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Supersymmetric Q-lumps in the Grassmannian nonlinear sigma models
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We construct the N = 2 supersymmetric Grassmannian nonlinear sigma model for the massless case
and extend it to a massive JN' = 2 model by adding an appropriate superpotential. We then study their
Bogomol’nyi-Prasad-Sommerfield (BPS) equations leading to supersymmetric Q-lumps carrying both
topological and Noether charges. These solutions are shown to be always time dependent even sometimes
involving multiple frequencies. Thus we illustrate explicitly that the time dependence is consistent with

remaining supersymmetries of solitons.
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I. INTRODUCTION

Q-lumps [1] are topological soliton solutions which also
carry a conserved Noether charge Q [2] in a class of non-
linear sigma models of massive Kéhler or hyper-Kihler
models [3]. Unlike the pure topological solitons which are
unstable against the size perturbation [4], these configura-
tions are prevented from collapsing through time-
dependent internal rotations and the size is determined
by the conserved Noether charge. It is essential to have a
potential term of specific form which is just a mass term in
the linearized theory and it is known that, for a Kahler
sigma model, Q-lumps can exist only if the target manifold
has a continuous symmetry with at least one fixed point [3].

For any given value of Q, this potential term enables the
existence of the Bogomol’nyi-Prasad-Sommerfield (BPS)
bound, which guarantees that the Q-lumps minimize their
energy. It is known that the specific potential naturally
arises from the supersymmetric generalization of the bo-
sonic nonlinear sigma model [3].

QO-lumps involve a nonvanishing kinetic contribution
due to their time dependence and such configurations
attracted a great deal of recent interest in the study of
BPS solutions with nontrivial kinetic terms in both field
theory and string theory [5—-7]. On the other hand, more
explicit construction of the supersymmetric generalization
of the original massive O(3) [1] and the Kihler [3] non-
linear sigma model solitons in 2 + 1 dimensions seems to
be lacking. In view of the growing interest on the subject, it
would be desirable to investigate the roles of the super-
symmetries in detail.

In this paper, we study the supersymmetric
Grassmannian nonlinear sigma model in 2 + 1 dimension
[8] and its Q-lump solutions. We first construct a N = 2
supersymmetric massless model from N = 1 superfield
formalism in constrained variable approach by eliminating
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the auxiliary fields. We then extend it to the massive N =
2 model by adding an appropriate superpotential term."
The corresponding sets of BPS equations can be studied
either by the method of completing squares or by directly
finding conditions for the remaining supersymmetries. The
former leads to sets of conditions for the saturation of the
BPS energy bound by charges while the latter leads to
conditions for preserving a fraction of supersymmetries.
We shall find that the sets of BPS equations from the
former are more general than those from the latter unlike
the cases of previously known examples. The resulting
Q-lump solutions are always time dependent. Thus this
illustrates the consistency of time dependence of solutions
and remaining supersymmetries. We also discuss the
supersymmetric multiply charged Q-lump solution that
involves time dependence of many frequencies. The exis-
tence of such solutions is highly nontrivial since the sectors
of different frequencies are interacting with each other.

The kinetic energy due to the time dependence cannot be
relaxed at least classically due to the BPS bound and the
conservation of the topological and electric charges. When
there are enough number of remaining supersymmetries,
the kinetic energy can be protected even from the quantum
corrections.

In Sec. II, we will set up our notations and introduce the
N = 2 massless Grassmannian nonlinear sigma model. In
Sec. III, we extend the massless model to the massive one
with N = 2 supersymmetries by adding an appropriate
superpotential. We then study the BPS equations by com-
pleting squares. In Sec. IV, we obtain conditions for the
remaining supersymmetries leading to 1/2 BPS states and
discuss solutions of BPS equations. In Sec. V, the multi-
charged Q-lump solutions involving many frequencies are
constructed. The last section is devoted to concluding
remarks.

IThere have been some constructions of d =2 N" = 2 mas-
sive nonlinear sigma models [9]. See also Ref. [10] for the d = 4
N = 2 massive sigma models.
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I1. SUPERSYMMETRIC GRASSMANNIAN MODEL
IN THREE DIMENSIONS

In this section we introduce the N° = 2 supersymmetric
Grassmannian nonlinear sigma model for the massless
case. It is basically a nonlinear sigma model with a target
space of the Grassmannian manifold but also possesses the
N = 2 extended supersymmetries. To make this note self-
contained, let us begin by setting up some notations. The
superspace Z = (x, 6) is given by a spacetime coordinate x
and an anticommuting coordinate 6 which is a two-
component Majorana spinor 6 [11].

In 2 + 1 dimensions, the Dirac algebra is given by three
2 X 2 matrices y* with

Y=oy v =ios, v =ioy, 2.1

where the ¢’s denote the Pauli matrices and the index u
runs over 0, 1, 2. They satisfy the Clifford algebra

{y#, "} =29*,

where 7n*” is the Minkowski metric of signature
(1, =1, —1). We introduce the two-component Majorana

spinor 6
_[t
0_[%}

satisfying the anticommuting relation, {6,,, 6 5} = 0, where
the adjoint of a spinor is, as usual, § = T y°. For bosonic
variables, we use the notation b = bt.

The Grassmannian manifold, Gr(N, M), is the homoge-
neous space defined by U(N + M)/U(N) X U(M). The
N =1 scalar superfield ® for the Grassmannian model
can be written in component form as

D(x, 0) = P(x) + Op(x) + 100 F(x),

(2.2)

o=10" 6], (2.3)

(2.4)

where every component is an (N + M) X M matrix valued
field. The action for the supersymmetric Grassmannian o
model is given by supersymmetrizing the bosonic model

[8]
Sy = f Pxd? O ef{VOVD + 23(DPD — [y}, (2.5)

where V,® = D, ® — i®PA, is the gauge covariant de-
rivative with D, = # — i(y*),9, being the supercovar-
iant derivative, and A, is a real M X M matrix spinor
gauge superfield given in the Wess-Zumino gauge by

Ay = i(y#0),A, + 1000, (2.6)

The superfield % denotes an M X M matrix valued
Lagrange multiplier

Sy = 0 + 0& + 1000, 2.7

and the corresponding supersymmetric constraint is ® =
Ly, where Iypyy is the M X M identity matrix. In
component forms, this becomes ¢ =1, y¢p = dy =
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0, ¢F + F¢p — iy =0, which we assume to hold
throughout this paper.

The above action (2.5) is invariant under global SU(N +
M) transformation ® — GO, G € SU(N + M) as well as
the gauge transformation given with U € U(M) as

®— U, A, — UA,U +iUd,U. 2.8)

The U(M) covariant derivative is defined as D, ¢ =
A, +idA, wit'h the field strength given by F,, =
d,A, —d,A, —i[A, Al

In component form, the supersymmetric Grassmannian
model yields

Sy = [ d3xtr{(D#q_S)D/‘¢ +ipy* D, + FF
FLdbw =568y + o(BF — jur+ F)
—GEY— TED + (b - 1)}. 2.9)

By the construction, the system is invariant under the
supersymmetry transformations

8¢ =eyh, O = ey, (2.10)
Sy = ey F — iyt ey (D, @),
Vet =iy eu(Dyg @.11)
O = Féy + i(D,P)EyvH,
SF = —i&yy D, i + %EM¢w,
: (2.12)
— . - 1 _ -
OF = i(D ) y* ey — 5@ & €y,
i
8A, = Z(EMVM“’ — @Y, €n), (2.13)

ow = _%F,LLVEM[’}/#’ yy]r
(2.14)

ow = %[YM: ’yV]GMF,LLV)

where €,, denotes an anticommuting Majorana spinor.
One may eliminate the auxiliary fields using their equa-
tions of motion,

F=—-o0¢, o= =y,
A, =idd, ¢+ Iy,

The resulting action takes the form

(2.15)

So = j d3xtr{|D,L¢|2 T ifyrD, Y+ %(WP}
= /aﬂxtr{laﬂ(blz + iyt
_ 1 - 1 -
(98,0 + 3dva) +p@wrl @16

Here comes the observation of Refs. [12,13], which deal
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with the case of CP(n) only. Namely the system in (2.16)
has in fact N = 2 extended supersymmetries. The trans-
formation rules are almost the same as before but the
Majorana spinor €,, is now replaced by a complex Dirac
spinor €. Explicitly the N = 2 SUSY transformation rules
are

op = €y, 8¢ = e,

Sy = Jepiih — iyred, ¢ + yred(idd, ¢ + 3y ),

Sp=hpdpe+io, pey” + (ida, ¢ + 3y ) ey*.
2.17)

Note that, in this description, the constraint, ¢ = y¢p =
0, is only solved implicitly but one can check that this
condition is invariant under the transformations in (2.17).

For the study of the BPS equations, it is convenient to
introduce the complex coordinates,

= %(}Cl + i)Cz), (218)

and 9. = %(81 ¥ id,), and As = %(Al ¥ iA,), where
(+, —) refer to the holomorphic/antiholomorphic compo-
nent of vectors in two spatial dimensions.

In considering BPS configurations, we shall consider
purely bosonic configuration only by setting all the fermi-
onic part to zero. By completing squares, the Hamiltonian
H of the bosonic part only can be rearranged by

H= /d2xtr(|D0¢|2 + 1D, ¢* + |D_¢?)

- jd2xtr(|D0¢|2 4 2D2 ) F 20T = 24T,
(2.19)

where the topological vortex number 7', which can be
written as a boundary term, is defined by

T= i fdetf(fij(Di¢)*Dj¢)

=L jf dx; tr(t 9, ). (2.20)
27 Joo
Thus for a given sector of the vortex number, the

Hamiltonian is bounded from below. The saturation of
the bound occurs if the BPS/anti-BPS equations,

dop =0,

are satisfied where we refer the upper/lower signature for
the BPS/anti-BPS sector, respectively.

The solutions of these equations correspond to the well-
known holomorphic/antiholomorphic vortices of the two-
dimensional nonlinear sigma model [8], which are obvi-
ously time independent as required by the BPS equations.
We shall not discuss their properties any further here.

D.¢ =0, (2.21)
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III. MASSIVE N = 2 MODEL AND
TIME-DEPENDENT BPS SOLITONS

In this section, we would like to introduce first the
massive Grassmannian sigma model with N = 2 super-
symmetry. One can make the sigma model massive by the
introduction of an appropriate superpotential as we shall
explain below. We then find the corresponding BPS equa-
tions by the methods of completing squares of Hamiltonian
as in the previous section.

We begin by introducing a superpotential of the follow-
ing form,

W(P) = lradPd, 3.1

where P is the (N + M) X (N + M) Hermitian projection
matrix satisfying P> = P and o is a real positive number.
Performing the 6 integration, the action in a component
form reads

S, = fd3xw tr(pPF + FPp — ¢Py). (3.2)
Then let us consider the total action S = S, + S; with §; in
(2.9). It has manifest N = 1 supersymmetry by construc-

tion. Eliminating the auxiliary field by using the equations
of motion,

F=wP¢ — ¢o, o=wdpPp — %1,/_/1,0, (3.3)
Ay =idd,d + 3y, '
the action becomes
S = fd3xtr{|DM¢|2 + ilZ/y/’“DM¢I + <a)(£P¢> - %11790)2
— w’PpPop + a)lZPl//}
= fd3xtr{|8#¢|2 + iyt
_ 1 - - 1 -
(90,6 + 5y,0) + (wdPo— 3 du)
— w?pPp + wl/}Pl//}. (3.4)

One may then show that the above action is invariant under
the following N° = 2 supersymmetry transformations

Sp=¢ph 8¢ =
S = Gy + w(Pp — pdPP)) — iy*ed, b (3.5)
+ yred(ida, ¢ + Ly i),

8 = G + w(PP — pPPP)E + 0, P & y*
+(ida,ud + Wy )P eyt

by a straightforward computation. In addition, one may

check that the constraint, ¢y = y¢p = 0, is also invariant

(3.6)
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under the N = 2 transformations, which insures the con-
sistency of our approach.

Note that the theory possesses also a global symmetry
defined by

8¢ = iPo, 8¢ = —igP.

The expression for the corresponding conserved current
density is given by

JE = itw((D* )P — PH(D* b)),

and below we shall make use of the resulting Noether
charge

3.7)

(3.8)

0=-i f Pxt((Dyd)BP — PH(DyP).  (3.9)
Note that the Hamiltonian, including the contribution from
the superpotential, takes a form,

H= / Pxti{|Dydl + D2 + 0(BPS — (FPSH)),
(3.10)

where only bosonic parts are turned on.
Again by the methods of completing squares, one part of
Hamiltonian, H;, can be rearranged by

H, = ] Ext{Dodl? + 0 (FPd — (FPS))}

- fdzxtr((l — b Pigd F iwPH) * 00 = *00,
G.11)

and the remaining part by
H, = [dzxtrIDid)I2 = Z/dszDiqSP * 27T = X27T.
(3.12)

The inequality, H = *27T £ w(Q, then holds for any
independent combination of the first and the second sig-
natures in front of 7 and Q. Thus we conclude that the
Hamiltonian is bounded from below by

H =27|T| + wl|Q)|. (3.13)

The saturation of the bound occurs if the following
equations

dob = *iwPh, Do =0, (3.14)

for any combination of signatures. Namely there are four
branches of BPS equations saturating the bounds. From
this purely bosonic consideration, the four branches are
equally well served as a set of BPS equations, whose
solutions are bounded from below by their topological
and electric charges.

For instance, with dy¢ * iwP¢ = 0, the Noether
charge satisfies
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+Q= 2wfd2xtr[(1 —pP)PH(PH)t]=0 (3.15)

and, in the right side of the inequality of (3.11), the con-
tribution of the charge Q is always positive definite upon
the saturation of the bound. Likewise, one can also show
that, if D+¢ =0, =T = 0, respectively and, thus, the
right-hand side of (3.12) is always positive definite when-
ever one has the saturation of the inequality.

Among the four branches in (3.14), only two combina-
tions of signatures, (—, +) and (+, —), will be shown to be
consistent with the remaining supersymmetries in the next
section. The remaining two describe nonsupersymmetric
solitons in a strict sense of remaining supersymmetries.

IV. REMAINING SUPERSYMMETRIES AND
EXAMPLES

In this section, we would like to show that the time-
dependent Q-ball of the previous section preserves 1/2 of
the supersymmetries for some particular branches. Since
the fermionic part of solutions are assumed to vanish, the
variation of the fermionic part has to be zero for any such
solutions preserving some supersymmetries. Thus we
would like to show that the variation of the fermionic
component

8¢ = (—iy’Do¢ + (PP — pP))e

—i(y'Dy¢ + y,Dr )€ 4.1)

vanishes for some nontrivial constant €. The remaining
supersymmetries are parametrized by €. = p. e where
we introduce the projection operators by

. 1+ i'yl'y2

5 4.2)

P+
that satisfies p2 = p-.. Then, for this remaining space, the
fermionic variation becomes

& = (i(1 = ¢pP) (=g + iwPP)

— iy (D ¢ ¥ iDy¢))€-. 4.3)
Thus, for this expression to be zero for nontrivial €, /€_,
one needs

80¢ = Ile¢,

D.¢ =0, (4.4)

respectively for the upper/lower combination of signs.
These are precisely the two branches of (+, —) and
(—, +) combinations in (3.14). Thus we verified that only
the two branches are really consistent with the remaining
supersymmetries.

The solutions involve the nonzero electric charges to-
gether with the magnetic vortex charge. Because of the
BPS equation, the solution has to be time dependent. The
time dependence can be solved rather trivially by
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Pp = e @ Pe(x;, x,), P ¢ =Py do(x), x2),
4.5)

where P; = 1 — P and ¢, is time independent. Thus we
have shown that the supersymmetry can be preserved even
for the configurations with an explicit time dependence.
The solitons here are the supersymmetric Q-balls, whose
description involves an explicit time dependence
inevitably.

Note that the BPS solutions have nonvanishing electric
and magnetic fluxes. It is worthwhile to give an explicit
example, and we concentrate on the simple case of CP(n),
which corresponds to the Grassmannian manifold of
M =1 and N =n. Then explicitty one has ¢’ =

(b1, Do -+, by Pry1) and chooses the projection matrix
P by
P = diag(1,1,1,---,1,0). (4.6)
Let us introduce the projective coordinate ¢ via
T 1
d) :—(51» 52’ T §n> ]) (47)
L+ 1417
The first equation of (3.14) is solved by
& = exp™i9tg, 4.8)

where &, is time independent. The second equation is
solved then simply by demanding &, as an antiholomor-
phic/holomorphic function (i.e. £y(2)/&0(z)) for +/— sig-
natures, respectively. The corresponding topological
charge T and the Noether charge Q are expressed by

_ i 2 axlffaxzf_angTaxlf
B0 R e e
=i | atéﬁ‘f_éﬁat‘f 4.10
0=i[BEagEt @

We note that the above solution reproduces the previous
Q-lump solution of Refs. [1,3].

V. TIME-DEPENDENT Q-BALLS WITH
MULTIFREQUENCY

The potential in (3.1) can be extended further by con-
sidering
W(®) = ludMd, (5.1)
where M:kak with PkPk:Pk and PkPl:Pk(Skl'
Then after eliminating the auxiliary fields, the action
with N = 2 supersymmetries becomes

PHYSICAL REVIEW D 75, 025004 (2007)
_ _ 1. \2
S = fd3xtrt|DM¢|2 + iy D, + <¢M¢ - 5«,/@)
— g2 + &Ml/f}

= fd*xxtr{la#d)lz + iyt
(i, + sy + (0~ i)

— oM + J/Mw}. (5.2)
Then the analysis of the previous section can be repeated
with these multiple projection operators. Since the analysis
is pretty much the same, we shall present only the result
here. One may show that the Hamiltonian is bounded from
below by

H = 27|T| + Y ol Qyl, (5.3)
k

where the charge Q, is defined by
0. = =i [ Exu(Dy$)dP, ~ P, 54

The saturation of the bound leads to the BPS equations,
do¢ = i> € Prd, Dicp =0, (5.5)
3

where €; can be either +1 or —1 denoting independent
signatures.

One may further verify that, among these, only two
combinations,

dop =Fiy o P, D+ =0, (5.6)
k

are consistent with the remaining supersymmetries.
As before, the time dependence of the BPS solution can
be solved generically; for each sector of Py, one has

Prp = €' Ppo(xy, x2), (5.7)
and, for the remaining part,
P = Pox;, x2), (5.8)

where P, denotes now 1 — >, P,. This time dependence is
highly nontrivial in the sense that the sectors of fields
defined by the projection P, interact with each other
nontrivially.

VI. DISCUSSIONS

In this paper, we construct the N = 2 supersymmetric
Grassmannian nonlinear sigma model for the massless case
first and extend it to the massive N = 2 by adding the
appropriate superpotential. This massive model allows
Q-lump solutions that carry both the topological and the
Noether charges. We study the corresponding BPS equa-
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tions via two methods. One is using the method of com-
pleting squares in the Hamiltonian, by which one may find
that the Hamiltonian is bounded from below by the
charges. The other is directly finding required conditions
for the solutions to preserve a fraction of supersymmetries
using the supersymmetry variation of the fermionic part.
These two methods have been giving equivalent sets of
BPS equations, within the present authors’ knowledge, for
any supersymmetric theories. In the present case, however,
we find at the end of Sec. III that the former leads to the
more general sets of BPS equations than those from the
latter. In a strict sense, the latter is the precise way of
getting supersymmetric solitons, whose supersymmetric
multiplet has to be short by definition.

These Q-lumps are always time dependent as dictated
by the BPS equations. Thus it is clear that the explicit time
dependence can be consistent with the remaining super-
symmetries. Supertubes [7], for instance, also carry the
kinetic components corresponding to the nonvanishing
electric fields but the solutions are time independent unlike
the Q-lump solution discussed here. We also discuss the
supersymmetric Q-lump solution that involves the time
dependence of even multiple frequencies. The existence
of such solutions is highly nontrivial since the sectors of
different frequencies are interacting with each other in a
nontrivial manner.

PHYSICAL REVIEW D 75, 025004 (2007)

One curious question is whether the system allows 1/4
BPS equations or not where the remaining supersymmetry
is just one Majorana component. In the case of N =4
super Yang-Mills theories, the BPS equations correspond-
ing to one Majorana component, i.e. 1/16 supersymmetry,
have been constructed [14]. For some N = 2 theories,
1/8 BPS states are classified as well [6]. Finally, in this
paper, we did not investigate the detailed properties of the
supersymmetric Q lump solutions including their moduli
dynamics, interactions, and so on. These require a further
study.
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