeb; a; b � 1 . . . 4 (34)

where

 l� � e� l� � e�

the two three-forms can be written as

 q� � l� ^ I (35)

 q� � l� ^ J (36)

where the two-forms

 I � 1
2Iabe

a ^ eb (37)

 J � 1
2Jabe

a ^ eb: (38)

are anti-self-dual with respect to the metric

 ds2 � �abe
aeb; a; b � 1 . . . 4 (39)

with orientation defined by "��abcd � "abcd. From
Eqs. (A8)–(A11) one can also prove that

 IabI
b
c � ��ac JabJ

b
c � ��ac: (40)

These two equation imply that the 2-forms I and J consist
complex structures for the metric (39) which as we will
later prove are in fact equal rendering the four dimensional
manifold with metric �abeaeb pre-Kahler. From the above
considerations we see that

 q�
��q�
�� � 3
�l� � l���IabJab� � 2l�ml�nInkJ
k
m�

� 3�l� � l���IabJab� (41)

which in combination with (A5) can give us the product
l� � l� in terms of the functions Z� and Z�, we will come
back to this later.

We can combine Eq. (23) with (25) and (B7)with (B8) to
relate f1 and f2 to G and H as

 @�f1 �
1
2f1@��H �G� ) f1 � 	e�1=2��H�G� (42)

and

 @�f2 �
1
2f2@��H�G� ) f2 � 
e�1=2��H�G�: (43)

Combining (23) with (25) and (B5)with (B6) we obtain the
relation

 @�e
H �

n


L� (44)

and the constrain

 

�
	
� �

n


: (45)

Adding Eqs. (B12) and (B16) we obtain

 ���	@	H � 0

which in combination with (44) yields

 iL� � 0) (46)

 il�q
� � il�q� (47)

where we used (A6) and (A7). Equation (47) and the
equation

 il	I � il	J � 0

helps us relate the two 2-forms as

 I � J: (48)

which is one of the supersymmetry requirements following
from the Killing spinor equation. After this observation we
may write

 � � K ^ I (49)

 ?� � L ^ I (50)

and from Eqs. (40) and (41) we have that

 q�
��q�
�� � 12l� � l�:

We now see from the Fierz identity (A5) that we did a little
more work to recover the familiar result from [5]

 L2 � �K2 � f2
1 � f

2
2:

We now turn our attention to the algebraic relation (B17)
which we will use to express the complex structure I in
terms of other bilinears. For this reason we contract
Eq. (50) with the vector L� to obtain

 I �
1

f2
1 � f

2
2

iL ?�:

We may now use Eqs. (A14)–(A17) to express

 iLV � f1K:

Contracting Eq. (B17) with L� yields a relation between
the complex structure and the 2-form constructed from
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bilinears

 I � �
1

k
e��1=2��H�G�V �

f1e��1=2��G�H�

f2
1 � f

2
2

L ^ K:

Having in mind the closure of the complex structure we are
tempted to consider the external derivative of the above
equation which in turn gives
 

dI �
1

2k
e��1=2��G�H�d�G�H� ^ V �

1

k
e��1=2��G�H�dV

�
f1e

��1=2��G�H�

f2
1 � f

2
2

L ^ dK � L ^ K

^ d
�
f1e��1=2��G�H�

f2
1 � f

2
2

�
: (51)

In order to evaluate dV we go back to (29) and we observe
that

 dV
�� � �
3{
4
e��3=2��G�H�F
� �"��
���
��
�

� �

�
������"

� �
3{
12
e��3=2��G�H�F
� �"��
���
� � �
��
���"

� { �"��
��N � N�
���":

As we described before we will exploit that the right hand
of the previous equation take and we will use (8) to relate
the derivative of V to fields that do not include the flux

 dV � �
1

2
V ^ dG�

n
2
e��1=2��H�G�L ^ I:

At this point we pause our analysis of (51) in order to fix
our gauge. As in [5] we use the closed form L to identify a
coordinate which we also call y with the analogous geo-
metrical meaning of the product of the radii of S3 and S1

that appear in our ansatz (1). We make the gauge choice

 e� � X�dt� Amdx
m� � Bdy

e� � �X�dt� Amdxm� � Bdy

K � �Xdt� XA L � �dy

and from Eqs. (32) and (33) we draw the conclusion that

 X � B�1 � h�2 � f2
1 � f

2
2:

At this point the ten dimensional metric has the form
 

ds2 � �
1

h2 �dt� A�
2 � h2dy2 � e�G�Hhmndx

mdxn

�
�n
k
yeGd�̂2

3 �
�n
k
ye�Gd 2;

m � 1; . . . ; 4 (52)

where we used (44) to fix

 eH �
�n
k
y:

For later convenience we have rescaled the vielbein (34) as

 ea� � e��1=2�G��1=2�H~ea�

and with this choice we have defined

 h�� � �ab~ea�~eb�: (53)

We also rescale the complex structure accordingly and
define

 J � eG�HI (54)

which now satisfies

 J m
pJ

p
n � ��mn

while raising of indices in the above formula is done using
(53).

We now resume the analysis of (51) and express the
derivative of K as

 dK �
f2

2 � f
2
1

f2
2 � f

2
1

dG ^ K � dH ^ K � �f2
2 � f

2
1�dA:

After a little algebra Eq. (51) takes the form

 dI � ��dH � dG� ^ I � f1e
��1=2��G�H�L ^ dA: (55)

In terms of J Eq. (55) reads

 dJ � f1e�1=2��G�H�L ^ dA: (56)

It is instructive to split the operation of external differen-
tiation as

 d � ~d� dy � dt

defined as

 

~df � @xif ^ dx
i; i � 1 . . . 4

dyf � @yf ^ dy dtf � @tf ^ dt:

After the above splitting we observe from (56) that

 

~dJ � 0 @yJ �
�	n
k
y~dA: (57)

From the first equation we see that the four dimensional
metric equipped with the metric (53) is Kahler for each y.
We now consider (30) and using

 � � K ^ I

we have that the four-form is given by
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 F �
e�1=2��H�G�

4f1
d� �

e�1=2��H�G�

4f1

dK ^ I � K ^ dI�

�
e�1=2��H�G�

4f1

�
f2

2 � f
2
1

f2
2 � f

2
1

dG ^ K ^ I � dH ^ K ^ I � �f2
2 � f

2
1�dA ^ I

�
�
e�1=2��H�G�

4f1
K ^ 
��dG� dH� ^ I

� f1e
��1=2��G�H�K ^ L ^ dA�

�
e�1=2��H�G�

4f1

�
�

2f2
1

f2
1 � f

2
2

dG ^ K ^ I � f1e��1=2��G�H�L ^ K ^ dA� �f2
2 � f

2
1�dA ^ I

�
: (58)

We now consider (23) and contract it with L�. This gives
us
 

L�@�f2
1 � �

1
4d�����L�K�I��

�f2
1@y�G�H� �

1
4f1e

��1=2��G�H��f2
1 � f

2
2�I

ij ~dAij:

The last term in the second equation can be found using
(57) and noting that

 J ^ J � �2
���
h
p
dz ^ d �z ^ dw ^ d �w

where

 

���
h
p
� j

@z@�zK @w@�zK
@z@ �wK @w@ �wK

j:

We also need to remember that the complex structure J is
antiself-dual which leads us to the conclusion

 � 4@y
���
h
p
� �2

�	n
k
y
���
h
p
e�G�HIij ~dAij

� �8
���
h
p 	e�Gf1@y�G�H�

e�
1
2�G�H��f2

1 � f
2
2�

which in the end gives us the equation that related the
volume of the four dimensional base space to the scalar G

 @y ln
���
h
p
�

2	2e�2G@yG

k2�1� 	2

k2 e�2G�
�

2	2e�2G@yH

k2�1� 	2

k2 e�2G�

@y ln
���
h
p
� �@y ln

�
1�

	2

k2 e
�2G

�
� �1� z�@yH

(59)

where we have set

 z �
1� 	2

k2 e�2G

1� 	2

k2 e�2G
:

At this point we would like to see what the duality (2)
has to give. We evaluate the component

 Ftx �
e2G�H

4!
�tx


���F
��� �
e�3=2��H�G�

4! � 4f1
�tx


���d�
���

�
1

8

e�3=2��G�H�

f1
�f2

1 � f
2
2�

2@yAx1Ix2x3�xx
1x2x3

� �
1

4

e�3=2��G�H�

f1
�f2

1 � f
2
2�

2@yAx1Ix
x1
:

Where we have used the antiself-duality of I. From (10) we
have that

 Ftx � �
1
2e
�3=2��G�H�f2@xG:

Equating the right-hand sides of the above two equations
we have
 

Ix
x1
@yAx1 �

2f1f2

�f2
1 � f

2
2�

2 @xG

@yAx1 � �
2f1f2

�f2
1 � f

2
2�

2 Ix
x1
@x1G

where we used (40). We can rewrite the above expression
in the form

 @yAx1 � �
2f1f2

�f2
1 � f

2
2�

2 Ix
x1
@x1G

� �2k	e�H
1

�	2e�G � k2eG�2
Ixx

1
@x1G

� �
e�H

2k	3 Ix
x1
@x1z:

The last equation together with (57) gives us all the non-
trivial components of dA. Imposing the consistency con-
dition d2A � 0, the x1x2x3 component of the equation
gives us back the closure, while the y, x1, x2 component
gives us another relation between the Kahler potential and
the scalar G

 2k	2eH@y�e�H@yJ � � d�J � @z� � 0: (60)

The last equation may be viewed as the analog of the
Laplace equation that appears in the LLM construction
of 1=2 BPS states. At this point we have reached two
Eqs. (59) and (60) for two scalars, the Kahler potential
and G that is used to parametrize the radii of S3 and S1 in
our ansatz (1). From the definition of the complex structure
we come to the conclusion that up to a harmonic function

 z � �2y@y

�
1

y
@yK

�
: (61)

Using the above equation we can now integrate Eq. (59)
and give an equation that governs the Kahler potential1

1A version of this equation was obtained by O. Lunin [28]
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��������
@z@�zK @w@�zK
@z@ �wK @w@ �wK

��������� y
e�2=y�@yK

2

�
�2y@y

�
1

y
@yK

�
� 1

�

(62)

where we caution the reader that we have chosen to have a
trivial ‘‘initial condition’’ for the differential Eq. (59).

It is important to check that the 2-form that one finds
through (2) is closed. Here we list the components of the
two-form that we find by dualizing the 4-form

 Ftx � �
1
2e
�3=2��G�H�f2@xG

Fty � �
1
4@ye

2�G�H�

Fyx �
1
4Ax@ye

2�G�H� � 1
8e
G�H�eG � e�G�J x1

x @x1z

Fx1x2
� 1

2J x1x2
� 1

4y@yJ x1x2
� 1

4ye
2G@yJ x1x2

� 1
4y

2@
x1
e2GAx2�

:

Checking then whether dF � 0 brings us in front of equa-
tions which we have already seen in previous considera-
tions. During this check we do not need to use the specific
forms (61) or (62) but only the differential equations (59)
and (60).

At this point we would like to make some general com-
ments about our solution which is summarized by the
metric (52) and the four-form (58). One expects that for
every supersymmetric solution that fits in our ansatz (1) we
should be able to pick the correct Kahler potential that
reproduces it. A particular interesting class of solutions is
the half BPS states which were analyzed in [5]. In this case
the Kahler potential can be written in terms of the scalar
function z�x1; x2; y� which was identified in [5]. The iden-
tification of coordinates is such that one can identify z1 �

x1 � {x2, z2 � r�x1; x2; yLLM; ��e
{� 2�t� and y � yLLM sin�

where x1 and x2 are the LLM two dimensional coordinates
and � with  2 and the  that appears in our ansatz (1) will
form the S3 that appears in the LLM ansatz [5]. The details
of this reduction will appear in a paper which is currently
under preparation [29].

III. EINSTEIN’S FIELD EQUATIONS

In order to check Einstein’s equation one considers the
integrability conditions of the Killing spinor equation. In
order to do this we could follow the analysis of [27] or [30]
and do everything after the dimensional reduction.
However, we will follow the discussion of [26] directly
for the ten dimensional theory. We now present the argu-
ment here for completeness. The solutions that we have
tried to describe up to now come from the requirement of
existence of a commuting Weyl spinor for which the super-
covariant derivative vanishes

 DM� � rM��
{

480
�M1...M5FM1...M5

�M� � 0:

Since the above relation is true we conclude that the
commutator of two supercovariant derivatives should also

be zero when applied on the same Killing spinor

 RMN� � 
DM;DN�� � 0:

The commutator of the supercovariant derivatives can be
found in [31]. Contracting the commutator with the appro-
priate gamma matrices gives us the relation

 

1

2
�MNA 
DM;DN� �

1

2
EAM�M �

{
3!

�M1M2M3rBFAM1M2M3B

(63)

where

 EMN � RMN �
1
2gMNR�

1
6FMA1A2A3A4

FA1A2A3A4
N :

One can relate the Bianchi identity of the five-form to its
equation of motion through duality. Having this in mind
and the fact that the geometries that we described demand a
closed five-form we can conclude from (B12) that they
satisfy Einstein’s field equations.

IV. CONCLUSIONS AND SUMMARY

In this paper we have derived the equation that governs
1=4 BPS states in minimal IIB supergravity. After making
an SO�4� � SO�2� symmetric ansatz for our fields we used
the powerful techniques that were developed in [2–
4,24,25] to find the constraints imposed on the background
geometry by the existence of a Killing spinor. During this
process we showed that every field can be solved for in
terms of a single scalar function which appears in our
equations as the Kahler potential of a four dimensional
base space which is Kahler.

A very relevant future topic which needs to be under-
stood is the physical moduli space which parametrizes
regular 1=4 BPS solutions. This involves study of regular-
ity conditions which will lead to further reduction of the
space. An equally important problem is the recovery of the
same moduli space from SYM theory. It is clear that it is
related to the dynamics of more than one complex
matrices.
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APPENDIX A: FIERZ IDENTITIES

In this appendix we list various identities for the six
dimensional Clifford algebra that we used in the main text
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of the paper. We start by giving the duality relation for the
gamma matrices which we heavily use

 �a1...an �
��1�
n=2��1

�6� n�!
"a1...anbb�1...b6�n�b1...b6�n

�7: (A1)

The Fierz identities that we will use among the bilinear
forms can be derived by the basic formula

 

� 1 2
� 3 4 �

1
8


� 1 4
� 3 2 � � 1�7 4

� 3�7 2

� 1
2

� 1��� 4
� 3��� 2

� 1
2

� 1���7 4
� 3�

���7 2�

� 1
8


� 1�� 4
� 3�� 2

� � 1���7 4
� 3�

��7 2�

� 1
96


� 1���	 4
� 3���	 2

� � 1���	�7 4
� 3���	�7 2�: (A2)

where we consider commuting spinors.
Using � 1 � �"���,  2 � "�, � 3 � �"� and  4 � ��"�

in (A2) we obtain

 l��l
�� � 0 (A3)

where we used the equations

 ������ � �4�� �����	�� � 0:

In a similar manner one can obtain the relation

 l��l�� � 0: (A4)

Using � 1 � �"�,  2 � "�, � 3 � �"� and  4 � "� we
obtain

 Z�Z� � 1
4l
�
�l
�� � 1

48q
�
��q�
��: (A5)

Choosing � 1 � �"��
�,  2 � "�, � 3 � { �"� and  4 �

���	"� we have

 l��q���	 � �l
��q���	 ) il�q

� � 0: (A6)

In a similar way one obtains

 l��q���	 � �l
��q���	 ) il�q� � 0: (A7)

Where we used the relations

 �������	 � 4g	��� � 4g���	 � 2��	�

���������	 � �12���

�����g�	g�� � 2�	����:

We consider (A2) with � 1 � �"	�����,  2 � "	, � 3 �
�"	 and  4 � �����"	 which gives

 

4 �"	�
����"	 �"	���

��"	� �"	�
���������

��"	 �"	�
�"	

� 1
12 �"	�����������

����"	 �"	����"	

��4 �"	��������"	 �"	��"	:

(A8)

We also list the identities

 ����� � g���� � g���� � ���� (A9)

 ����� � g���� � g���� � ���� (A10)

 �������� � ������ � 6g�
g��g���


�
�� ���

� 4g�
g��g���


�
�� �

��

� 6g�
g��g���




��

���
�� � 2g�
������

(A11)

We now look at the Fierz identity involving � 1 �

�"��
����,  2 � "�, � 3 � �"� and  4 � �����"� which

gives after antisymmetrization in � and �

 4 �"�����
�"� �"�������"� � �12 �"����"� �"�"�

� 12 �"�"� �"����"�

� 2 �"������"� �"����"�;

(A12)

considering now the Fierz identity for � 1 � �"���,  2 �
"�, � 3 � �"� and  4 � ��"� we have

 �"������"� �"����"� � 8 �"��
�"� �"����"�

� 2 �"����"� �"�"�

� 2 �"�"� �"����"�:

Finally (A12) takes the form

 �"��
���
�"� �"�������"� � �4 �"����"� �"�"�

� 4 �"�"� �"����"�

� 4 �"��
�"� �"����"�:

(A13)

Another useful identity is generated by using the choice
� 1 � �"���,  2 � "�, � 3 � �"� and 4 � ����"� which

leads to

 �"���"� �"�����"� � 0) �"���"� �"����"�

� � �"�"� �"���"�l
��U���

� �Z�l�� : (A14)

In a similar way one may also prove that

 l��U��� � �Z�l�� : (A15)

ARISTOMENIS DONOS PHYSICAL REVIEW D 75, 025010 (2007)

025010-8



Using (35), (36), and (48) in (A13) and after contracting
with �"���"� we can prove with the help of (A14) that

 l��U��� � Z�l�� (A16)

and in a similar way

 l��U��� � Z�l�� : (A17)

APPENDIX B: ALGEBRAIC EQUATIONS FOR THE
BILINEARS

1. Scalar identities

Multiplying (5) by { �"�7 and (6) by �" we obtain the
relations
 

�
�
2
e��1=2��H�G�f1 �

1

4
L�@��H �G�

�
1

4
e��3=2��G�H�Y��F�� � 0

n
2
e��1=2��H�G�f2 �

1

4
L�@��H �G�

�
1

4
e��3=2��G�H�Y��F�� � 0:

If we now multiply (5) by �" and (6) by { �"�7 and equate the
real and imaginary parts of the corresponding equations to
zero we the relations

 K�@��H �G� � 0 (B1)

 2�f2 � e��G�H�V��F�� (B2)

 K�@��H �G� � 0 (B3)

 � 2f1n � e��H�2G�V��F��: (B4)

2. Vector identities

We now consider (5) and its conjugate again but this
time we multiply by �{ �"���7 and �i���7" respectively
and add them. The result of the operation reads
 

�L�e
��1=2��G�H� � 1

2f1@��G�H�

� 1
2 ? �� ^ F��e

��3=2��G�H� � 0: (B5)

Multiplying (6) and its conjugate by { �"���7 respectively
{���7" and adding the resulting equations we obtain
 

�ne��1=2��H�G�L� �
1
2f2@��H �G�

� 1
2e
��3=2��G�H�F	�K	 � 0: (B6)

We now turn to (6) and we multiply it by �"�� giving back

 � f1@��H�G� � ?�F ^���e��3=2��G�H� � 0: (B7)

Multiplying (5) by �"�� we obtain

 f2@��H �G� � e��3=2��G�H�F	�K	 � 0 (B8)

3. Rank two identities

Multiplying (5) and (6) by �"��� and �"����7, consider-
ing the identities

 ����	 � 2g	
���� ����	

�	��� ��2g	
���� ����	

����
	 ��2g�

g	������
	� 2�

�g��	� 2�	
�g��


and taking separately the real and imaginary parts to zero
we have
 

�
2
e��1=2��H�G�Y�� �

1

24
���
��	�
��@	�H �G�

�
1

2
f1e

��3=2��G�H�F�� �
1

8
���
	
�F


	V
� � 0 (B9)

 L
�@���H �G� � e
��3=2��G�H�Y

�F��


 � 0 (B10)

 

�
2
V��e��1=2��H�G� �

1

4
K
�@���G�H� �

1

2
e��3=2��G�H�

� F��f2 �
1

8
�
	��
�Y


�F
	e��3=2��G�H� � 0 (B11)

 

1
4 � 	

�� @	�G�H� � V

�F��

e��3=2��G�H� � 0 (B12)

 

n
2
e��1=2��H�G�V�� �

1

24
���	
��@	�H �G��
��

�
1

2
F��e

��3=2��G�H�f1

�
1

8
���
	
�F
	V
�e��3=2��G�H� � 0 (B13)

 L
�@���H �G� � e
��3=2��G�H�Y

�F��


 � 0 (B14)

 

n
2
e��1=2��H�G�Y���

1

4
K
�@���H�G��

1

2
F��f2e

��3=2��G�H�

�
1

8
���
	
�Y
�F
	e��3=2��G�H� �0 (B15)

 

1
4 ���	@

	�H �G� � V

�F��

e��3=2��G�H� � 0: (B16)

4. Rank three identities

We now multiply (7) by �"���
 and take the real and
imaginary part separately

 �e��1=2��G�H����
 �
1
2���
���Y

��@�H � 0

ne��1=2��H�G� ?���
 � 3@

HV��� � 0:
(B17)

Doing the same with (8) we obtain the equations

DESCRIPTION OF 1=4 BPS CONFIGURATIONS IN . . . PHYSICAL REVIEW D 75, 025010 (2007)

025010-9



 

�e��1=2��G�H����
 �
1
2���
���Y

��@�G� 6e��3=2��G�H�K

F��� � e��3=2��G�H��
��
��F
�L� � 0

ne��1=2��H�G� ?���
 � 3@

GV��� � 2e��3=2��G�H�F�
��
��� � 0:
(B18)
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