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The main result of the paper is a new representation for the Weyl Lagrangian (massless Dirac
Lagrangian). As the dynamical variable we use the coframe, i.e. an orthonormal tetrad of covector fields.
We write down a simple Lagrangian—wedge product of axial torsion with a lightlike element of the
coframe—and show that variation of the resulting action with respect to the coframe produces the Weyl
equation. The advantage of our approach is that it does not require the use of spinors, Pauli matrices, or
covariant differentiation. The only geometric concepts we use are those of a metric, differential form,
wedge product, and exterior derivative. Our result assigns a variational meaning to the tetrad representa-
tion of the Weyl equation suggested by Griffiths and Newing.
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I. MAIN RESULT

Throughout this paper we work on a 4-manifold M
equipped with prescribed Lorentzian metric g. The main
construction presented in this paper is local so we do not
make a priori assumptions on the geometric structure of
spacetime.

In the following two subsections we describe two differ-
ent models for the neutrino.

A. Traditional model

The accepted mathematical model for a neutrino field is
the following linear partial differential equation on M
known as the Weyl equation:

 i��
a _b
frg��a � 0: (1)

The corresponding Lagrangian is

 LWeyl��� :�
i
2
� �� _b��

a _b
frg��

a � �a��
a _b
frg� �� _b� � 1:

(2)

Here ��, � � 0, 1, 2, 3, are Pauli matrices, � is the
unknown spinor field, and frg is the covariant derivative
with respect to the Levi-Civita connection: frg��a :�

@��a �
1
4��

a _c�@���b _c � f�g
�
����b _c��

b, where f�g���
are Christoffel symbols uniquely determined by the metric.

B. Teleparallel model

The purpose of our paper is to give an alternative rep-
resentation for the Weyl equation (1) and the Weyl
Lagrangian (2). To this end, we follow [1] in introducing
instead of the spinor field a different unknown—the so-
called coframe. A coframe is a quartet of real covector
fields #j, j � 0, 1, 2, 3, satisfying the constraint

 g � ojk#
j � #k; (3)

where ojk � ojk :� diag�1;�1;�1;�1�. In other words,
the coframe is a field of orthonormal bases with orthonor-
mality understood in the Lorentzian sense. Of course, at
every point of the manifold M the choice of coframe is not
unique: there are 6 real degrees of freedom in choosing the
coframe and any pair of coframes is related by a Lorentz
transformation.

Let us stress that throughout the paper, and, in particular,
in formula (3), the metric is assumed to be given (fixed). It
is not necessarily the Minkowski metric.

We define an affine connection and corresponding co-
variant derivative jrj from the conditions

 jrj#j � 0: (4)

Let us emphasize that we follow [2–5] in employing
holonomic coordinates, so in explicit form conditions (4)
read @�#

j
� � j�j

�
��#

j
� � 0 giving a system of linear al-

gebraic equations for the unknown connection coefficients
j�j���. The connection defined by the system of equations
(4) is called the teleparallel or Weitzenböck connection.

Let l be a nonvanishing real lightlike teleparallel covec-
tor field (l � l � 0, jrjl � 0). Such a covector field can be
written down explicitly as l � lj#

j, where lj are real
constants (components of the covector l in the basis #j),
not all zero, satisfying

 ojkljlk � 0: (5)

We define our Lagrangian as

 L�#j; lj� � liojk#
i ^ #j ^ d#k; (6)

where d stands for the exterior derivative. Note that
1
3ojk#

j ^ d#k is the axial (totally antisymmetric) piece
of torsion of the teleparallel connection. (The irreducible
decomposition of torsion is described in Appendix B.2 of
[6].) Let us emphasize that formula (6) does not explicitly
involve connections or covariant derivatives.

The Lagrangian (6) is a rank 4 covariant antisymmetric
tensor so it can be viewed as a 4-form and integrated over
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the manifold M to give an invariantly defined action
S�#j; lj� :�

R
L�#j; lj�. Independent variation with re-

spect to the coframe #j and parameters lj subject to the
constraints (3) and (5) produces a pair of Euler-Lagrange
equations which we write symbolically as

 @S�#j; lj�=@#j � 0; (7)

 @S�#j; lj�=@lj � 0: (8)

Observe now that the Lagrangian (6) and constraints (3)
and (5) are invariant under rigid (i.e. with constant coef-
ficients) Lorentz transformations

 �#j; lj�� ��j
k#

k; ���1�kjlk�; (9)

where ojk�
j
p�k

q � opq and ���1�ij�
j
k � 	ik. This

means that any variation of the parameters lj can be
compensated by a rigid variation of the coframe #j.
Hence, the field equation (8) is a consequence of the field
equation (7). So further on we assume the parameters lj to
be fixed and study the field equation (7) only.

Remark 1.—The field equations (7) and (8) are written
down explicitly in Appendix A. This explicit form is not
used in the main text of the paper.

Remark 2.—Variation with respect to the parameters lj
is justified only when the integrals

R
#i ^ #j ^ d#k are

well defined as ‘‘proper’’ global integrals. This imposes
severe restrictions on the geometry of spacetime and on the
choice of coframes. For example, traveling-wave–type
coframes in Minkowski space do not satisfy this condition
as in this case the integrals

R
#i ^ #j ^ d#k diverge. This,

however, does not affect the main result of the paper,
namely, the fact that Eqs. (1) and (7) are equivalent up to
a change of variable (see Theorem 1 below), because here
the result is purely local.

C. Equivalence of the two models

Let us define the spinor field � as the solution of the
system of equations

 jrj� � 0; (10)

 ��a _b�
a �� _b � 	l� � 	lj#

j
�; (11)

where jrj��
a :� @��

a � 1
4��

a _c�@��
�
b _c �

j�j����
�
b _c��

b and the sign is chosen so that the right-
hand side lies on the forward light cone. The system (10)
and (11) determines the spinor field � uniquely up to a
complex constant factor of modulus 1. This nonuniqueness
is acceptable because we will be substituting � into the
Weyl equation (1) and Weyl Lagrangian (2) which are both
U(1)-invariant. We will call � the spinor field associated
with the coframe #j.

The main result of our paper is the following.

Theorem 1.—For any coframe #j we have

 L�#j; lj� � 	4LWeyl���; (12)

where � is the associated spinor field. The coframe satisfies
the field equation (7) if and only if the associated spinor
field satisfies the Weyl equation (1).

Let us emphasize that all our constructions are local so
we do not have to make assumptions on whether our
spacetime is orientable, whether it admits a spin bundle,
whether this bundle is trivial, etc. This means, of course,
that Eq. (12) should be understood in the local sense.

The sign in Eq. (12) depends on the sign of the parameter
l0, on whether the covector l � lj#

j lies on the forward or
backward light cone, and on the orientation of the coframe
(eight different combinations).

The proof of Theorem 1 is given below. The crucial
point is explained in Sec. IV, whereas technicalities are
handled in a separate section. In the final section we
discuss Theorem 1 within the context of known results
from the theory of teleparallelism.

II. NOTATION

Our notation follows [2–5]. In particular, in line with the
traditions of particle physics, we use Greek letters to
denote tensor (holonomic) indices. Details of our spinor
notation are given in Appendix A of [5].

We restrict changes of local coordinates on M to those
preserving the locally defined orientation. This allows us to
define the Hodge star � in the usual way.

We define the forward light cone as the span of
��a _b�

a �� _b, � � 0. We also define

 ���ac :� �1=2����a _b

_b _d��c _d � ��a _b


_b _d��c _d�:

These ‘‘second order’’ Pauli matrices are polarized, i.e.
�� � 	i� depending on the choice of ‘‘basic’’ Pauli
matrices ��a _b. We assume that �� � �i�.

III. EXCLUDING PARAMETER DEPENDENCE

We can always perform a restricted rigid Lorentz trans-
formation (9) which turns an arbitrary set of parameters lj
into lj � �	1; 0; 0;	1�. Our model is invariant under such
transformations so it is sufficient to prove Theorem 1 for
this particular choice of parameters. Moreover, by chang-
ing, if necessary, the sign of L�#j; lj� we can always
achieve

 lj � �1; 0; 0; 1�: (13)

Further on we assume the special choice of parameters
(13) in which case our Lagrangian (6) takes the form
 

L�#j; lj� � �#
0 � #3� ^ �#0 ^ d#0 � #1 ^ d#1

� #2 ^ d#2 � #3 ^ d#3�: (14)
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IV. B2-INVARIANCE

The crucial step in the proof of Theorem 1 is the ob-
servation that our model is invariant under a certain class of
local (i.e. with variable coefficients) Lorentz transforma-
tions of the coframe. In order to describe these transforma-
tions it is convenient to switch from the real coframe
�#0; #1; #2; #3� to the complex coframe �l;m; �m; n�, where

 l :� #0 � #3; m :� #1 � i#2; n :� #0 � #3

(15)

[here the definition of l is in agreement with Eq. (13)]. In
this new notation the Lagrangian (14) and constraint (3)
take the form

 L�#j; lj� � �1=2�l ^ �n ^ dl� �m ^ dm�m ^ d �m�;

(16)

 g � �1=2��l � n� n � l�m � �m� �m �m�: (17)

Let us perform the linear transformation of the coframe

 

l
m
�m
n

0
BBB@

1
CCCA �

l
m� fl
�m� �fl

n� f �m� �fm� jfj2l

0
BBB@

1
CCCA; (18)

where f:M ! C is an arbitrary scalar function. It is easy to
see that both the Lagrangian (16) and the constraint (17)
are invariant under the transformation (18), hence the field
equation (7) is also invariant.

Invariance of the field equation (7) means that solutions
come in equivalence classes: two coframes are said to be
equivalent if there exists a scalar function f:M ! C such
that the transformation (18) maps one coframe into the
other. In order to understand the group-theoretic nature of
these equivalence classes, we note that at every point of the
manifold M transformations (18) form a subgroup of the
restricted Lorentz group. Moreover, this is a very special
subgroup: it is the unique nontrivial Abelian subgroup of
the restricted Lorentz group, see Appendix B. It is known
that this subgroup, denoted B2, is the subgroup preserving
a given nonzero spinor. Our equivalence classes of co-
frames can be identified with cosets of B2, hence they are
equivalent to spinors.

Remark 3.—The rigorous statement is that a coset of the
subgroup B2 is equivalent to a spinor up to choice of sign,
i.e. spinors � and �� correspond to the same coset. This
nonuniqueness is acceptable because it is known (see, for
example, Sec. 19 in [7] or Sec. 3.5 in [8]) that the sign of a
spinor does not have a physical meaning.

Remark 4.—Our construction does not allow us to deal
with the zero spinor.

V. TECHNICALITIES

Arguments presented in the previous section show that
even though our field equation (7) has no spinors appearing

in it explicitly, it is, in fact, a first order differential equa-
tion for an unknown spinor field. From this point it is
practically inevitable that Eq. (7) is, up to a change of
variable, Weyl’s equation (1).

The actual proof of Theorem 1 is carried out by means of
a straightforward (but lengthy) calculation. The calculation
goes as follows.

The set of coframes has four connected components
corresponding to two different orientations, ��l ^m� �
	i�l ^m�, and to l lying on the forward or backward light
cone. We assume for definiteness that we are working with
coframes satisfying ��l ^m� � �i�l ^m� and with l lying
on the forward light cone.

It is easy to see that our transformation (18) preserves
the tensor l ^m. Moreover, each equivalence class of
coframes is completely determined by this tensor.
Therefore, it is convenient to identify each equivalence
class with a spinor field � in accordance with the formula

 �l ^m��� � ���ab�a�b: (19)

The fact that a decomposable polarized antisymmetric
tensor is equivalent to the square of a spinor is a standard
one and was extensively used in [2–5].

Resolving Eq. (19) for the coframe fl;m; �m; ng, we get
the following formulas: l is given by

 l� � ��a _b�
a �� _b; (20)

n is an arbitrary real (co)vector field satisfying

 n � n � 0; l � n � 2; (21)

and m is given by

 m� � �1=2����abn
��a�b: (22)

Formula (16) implies

 � L�#j; lj� � �1=2�
�������������
j detgj

q
"���	l��n�frg�l	

� �m�frg�m	 �m�frg� �m	�; (23)

where " is the Levi-Civita symbol, "0123 :� �1. Here frg
stands for the Levi-Civita covariant derivative which
should not be confused with the teleparallel covariant
derivative jrj. Substituting formulas (20) and (22) into
formula (23) and using algebraic properties of Pauli ma-
trices as well as conditions (21), we arrive at

 � L�#j; lj� � �2i� �� _b��
a _b
frg��

a � �a��
a _b
frg� �� _b�:

(24)

Formulas (19) and (24) show that our Lagrangian (16) is a
function of l ^m rather than of l and m separately. This is,
of course, a consequence of the B2-invariance described in
the previous section.

Applying the Hodge star to Eq. (24) and comparing with
Eq. (2), we get
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 L�#j; lj� � 4LWeyl���: (25)

We have jrj�l ^m� � 0, so formula (19) implies

 jrj� � 0: (26)

Comparing Eqs. (10) and (11) with Eqs. (20) and (26) we
conclude that the spinor fields � and � coincide up to a
complex constant factor of modulus 1. The Weyl
Lagrangian is U(1)-invariant, so in Eq. (25) we can replace
� by �, arriving at Eq. (12).

As we have established the identity (25) and as each
equivalence class of coframes is equivalent to a spinor field
� , our field equation (7) is equivalent to

 i��
a _b
frg��a � 0: (27)

The Weyl equation is U(1)-invariant, so in Eq. (27) we can
replace � by �, arriving at Eq. (1). This completes the proof
of Theorem 1.

The detailed calculation leading to Eq. (24) will be
presented in a separate paper.

VI. DISCUSSION

The subject of teleparallelism has a long history dating
back to the 1920s. Its origins lie in the pioneering works of
Cartan, Einstein, and Weitzenböck. Modern reviews of the
physics of teleparallelism are given in [9–15]. Note that
Einstein’s original papers on the subject are now available
in English translation [16].

However, the construction presented in our paper differs
from the traditional one. The crucial difference is our
choice of Lagrangian (6) which is parameter-dependent
and linear in torsion. The vast majority of publications on
the subject deal with parameter-independent Lagrangians
quadratic in torsion. One particular parameter-independent
quadratic Lagrangian has received special attention as it
leads to a teleparallel theory of gravity equivalent (in terms
of the resulting metric) to general relativity; the explicit
formula for this Lagrangian can be found, for example, in
[6,11–15,17,18].

Another difference is that in teleparallelism it is tradi-
tional to vary the coframe without any constraints. This is
because teleparallelism is usually viewed as a framework
for alternative theories of gravity and in this setting the
metric (3) has to be treated as an unknown. We, on the
other hand, vary the coframe subject to the metric con-
straint (3). This is because we view teleparallelism as a
framework for the reinterpretation of quantum electrody-
namics and in this setting the metric plays the role of a
given background.

It is interesting that our model exhibits similarities with
Caroll-Field-Jackiw electrodynamics [19,20]. Both in-
volve a covariantly constant covector field: in our model
it is the lightlike covector field l which is covariantly
constant with respect to the teleparallel connection,
whereas in Caroll-Field-Jackiw electrodynamics it is a

timelike covector field which is covariantly constant with
respect to the Levi-Civita connection.

Our model also exhibits strong similarities with the
‘‘bumblebee model’’ discussed by Kostelecký [21]: our
teleparallel lightlike covector field l plays a role similar
to that of the ‘‘bumblebee field.’’ Of course, in our case this
covector field has a simple physical interpretation: accord-
ing to Eq. (11) it is the neutrino current.

An interesting approach was previously suggested by
Reifler who rewrote [22] the Weyl equation in terms of an
isotropic 3-dimensional Euclidean vector field.

Finally, let us note that the fact that the Weyl equation
can be rewritten in tetrad form is not in itself new as this
was done by Griffiths and Newing [1]; see also Appendix A
below. Our new result is the tetrad representation (6) for the
Weyl Lagrangian.
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APPENDIX A: EXPLICIT FORM OF THE FIELD
EQUATIONS (7) AND (8)

The difficulty with writing down the field equations (7)
and (8) explicitly is that one has to vary the coframe #j and
parameters lj subject to the constraints (3) and (5). The
most straightforward way of implementing these con-
straints is by means of Lagrange multipliers. Such an
approach is, however, impractical as it leads to the intro-
duction of extra unknowns. Below we present a compact
explicit form of the field equations (7) and (8) which does
not use Lagrange multipliers.

Throughout this Appendix we assume the special choice
of parameters (13). The general case reduces to (13) by
means of a rigid Lorentz transformation (9). As in Sec. V,
we assume for definiteness that ��l ^m� � �i�l ^m� and
that l lies on the forward light cone.

The explicit form of the field equation (7) is

 v � 0; (A1)

where

 v� :� frg��l ^m��� �m
�frg�l�

and l and m are elements of the complex coframe (15).
Equation (A1) is taken from Griffiths’ and Newing’s paper
[1]: see formula (2.2) in the latter. Of course, Eq. (A1) can
also be derived by varying our action S�#j; lj� with respect
to the coframe #j; this calculation is lengthy and will be
presented in a separate paper.

Let us examine Eq. (A1) so as to establish the actual
number of independent ‘‘scalar’’ equations contained in it
and the actual number of independent scalar unknowns. It
would seem that (A1) is a system of 4 complex scalar
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equations (4 being the number of components of the cov-
ector v) for 6 real scalar unknowns (6 being the dimension
of the Lorentz group). However, it is easy to see that we a
priori have l�v� � m�v� � 0 so Eq. (A1) is equivalent to
the pair of scalar complex equations �m�v� � n�v� � 0. It
is also easy to see that v is invariant under the action of the
transformation (18), hence the set of solutions to Eq. (A1)
is invariant under this transformation, which means that we
are dealing with a pair of complex scalar unknowns (see
argument in Sec. IV). Thus, Eq. (A1) is a system of 2
complex scalar equations for 2 complex scalar unknowns,
as expected of the Weyl equation.

Note that the scalar �m�v� is also invariant under the
action of the transformation (18) and has the following
geometric meaning: Im� �m�v�� � �L where L is the
Lagrangian (14), whereas Re� �m�v�� � 2frg�l

�.
Let us now derive the explicit form of Eq. (8). In doing

this one should be careful in setting the values of lj to (13)
only after the variations of lj have been carried out.

Derivation of the explicit form of Eq. (8) means finding
critical points of the linear function S�#j; lj� of four real
variables lj subject to the quadratic constraint (5).
Elementary arguments show that (13) is a critical point if
and only if

 ojk
Z
�#0 � #3� ^ #j ^ d#k � 0;

ojk
Z
�#1 � i#2� ^ #j ^ d#k � 0:

Switching to the complex coframe (15) and replacing 4-
forms by equivalent scalars we get

 Im
Z

�m�v�
�������������
j detgj

q
dx0dx1dx2dx3 � 0; (A2)

 

Z
n�v�

�������������
j detgj

q
dx0dx1dx2dx3 � 0; (A3)

where x� are local coordinates on the manifold M; note
that in deriving (A3) we had to integrate by parts in order to
get rid of the term with dn. The system (A2) and (A3) is the
explicit form of the field equation (8).

In the end of Sec. I B we outlined a general argument
explaining why Eq. (8) is a consequence of Eq. (7).
Examination of the explicit form of these equations con-
firms this general observation: Eqs. (A2) and (A3) are
indeed a consequence of Eq. (A1).

APPENDIX B: SUBGROUPS OF THE LORENTZ
GROUP

A subgroup of the restricted (proper orthochronous)
Lorentz group is said to be weakly irreducible if the only
nondegenerate (with respect to the metric) invariant sub-
spaces of the tangent space are f0g and the tangent space
itself. The complete list of weakly irreducible subgroups of
the restricted Lorentz group is given, with a number of
misprints, in Sec. 10.122 of [23].

Let us now look for Abelian subgroups of the restricted
Lorentz group. Of course, any 1-dimensional subgroup is
Abelian, so further on we will only be interested in Abelian
subgroups of dimension greater than 1. One can easily
construct a 2-dimensional Abelian subgroup as follows:
decompose the tangent space into an orthogonal sum of
two nondegenerate 2-dimensional subspaces (one
Lorentzian the other Euclidean), consider 1-dimensional
subgroups acting on the subspaces (Lorentzian boosts and
Euclidean rotations), and then take the product of these two
1-dimensional subgroups. However, such a 2-dimensional
Abelian subgroup is not particularly interesting as it is not
weakly irreducible.

We call an Abelian subgroup of the restricted Lorentz
group nontrivial if it has dimension greater than 1 and is
weakly irreducible. Examination of the list from
Sec. 10.122 of [23] shows that the restricted Lorentz group
does indeed have a nontrivial Abelian subgroup and that
this nontrivial Abelian subgroup is unique up to conjuga-
tion. In SL�2;C� notation the subgroup in question is
written as

 B2 :�
�

1 f
0 1

� ���������f 2 C

�
:

[1] J. B. Griffiths and R. A. Newing, J. Phys. A 3, 269 (1970).
[2] A. D. King and D. Vassiliev, Classical Quantum Gravity

18, 2317 (2001).
[3] D. Vassiliev, Gen. Relativ. Gravit. 34, 1239 (2002).
[4] D. Vassiliev, Ann. Phys. (Leipzig) 14, 231 (2005).
[5] V. Pasic and D. Vassiliev, Classical Quantum Gravity 22,

3961 (2005).
[6] F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman,

Phys. Rep. 258, 1 (1995).

[7] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Quantum Electrodynamics, in Course of Theoretical
Physics, Vol. 4(Pergamon Press, Oxford, 1982), 2nd ed..

[8] R. F. Streater and A. S. Wightman, PCT, Spin and
Statistics, and All That, in Princeton Landmarks in
Physics (Princeton University Press, Princeton, NJ,
2000), corrected third printing of the 1978 edition.

[9] F. W. Hehl, J. Nitsch, and P. von der Heyde, in General
Relativity and Gravitation, edited by A. Held (Plenum,

TELEPARALLEL MODEL FOR THE NEUTRINO PHYSICAL REVIEW D 75, 025006 (2007)

025006-5



New York, 1980), Vol. 1, pp. 329–355.
[10] T. Sauer, Historia Mathematica 33, 399 (2006).
[11] F. Gronwald and F. W. Hehl, in Quantum Gravity (Erice,

1995), The Science and Culture Series–Physics (World
Scientific Publishing, River Edge, NJ, 1996), Vol. 10,
pp. 148–198.

[12] U. Muench, F. Gronwald, and F. W. Hehl, Gen. Relativ.
Gravit. 30, 933 (1998).

[13] V. C. de Andrade, L. C. T. Guillen, and J. G. Pereira,
Teleparallel gravity: An overview (2000), http://arxiv.
org/abs/gr-qc/0011087.
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