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The averaged null energy condition (ANEC) requires that the average along a complete null geodesic of
the projection of the stress-energy tensor onto the geodesic tangent vector can never be negative. It is
sufficient to rule out many exotic phenomena in general relativity. Subject to certain conditions, we show
that the ANEC can never be violated by a quantized minimally coupled free scalar field along a complete
null geodesic surrounded by a tubular neighborhood in which the geometry is flat and whose intrinsic
causal structure coincides with that induced from the full spacetime. In particular, the ANEC holds in flat
space with boundaries, as in the Casimir effect, for geodesics which stay a finite distance away from the
boundary.
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I. INTRODUCTION

General relativity alone gives no restriction on the ge-
ometry or topology of spacetime. Simply by solving
Einstein’s equation, Gab � �Tab, in reverse, one may
easily determine the stress-energy tensor Tab needed to
sustain any desired spacetime. Thus the only possibility
for restricting exotic phenomena such as superluminal
travel [1], traversable wormholes [2], or the creation of
time machines [3,4] is to have energy conditions that
restrict Tab. Sufficient to rule out the exotic phenomena
above and to prove classical singularity theorems is the
null energy condition (NEC), which requires that
Tab�x�V

aVb � 0 for all spacetime points x and null vectors
V.

Unfortunately, the NEC is violated when we introduce
quantum fields; an example is the original Casimir effect
[5]. For any x between the (infinite) plates and any vector V
which is not parallel to the plates, hTab�x�VaVbi will be
negative in the ground state.

A weaker condition is the averaged null energy condi-
tion (ANEC), which requires only that

 

Z
�
dvTabkakb � 0; (1)

where ��v� is a complete affinely parametrized null geo-
desic with tangent vector k. This condition is not expected
to be violated by the Casimir plate system, because geo-
desics parallel to the plates do not violate the NEC, while
any other geodesic eventually intersects the plate material,

where it picks up a positive contribution to the integral.
The ANEC is sufficient to rule out traversable wormholes
and the construction of time machines. Variations of it can
also be used to prove singularity theorems [6–8] and to
rule out superluminal travel1 [1].

Various proofs of the ANEC for quantum matter are
known. In n-dimensional Minkowski space, the ANEC
was proved for the scalar field with arbitrary curvature
coupling for a dense set of states in the Fock space of the
Minkowski vacuum [9]; namely, all finite linear combina-
tions of finite particle-number states of bounded momen-
tum. Folacci has posited a similar argument for
electromagnetism in four dimensions [10]. One may also
obtain the ANEC as a limiting case of the averaged weak
energy condition (AWEC)2 [which holds in Minkowski
space as a consequence of quantum energy inequalities]
[11] by considering the null geodesic as a limit of timelike
curves; the relevant class of states is not so clearly defined
here and quite strong conditions are required at infinity to
make this work (see [12] for some comments in this
direction). A more general and quite technical argument
[13], using techniques of algebraic quantum field theory,
establishes the ANEC in four-dimensional Minkowski
space for a restricted class of Hadamard states of the
minimally coupled scalar field. In particular, this goes
beyond the states contained in the usual Fock space.

In two dimensions more can be said: in Minkowski
space one may prove the ANEC for general (interacting)
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1The condition used in [1] is in fact the NEC, but one can see
that it is sufficient to have the ANEC with the average over the
path to be traveled.

2The AWEC requires that (1) holds with � replaced by a
complete timelike geodesic.
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quantum fields with mass [14], or for unitary, positive
energy conformal fields [15]; precise classes of states for
which these results hold are delineated in each case. In
general globally hyperbolic two-dimensional spacetimes,
[13] established the ANEC on complete achronal null
geodesics for the minimally coupled free scalar field.
This holds for arbitrary Hadamard states in the massless
case, and a restricted class of Hadamard states for nonzero
mass; in neither case was there any requirement that the
states should be vectors in a Fock space representation. The
achronal condition on the geodesic may be dropped [16] at
the expense of passing to a ‘‘difference ANEC.’’

It is known that the ANEC may be violated in general
curved spacetimes (e.g., see [17]) and in semiclassical
quantum gravity [18]. Indeed, wormhole solutions have
been found in which the spacetime curvature leads to the
ANEC violation that supports the wormhole [19–21], but
these involve Planck-scale structures, and thus should re-
quire a full quantum gravitational treatment. If one avoids
physics at the Planck scale, exotic phenomena can exist
only with a very large separation of scales [22,23]. The
ANEC is also violated for the ground state of the Klein-
Gordon field in flat space with a periodic identification in
one spatial direction along any null geodesic which winds
around the compact direction. We will return to this case,
which is essentially the Casimir system without the plates,
in Sec. IV.

The above results all refer to globally hyperbolic space-
times, which are by definition boundaryless. Several at-
tempts [24–28] have been made to violate the ANEC with
specific systems of free fields with boundaries, but these
have been unsuccessful. Reference [25] conjectured that
the ANEC is obeyed for all geodesics passing outside a
localized potential in flat space.

We will prove here a stronger version of the conjecture
of [25]. Namely, we will show that distant boundaries or
potentials do not affect the ANEC, and that distant space-
time curvature likewise has no effect if it does not change
the causal structure near the geodesic. By ‘‘distant’’ here
we mean simply that the geodesic must not approach
arbitrarily close to such places.

The central idea is that the presence of distant bounda-
ries can only be detected if one can send a signal to the
boundary and receive a signal in return. Otherwise one
cannot determine whether one is making measurements in
spacetime with boundaries or merely observing an unusual
state on an unbounded spacetime. But no signal can leave a
null geodesic in flat space and later return to it (neglecting,
for the moment, situations with nontrivial topology). Thus
for measurements only on the geodesic, the boundaries
cannot be observed, and such a measurement must corre-
spond to a possible measurement on the geodesic in Min-
kowski space. But the ANEC is obeyed in Minkowski
space, so we expect the ANEC to be obeyed even if there
are boundaries.

At a more technical level, the key ingredient is the
quantum null energy inequality (QNEI) proved in [12],
which places bounds on weighted averages of the null-
contracted stress-energy tensor along timelike curves, and
the covariance properties of this bound (and other related
quantum energy inequalities (QEIs)) as discussed in [29].
We refer the reader to [29] and references therein for
general background on QEIs.

We will not be able to prove the ANEC without addi-
tional assumptions (which bridge the gap between the
averages considered in [12] and the ANEC integral), but
we will prove that there cannot be a timelike-separated
family of geodesics on which Eq. (1) converges uniformly
to negative values. To have some practical effect, one needs
not merely a single geodesic on which the ANEC is vio-
lated but some finite region of violation. Furthermore, one
expects that infinitesimally separated geodesics violate
ANEC in the same way, so that the convergence is uniform.
Thus we feel that ruling out uniform ANEC violation is
sufficient for all practical purposes.

The paper is structured as follows. In Sec. II we rigor-
ously state our premises and prove the conclusion. In
Sec. III we give a variant argument in which we assume
uniform continuity of Tab and then can prove the ANEC on
a single geodesic. After discussing the example of cylin-
drical spacetime in Sec. IV, we conclude in Sec. V.

II. MAIN RESULT

A. Geometrical assumptions

Let �N; g� be a spacetime composed of a four-
dimensional smooth manifold N (possibly with boundary)
equipped with a Lorentzian metric g and choices of ori-
entation and time-orientation. We do not assume that �N;g�
is globally hyperbolic, although we do assume that strong
causality holds on the interior of N and that the spacetime
supports a suitable quantum field theory, as we explain in
more detail below.

Our aim is to prove the ANEC along any complete null
geodesic � in N which is sufficiently isolated from the
boundaries and regions of curvature. More precisely, we
assume that the Riemann tensor vanishes everywhere in a
simply connected open neighborhood N0 of � that has no
intersection with the boundary of N, and further that

 J��p;N� \ N0 � J��p;N0� for all p 2 N0; (2)

i.e., regions outside N0 have no effect on the causal struc-
ture inside N0. (The causal future J� can be replaced,
equivalently, by the causal past J� in (2).)

Given these assumptions, we can define coordinates
�t; x; y; z� on N0 such that � may be affinely parametrized
as ���� � ��; �; 0; 0�, and in which the metric takes the
Minkowski form ds2 � dt2 � dx2 � dy2 � dz2 on N0.
Without loss of generality it may also be assumed that
the tetrad �@=@t; @=@x; @=@y; @=@z� is oriented and time-
oriented, so our coordinates define a (time-)orientation
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preserving isometry  : N0 ! M0, where M0 is a region of
Minkowski space M.

Finally, we assume that N0 is large enough to contain a
tubular neighborhood of � of the form

 N0r � f�t; x; y; z�jy
2 � z2 � �x� t�2 < r2g (3)

for some r > 0. Thus N0 is not permitted to ‘‘taper off’’ at
infinity, thereby (for example) excluding situations where
� is asymptotic to the boundary of N at large values of the
affine parameter, or where it passes through a sequence of
apertures of diminishing radius.

Note that condition (2) can only hold if the null geodesic
� is achronal. For suppose there are points p, q on � with
q 2 I��p;N�. Then q is an interior point of J��p;N� \ N0,
but a boundary point of J��p;N0�, so these sets cannot be
equal.

B. Assumptions on the quantum field theory

We study the minimally coupled scalar field of mass
m � 0 on �N; g�. As we have not assumed that �N; g� is
globally hyperbolic, we must make some further assump-
tions about the existence of a reasonable quantization of
the theory on this spacetime. The guiding principle, moti-
vated by the analysis of [30], is that the theory should
coincide with the usual quantization on open globally
hyperbolic subsets3 of the interior of �N; g�. Here, a subset
U of �N; g� is globally hyperbolic if strong causality holds
on U and J��p;N� \ J��q; N� is a compact subset ofU for
all p, q 2 U (see Sec. 6.6 of [31]). In particular, ifU is also
open, it may be regarded as a globally hyperbolic space-
time in its own right, but our condition also ensures that the
intrinsic causal structure of �U;gjU� coincides with that
induced from �N; g�. Thus, for example, ‘‘commutation at
spacelike separation’’ has the same meaning in the two
spacetimes. As we have assumed that strong causality
holds at each point of the interior of N, every such point
has an open globally hyperbolic subset as a neighborhood.

We also restrict attention to states which restrict to open
globally hyperbolic subsets of the interior of N as
Hadamard states. In particular, these conditions are met
when �N; g� is globally hyperbolic and we use the usual
quantization, with the states of interest required to be
Hadamard on the whole of �N; g�, but there are more
general situations where they hold (see [32] for more de-
tails and references). These conditions are sufficient for the
renormalized stress-energy tensor to be defined according
to the usual point-splitting prescription. For simplicity, we
will refer to our states as Hadamard, although they corre-
spond to a generalization of the usual concept. The con-
ditions given here would, we believe, be satisfied in any
reasonable quantum field theory on �N; g�; we do not claim
that they are sufficient conditions to guarantee the exis-
tence of such a theory.

The geometrical conditions on � and its neighborhood
N0 permit us to identify a useful class of open globally
hyperbolic subsets of �N; g�: let p, q 2 N0 and suppose
that the Minkowski space ‘‘double cone’’ J�� �p�;M� \
J�� �q�;M� is contained within M0. Then the open set

 Dp;q � I��p;N0� \ I��q; N0�; (4)

is a globally hyperbolic subset of �N; g�. To see this, first
note that strong causality holds onDp;q because it holds on
the interior of N. Now choose r, s 2 Dp;q and consider
K � J��r; N� \ J��s; N�. By property (2) [and the equiva-
lent version for the causal past] the intersection K \ N0 is
simply J��r; N0� \ J��s; N0�, which is a subset of Dp;q.4

Thus K is covered by the disjoint closed sets �Dp;q and
NnN0; since it is connected, it must in fact be contained
entirely in �Dp;q. Thus K � J��r; N0� \ J��s; N0� and is
therefore compact, because the corresponding Minkowski
double cone is. Hence Dp;q is an open globally hyperbolic
subset of the interior of �N; g�.

The main technical tool we will use to prove the ANEC
is a QNEI established in [12] (Thrm III.1) which showed
that the quantity

 

Z
�
d�hTabkakbi!������g���2 (5)

is bounded from below as ! varies over the class of
Hadamard states, where � is a smooth future-directed
timelike curve parametrized by proper time � 2 I, for I
an open interval of the real line,5 k is a smooth null vector
field defined on a tubular neighborhood of �, and g is any
smooth, real-valued function compactly supported in I. We
must also require that � may be enclosed in an open
globally hyperbolic subset of �N;g�, because the result of
[12] was proved in the globally hyperbolic setting.

In general the lower bound given in [12] is exceedingly
difficult to calculate for a general worldline in a generic
spacetime (it depends on the two-point function of a ref-
erence Hadamard state). However, the bound simplifies
considerably if � may be enclosed in an open globally
hyperbolic subset N0 of �N;g� which is isometric to an
open globally hyperbolic subset M0 of Minkowski space in
such a way that the (time-)orientation induced onM0 by the
isometry coincides with the usual (time-)orientation of
Minkowksi space. Under these circumstances the QNEI
bound reduces to the form it takes in Minkowski space (see
Thrm. II.6 and Cor. II.4 of [29], which establish the re-
quired covariance property) and this has a simple closed
form for the case where � is geodesic and ka is covariantly
constant near �. These bounds will be employed below for
regions of the Dp;q form mentioned above. It is also worth

3In [29] these were referred to as c.e.g.h.s. regions.

4We use the facts that J��r; N0� � I��p;N0� and J��s; N0� �
I��q;N0�.

5In [12] I was taken to be the whole line, but the difference is
inessential.
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noting that [12] also showed that we cannot expect a
quantum energy inequality to hold for averaging along a
null geodesic.

C. The ANEC

We may now state our main result, assuming that the
spacetime �N; g�, the complete null geodesic � , and its
neighborhood N0 obey the geometrical conditions of
Sec. II A, and that �N;g� admits a quantized real scalar
field satisfying the conditions of Sec. II B.

Define �0��; t� � �t� �; �; 0; 0�, so that ���� �
�0��; 0�, and consider the ANEC integral,

 A�t� �
Z 1
�1

d�T!��0��; t��; (6)

where T!�q� � hTab�q�kakbi! is the renormalized expec-
tation value of the stress-energy tensor Tab, in Hadamard
state!, at the point q projected onto the null tangent vector
k � @�0=@�. Our main result is the following.

Theorem II.1. If ! is any Hadamard state then it is
impossible for the integral in Eq. (6) to converge uniformly
to negative values in any interval of t containing 0. That is,
ANEC cannot be uniformly violated near � .

We remark that, because T!�q� is continuous in q, A�t� is
also continuous in any interval of t for which the integral in
Eq. (6) converges uniformly. So an equivalent statement is
that the integral cannot converge uniformly in an interval
of t containing 0 and have A�0�< 0. Before giving the
proof of Theorem II.1, we state an immediate consequence.

Corollary II.2. If hTabi! is stationary with respect to t in
N0 and the integral in Eq. (6) converges for t � 0, then
A�0� � 0, i,e., the ANEC holds on � in state !.

In order to prove Theorem II.1 we first introduce some
families of timelike curves. Given any velocity v with
corresponding boost � � 1=

��������������
1� v2
p

, define a family of
timelike geodesic segments

 �v��; �� � ��� ��; �� �v�; 0; 0� (7)

parametrized by proper time � 2 ���0; �0� and labeled by
� 2 ���0; �0�. The choice of v, �0, and �0 will be dis-
cussed below. Now consider the set

 Cv;� � I���v��;��0�; N
0� \ I���v��; �0�; N

0�: (8)

Providing that �0 < r, where N0r is of the form Eq. (3), it is
easy to show that the Minkowski space boosted double
cone J�� ��v��;��0��;M� \ J

�� ��v��; �0��;M� is
contained within the region �N0r� � M0; thusCv;� belongs
to the family of open globally hyperbolic subsets of �N; g�
discussed in Sec. II B.

Accordingly, the discussion above entails that the QNEI
of [12] may be applied to the segment � � �v��; �� as if it
were in Minkowski space. Let f�a� be any smooth real-
valued sampling function with support only for jaj< 1 and
normalization

 

Z
f�a�2da � 1: (9)

Then, from Eq. (3.10) of [12] [applied to g��� � f��=�0�]
we have

 

Z 1
�1

d�T!��v��; ���f��=�0�
2

� �
�vaka�2

12�2�4
0

Z 1
�1

d�f00��=�0�
2; (10)

where the timelike tangent vector v � @�v=@�, null vec-
tor k � @�v=@�, and the prime denotes the derivative of
the function with respect to its argument.6 Thus �vaka�2 �
�1� v�=�1� v�< 1=�2, and so

 

Z 1
�1

d�T!��v��; ���f��=�0�
2 � �

F

12�2�2�3
0

; (11)

where

 F �
Z
f00�a�2da (12)

is a manifestly positive constant.
The points �v��; �� with ��0 < �< �0 and ��0 <

�<�0 form a parallelogram, as shown in Fig. 1. We can
integrate over this parallelogram,

 

Z �0

��0

d�
Z �0

��0

d�T!��v��; ���f��=�0�
2 � �

�0F

6�2�2�3
0

:

(13)

By holding �0 fixed and increasing �2 faster than �0, we
can make the right-hand side arbitrarily close to 0.

We are now in a position to prove Theorem II.1. Suppose
that the integral in Eq. (6) converges uniformly to negative
values in an interval of t containing 0. Thus, there are some
positive numbers A and t0 (without loss of generality, we
take t0 < r) such that

 A�t�<�A for all t 2 ��t0; t0�: (14)

The parallelogram �v��; �� can also be considered as a
set of null geodesics parametrized by � and labeled by �.
Then �v��; �� � �0��; t� with the correspondence
 

t � �1� v���; (15a)

� � �� �v� (15b)

so our parallelogram is �0��; t�with t 2 ��t1; t1� and � 2
���; ���, where t1 � �1� v���0 � �0=���1� v�� and
�� � ��0 � tv=�1� v�.

Let us consider � sufficiently large that t1 < t0. Then,
since the integral in Eq. (6) converges uniformly, we can
find a number �1 such that

6This bound was derived in [12] for the massless field, but also
applies in the case m> 0.
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Z �0

��0

d�T!��v��; ��� �
Z ��

��
d�T!��0��; t��<�A=2

(16)

for all t 2 ��t1; t1�, as long as

 

�� > �1; (17a)

�� <��1: (17b)

By integrating Eq. (16), we find

 Z �0

��0

d�
Z �0

��0

d�T!��v��; ���f��=�0�
2

<�
A
2

Z �0

��0

d�f��=�0�
2 � �

A�0

2
: (18)

Now choose any fixed, positive �0 < r. Let � grow
without bound and let �0 � �1 � v��0 satisfy Eqs. (17).
Then the right-hand side of Eq. (13) goes as ��1, while that
of Eq. (18) is constant, so the two inequalities cannot
simultaneously be satisfied in this limit. This contradiction
completes the proof of Theorem II.1.

Another consequence of our result in this section is that
if the state ! is sufficiently regular that the integral in
Eq. (6) converges uniformly for all t in a neighborhood of
t � 0 contained in ��r; r�, then we have A�t� � 0 for all
such t: this follows by applying Theorem II.1 to the trans-
lates � � �0��; t� of � , which also satisfy the geometrical
conditions of Sec. II A (albeit with possibly smaller tubular
neighborhoods N0r).

III. A VARIANT OF THE ARGUMENT

In Sec. II we showed that no Hadamard state can violate
the ANEC uniformly on a timelike family of geodesics,
where violation of ANEC was interpreted to mean that the
ANEC integral converges to a negative value. It is also of
interest to consider weaker versions of ANEC (as in [13])
in which convergence of the integral is not required. The
spacetime �N;g�, null geodesic � , and neighborhoodN0 are
assumed to obey the conditions of Secs. II A and II B. Our
result is the following.

Theorem III.1 Suppose that T! is uniformly continuous
in N0 for some Hadamard state !. Then

 lim inf
�0!1

Z
d�T!������f��=�0�

2 � 0; (19)

where f is any smooth real-valued function supported in
the interval ��1; 1�.

To prove this result, we approximate the null segment
f����:j�j 	 �0g, which contains the support of the inte-
grand, by a timelike segment �v�0; �� [as defined in
Eq. (7)] with velocity v and boost �, and the correspon-
dence � � �=�. The velocity should be large enough that
�0=� < r in order to apply the Minkowski space QNEI
along the timelike curve. The distance between corre-
sponding points is

 j���� ��v�0; ��j � ��1� v�j�j< j�j=� < �0=�2 (20)

and thus by uniform continuity,

 jT!������ � T!��v�0; ���j<C�0=�
2; (21)

where C is a positive constant. Integration gives
 Z
d�T!������f��=�0�

2 �
Z
d�T!��v�0; ���f��=�0�

2

>�2C�2
0=�

2; (22)

with � � �=�. Changing variables in the second integral
and using Eq. (11) gives

 

Z
d�T!������f��=�0�

2 >�
F

12�2��3
0

�
2C�2

0

�2

� �
F�2

12�2�3
0

�
2C�2

0

�2 : (23)

 x

t
η

τ

t1

FIG. 1. The parallelogram �v��; ��, shown shaded, can be
considered as a set of timelike geodesics parametrized by �
with � fixed (short dashes), or of null geodesics parametrized by
� with � fixed (long dashes).
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Now let �0 grow without bound, and let v change so that
� � �5=4

0 (thus �0=�! 0). The right-hand side of Eq. (23)
goes to zero, and we conclude that Eq. (19) holds, which is
the form in which the ANEC was formulated in [13]. This
completes the proof of Theorem III.1.

A number of other hypotheses also lead to the conclu-
sion Eq. (19). Noting that the difference between the points
in Eq. (21) is purely in the x direction, it is sufficient to
have @T!=@x bounded in place of uniform continuity.
Similarly, we could modify the proof so that the timelike
and null curves are related by the correspondence � �
�=�v��, in which case the corresponding points differ
only in t, and it is sufficient to have @T!=@t bounded. In
particular, we can prove Eq. (19) in this way for any
stationary configuration of fields. Note also that the con-
clusion of Theorem III.1 applies equally to any other
complete null geodesic contained in N0r.

IV. EXAMPLE: THE CYLINDER SPACETIME

One of the simplest examples in which the ANEC is
known to be violated is the cylinder spacetime obtained by
periodically identifying Minkowski space along the
z-direction. The ground state of the massless, minimally
coupled scalar field on this (globally hyperbolic) spacetime
has renormalized stress tensor

 hTabi �
�2

90L4 diag��1; 1; 1;�3�; (24)

where L is the periodicity length. It is readily verified that
the (A)NEC is violated along any null geodesic with a
nonzero z-component of velocity, i.e., for those which
wind around the compact direction. On the other hand,
the (A)NEC is obeyed along complete null geodesics with
zero velocity in the z-direction. We wish to show how this
follows from our main results.

First, note that null geodesics which wind around the
cylinder are not achronal, and are therefore excluded by
our hypotheses. So the violation of the ANEC along these
curves is not in contradiction with our results. Now con-
sider any complete null geodesic � with zero velocity in the
z-direction. Without loss of generality, we may assume that
its three-velocity is directed in the positive x-direction. We
will construct a neighborhood N0 of � that satisfies the
conditions set out in Sec. II A.

Let M0 � f�t; x; y; z� 2 M:�t� x�2 � y2 � z2 < r2g for
some r < L=4. Then we define N0 � ��M0�, where
�:M ! N is the quotient mapping that implements the
periodic identification. Because jzj< r< L=2 in M0,
�t; x; y; z� are good coordinates on N0; moreover, N0 is
simply connected and does not taper off at infinity. Since
the Riemann tensor vanishes, we now need only check that
condition (2) holds. Let �n represent a translation through
L along the z-axis in M and let p be an arbitrary point of
M0. Then

 J����p�; N� \ N0 � �
�
M0 \

[
n2Z

J���np;M�
�

(25)

while

 J����p�; N0� � ��J��p;M0�� � ��M0 \ J��p;M��;

(26)

where the equality J��p;M0� � M0 \ J��p;M� holds be-
cause M0 is convex. Condition (2) will follow if we can
show that J���np;M� \M0 � J��p;M� for each n 2 Z.
This could fail only if there were a point q 2 M0 which was
spacelike separated from p, but timelike separated (in M)
from some image point p0 of p. But the difference in the
z-coordinate of p and q must be less than L=2 (as both lie
in M0) while the difference in the z coordinate of q and p0

must be greater than L=2. Thus the displacement from p0 to
q must be ‘‘more spacelike’’ than that from p to q, and we
see that no such q can exist. Thus condition (2) holds, and
our results do apply to � ; not only in the ground state, but in
all Hadamard states on this spacetime. Moreover, they
would continue to apply even if we perturbed the metric
on �N; g� outside N0, provided the new metric respects
condition (2).

V. DISCUSSION

We have given a proof of the ANEC for null geodesics
with suitable Minkowskian tubular neighborhoods, subject
to conditions which we feel are reasonable and do not
impact its practical applicability. Our result is complemen-
tary to that of Flanagan and Wald [18], who found that the
ANEC is enforced in semiclassical quantum gravity up to
second order in perturbation theory about Minkowski
spacetime, albeit with a modicum of transverse smearing
on the order of a few Planck lengths.

The main import of the present work is that distant
interactions or boundary conditions apparently do not
help to produce ANEC violations. For example, Casimir
plates would not seem to be useful to support a wormhole,
as in [2], because of the need to get through the plate [27].

This paper is the first step in a program of proving that
wormholes, time machines, and other such interesting
phenomena are not allowed within the domain of validity
of the semiclassical Einstein equation. (‘‘Self-supporting’’
systems in which the geometry itself will induce the ANEC
violation necessary to produce it are known [19–21].
However, they have consistently been shown to occur
only on the order of the Planck scale where the semiclas-
sical approach is itself suspect, and we must await a full
quantum theory of gravity.) We have handled the case of
free fields in flat space with boundary conditions. We hope
in future work to be able to address interacting fields and
curved spacetimes.
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