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A four-dimensional field theory with a qualitatively new type of nonlocality is constructed from a
setting where Kaluza-Klein particles probe toroidally compactified string theory with twisted boundary
conditions. In this theory fundamental particles are not pointlike and occupy a volume proportional to
their R-charge. The theory breaks Lorentz invariance but appears to preserve spatial rotations. At low
energies, it is approximately N � 4 Super Yang-Mills theory, deformed by an operator of dimension
seven. The dispersion relation of massless modes in vacuum is unchanged, but under certain conditions in
this theory, particles can travel at superluminal velocities.
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I. INTRODUCTION

Violation of Lorentz invariance at high energies is an
interesting theoretical possibility, and it is important to
explore possible extensions of the standard model, and
field theories in general, that incorporate it. Indeed, there
exists a large body of work that covers various aspects of
possible Lorentz-violating extensions of field theories (see
[1–5] and references therein for a small sample of a vast
literature). Many models of this kind start by adding to the
Lagrangian a Lorentz-violating term that is an IR-
irrelevant local operator (so that the low-energy behavior
will be unaffected), and then there arises the question of
whether a consistent UV-completion exists.

Consider, for example, adding a local Lorentz-violating
term to N � 4 super Yang-Mills (SYM) theory. By them-
selves, terms of conformal dimension �> 4 lead to a
theory that is not UV-complete. Nonetheless, some ex-
amples of UV-complete Lorentz-violating deformations
of SYM are known. One example is SYM on a space of
noncommutative geometry [6]. There, at low energy the
deformation operator is a 2-form of dimension � � 6,
which breaks the Lorentz group to SO�2� � SO�1; 1�.
Another example is dipole theory [7] where at low energy
the deformation operator is a spacetime vector of dimen-
sion � � 5, which breaks the Lorentz group to SO�2; 1�. In
both examples, UV-completeness is maintained because, in
addition to the leading deformation operator, the
Lagrangian has an infinite number of nonrenormalizable
local terms, which sum up to renormalizable nonlocal
interactions. Both examples can be realized in string theory
[8–10]. A general discussion of nonlocality and its relation
to a consistent UV-completion of nonrenormalizable inter-
actions appeared recently in [11].

For phenomenological applications, and also for theo-
retical exploration, it would be interesting to have new
examples of Lorentz-violating theories that break
SO�3; 1� to SO�3�, thus preserving spatial rotations. In

this paper I propose a string theoretic construction of
such a nonlocal, Lorentz-violating field theory. The theory
is a deformation of N � 4 SYM, and the deformation
parameter has the dimensions of volume. This defines a
new kind of nonlocality which is fundamentally different
from the two examples mentioned above.

The construction, which involves brane probes in type-II
string theory, is presented in Sec. II. In Sec. III
Bogomol’nyi-Prasad-Sommerfield monopoles (BPS)
bounds on energies of states with electric and magnetic
fluxes are presented and interpreted. Section V concludes
with a discussion of various novel effects in this theory,
including superluminal velocities.

II. CONSTRUCTION

The formulation of the new nonlocal field theory is
inspired by Douglas and Hull’s construction of gauge
theories on a noncommutative torus [8]. Douglas and
Hull started with a compactification of type-IIA string
theory on a small T2 and considered n coincident D0-
branes in the limit where the area of the T2 approaches
zero. This setting is T-dual to type-IIA on a large T2 with n
D2-branes, and can be described by a U�n� Super Yang-
Mills (SYM) theory at low energy. But if an NSNS 2-form
flux B is turned on along the T2, T-duality does not map a
small T2 to a large one. Rather, as Douglas and Hull
argued, in an appropriate limit the D2-branes are described
by a field theory with nonlocal interactions. It is a defor-
mation of SYM theory that can be formally interpreted as a
field theory on a torus whose coordinates are
noncommutative.

Let us now turn to our construction. Start with type-IIA
string theory on T3, and let the compactification radii be
R01, R02, R03. Denote the type-IIA string scale byM0st, and the
type-IIA string coupling-constant by g0st. Now add a
Kaluza-Klein particle with n units of momentum in the
1st direction, and take the limit

 R01 ! 0; M0stR
0
1 ! 0; M03stR

0
1 ! 1; (1)*Electronic address: origa@socrates.berkeley.edu
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 g0st ! finite; M0stR
0
k ! finite; �k � 2; 3�: (2)

An appropriate U-duality transformation transforms this
setting to a configuration of n uncompactified D3-branes.
Specifically, T-duality in the 1st direction, followed by
S-duality, followed by T-duality in the 2nd and 3rd direc-
tions converts the Kaluza-Klein particle to n D3-branes
compactified on T3 with compactification radii

 R1 �
1

M02stR
0
1

; Rk �
g0st

M03stR
0
kR
0
1

; �k � 2; 3� (3)

and type-IIB string scale and coupling-constant

 Mst � M0st

�
M0stR

0
1

g0st

�
1=2
; gst �

1

M02stR
0
3R
0
2

: (4)

Note that the original type-IIA coupling-constant is given,
in terms of the type-IIB parameters gst, R1, R2, R3, by

 g0st �

�
R2R3

R2
1gst

�
1=2
:

In the limit (1) and (2), the type-IIB T3 becomes large,

 MstR1 �
1

�g0stM
0
stR
0
1�

1=2
! 1; (5)

 MstRk �
1

M0stR
0
k

�
g0st

M0stR
0
1

�
1=2
! 1 �k � 2; 3�; (6)

while the type-IIB string coupling-constant and the shape
of the type-IIB T3 stay fixed,

 gst ! finite;
Rk
R1
�

g0st

M0stR
0
k

! finite; �k � 2; 3�:

Thus, in the limit (1) and (2), the Kaluza-Klein particle is
described at low-energy by U�n� N � 4 SYM with finite
coupling-constant g2

ym � 2�gst, compactified on a large T3

of radii R1, R2, R3.
Similarly to Douglas and Hull’s B-field flux [8], we now

add an obstruction that will prevent U-duality from pro-
ducing a large T3 on the type-IIB side. Unlike Douglas and
Hull’s construction, however, our obstruction will not be a
flux but a geometrical twist. A geometrical twist in the 1st
direction is defined as follows. Start with flat space R9;1,
and let t; x1; . . . ; x9 be Minkowski coordinates so that the
metric is

 ds2 � �dt2 �
X9

i�1

dx2
i :

Now pick a constant matrix � 0 2 so�6� and make the
global identification

 x1 � x1 � 2�R01; xa�3 �
X6

b�1

�exp�2�� 0�	baxb�3

�a � 1; . . . ; 6�:

(7)

In other words, we mod out R9;1 by a discrete group
generated by a simultaneous translation in the 1st direction
and rotation in directions 4,. . .,9. This group has no fixed
points, and can easily be extended to act on the spin-
structure of R9;1, by taking exp�2�� 0� in a spinor repre-
sentation of so�6�. (Such spaces have had many theoretical
applications in string theory, a sample of which is listed in
[12–22] and references therein.)

Next, we compactify the 2nd and 3rd directions on
circles of radii R02, R03 with the usual identifications xk �
xk � 2�R0k �k � 2; 3� and use the resulting space as a type-
IIA background.

We continue as in the beginning of this section; we probe
the background with a Kaluza-Klein particle with n units
of momentum in the 1st direction, and we take the limit (1)
and (2), combined with

 � 

g02st

M08stR
03
1 R
0
2R
0
3

� 0 � � 0R1R2R3 ! finite: (8)

Here R1, R2, R3 are still defined by (3), but they are no
longer the geometrical compactification radii. The goal of
this paper is to argue that in the limits (1), (2), and (8) the
Kaluza-Klein particle is described at low-energy (below
the string scale) by a nonlocal field theory that breaks
Lorentz invariance but preserves rotational invariance.
We will see that in the IR limit it can be approximated
by N � 4 SYM deformed by a dimension � � 7 operator,
the deformation parameter � having dimension (� 3). For
reasons to be explained in Sec. II B, I will refer to this
conjectured field theory as puffed field theory (PFT). It will
be useful to also consider the case where R1, R2, R3 are
large but finite: R1, R2, R3 � M�1

st . I will refer to this
theory as PFT formulated on T3 and to R1, R2, R3 as the
formal compactification radii.

A. Supersymmetry

Before we proceed to explore the unique properties of
PFT, we have to digress and discuss the conditions on � 0

that are required for PFT to be supersymmetric. Preserving
some amount of supersymmetry is important, because non-
perturbatively, the generic background (7) can be unstable.
The stability of similar solutions has been analyzed in [13–
16], and the generic background can decay either by a
process of ‘‘bubble-of-nothing’’ nucleation or by a process
reminiscent of Schwinger pair-production. However, these
mechanisms do not destabilize the vacuum if supersym-
metry is preserved.

It is not hard to see that the background defined by the
identification (7) preserves 8 supersymmetry generators if
� 2 su�3� � so�6�. We can choose a coordinate basis
where � is of the form

ORI J. GANOR PHYSICAL REVIEW D 75, 025002 (2007)

025002-2



 � �

0 �1 0 0 0 0
��1 0 0 0 0 0

0 0 0 �2 0 0
0 0 ��2 0 0 0
0 0 0 0 0 �3

0 0 0 0 ��3 0

0
BBBBBBBB@

1
CCCCCCCCA
2 so�6�:

(9)

Then, 8 linearly independent supersymmetry generators
are preserved if �1 � �2 � �3 � 0. If further �3 � 0
then 16 supersymmetries are preserved. On the other
hand, if for all combinations of ( ) signs �1  �2 
�3 � 0, then no supersymmetry is preserved. In what
follows, unless stated differently, I will assume that �1 �
�2 � �3 � 0. The presence of n units of Kaluza-Klein
momentum in the construction of PFT breaks additional
supersymmetry, and thus PFT preserves 4 generators if
�1 � �2 � �3 � 0 and 8 if �1 � ��2 and �3 � 0.

B. R-charge and nonlocality

What does PFT look like? I do not know the full
Lagrangian description of PFT, but it is possible to make
several observations without a full Lagrangian. In Sec. III
exact results for some low-lying energy states are pre-
sented, and in Sec. IV a Lagrangian description up to order
O��� is discussed. These results suggest that PFT is a
nonlocal theory with a unique structure of nonlocality. In
a nutshell, it can be summarized as follows: R-charge in
PFT carries an intrinsic volume proportional to � .

This means the following. In pure N � 4 SYM, the
R-symmetry is SU�4� and R-charge Ĵ is an element of
the Lie algebra su�4� ’ so�6�. The generic parameter �
of PFT breaks SU�4� down to its Cartan subalgebra
U�1�3 � SU�4�, because the Cartan subalgebra is the sub-
group that commutes with a generic element � 2 su�4�. If
� is such that N � 2 is preserved (see Sec. II A) then the
R-symmetry is broken down to U�1� �U�2� � SU�4�. To
cast the ‘‘nutshell’’ statement above in a formula, we
associate with R-charge Ĵ, which is an element of the
appropriate unbroken subalgebra of the Lie algebra
su�4�, an intrinsic volume

 

~V 
 1
2�2��

3 TrfĴ�g; (10)

where both Ĵ and � are understood as elements of the Lie
algebra su�4� ’ so�6�, and the trace is taken in the repre-
sentation 6. The volume in (10) can be positive or negative,
which corresponds to opposite orientations.

In pure N � 4 SYM, the six scalars are in the represen-
tation 6 of su�4� and the fermions fit into the representa-
tions 4 and �4. In PFT, if we take � of the form (9), then
objects with the same R-charge as the components of the
scalars acquire, according to (10), volume factors �1,
�2, �3. Similarly, objects with the same R-charge as
the components of the fermions acquire volume factors
��1  �2  �3�=2.

The heuristic picture advocated in (10) can be under-
stood from the construction of Sec. II as follows. Consider
first the geometric-twist background (7), and define the
change of variables

 �ae
i�a 
 x2a�2 � ix2a�3; a � 1; 2; 3:

An arbitrary scalar field in the geometry (7) can be ex-
panded in a Fourier series as follows
 

��t; x1; . . . ; x9� �
X

j1;j2;j3

X
k

�j1j2j3k�t; x2; x3; �1; �2; �3�

� ei
P

3
a�1

ja�a exp
i�k�

P3
a�1 �

0
aja�x1

R01
;

(11)

where �j1j2j3k are arbitrary functions, and I have taken � 0 to
be of the form

 � 0 �

0 �01 0 0 0 0
��01 0 0 0 0 0

0 0 0 �02 0 0
0 0 ��02 0 0 0
0 0 0 0 0 �03
0 0 0 0 ��03 0

0
BBBBBBBB@

1
CCCCCCCCA
; (12)

which matches (8) and (9) if

 �a 

g02st

M08stR
03
1 R
0
2R
0
3

�0a; a � 1; 2; 3: (13)

Equation (11) is the general expression that satisfies the
periodic boundary conditions set in (7), and it can be
interpreted as follows [22]. Let

 P01 

k�

P3
a�1 �aja
R01

(14)

be the Kaluza-Klein momentum in the 1st direction, and let

 Ĵ �

0 �j1 0 0 0 0
j1 0 0 0 0 0
0 0 0 �j2 0 0
0 0 j2 0 0 0
0 0 0 0 0 �j3

0 0 0 0 j3 0

0
BBBBBBBB@

1
CCCCCCCCA
; (15)

be the angular momentum matrix. The unbroken rotation
algebra is so�2� � so�2� � so�2� � so�6�, and I used the
embedding in so�6� to express Ĵ as a 6� 6 matrix, which
will make the notation more convenient. Equation (11)
implies a linear relation between the fractional part of
P01R

0
1 and the angular momentum Ĵ,

 P01R
0
1 �

1
2 Trf� 0Ĵg �mod Z�: (16)

Now let us inspect (16) after the U-duality transformation
(3) and (4) is performed, and after the limits (1), (2), and
(8) are taken. P01R

0
1 becomes the effective number of D3-
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branes neff , and we learn from (16) that it is fractional,
formally! The fractional part is given by

 neff �
1
2 Trf� 0Ĵg � 1

2�R1R2R3�
�1 Trf�Ĵg �mod Z�;

(17)

where I have used (3), (4), and (8) to replace � 0 with � . The
total volume that this effective fractional number of D3-
branes occupies is

 �2��3R1R2R3neff �
1
2�2��

3 Trf�Ĵg: (18)

Thus, a state with R-charge Ĵ in PFT heuristically behaves
as if it has an extra finite chunk of D3-brane of finite
volume 4�3 Trf�Ĵg, as stated in (10). Of course, conven-
tional type-IIB string theory does not have such an ‘‘open’’
D3-brane. We will, however, see below that thinking about
PFT in this way is very convenient.

III. ELECTRIC AND MAGNETIC FLUXES

PFT depends on two parameters—the dimensionless
coupling-constant gym, and the dimension � � �3 pa-
rameter � , which scales like volume. From here until al-
most the rest of this section, the discussion will be
restricted to a value of � that preserves 8 supersymmetries
(see Sec. II A). It is then possible to provide a BPS bound
on the energy of a state in PFT (formulated on T3) with
given momentum, electric and magnetic flux, and
R-charge. The R-charge is taken in the form of (15) with
j1 � �j2 
 j and j3 � 0, and thus is specified by the
single integer j.

The BPS bound can be easily derived from the central
charge of the supersymmetry algebra in the flat supersym-
metric background defined by the boundary conditions (7).
Note that because of the presence of � 0 in (7), if we define
the Kaluza-Klein charge to be an integer, the central charge
will be augmented by a term proportional toR-charge, as in
the numerator of the right-hand side of (14).

Before proceeding to the BPS formula, let me note that
the BPS bound can also be derived by realizing the setting
from the beginning of Sec. II as a decompactification limit
of a certain configuration of charges in type-IIA string
theory on T6. Electric and magnetic flux can then be
realized as fundamental string and D1-brane winding num-
bers. We also need to realize the R-symmetry charge j and
the geometrical twist parameter �. A Kaluza-Klein mono-
pole can do the job for us.

Take a Kaluza-Klein monopole with one unit of charge
dual to Kaluza-Klein momentum in the 6th direction. For
large R6, in the absence of other excitations, it can be
described by the Taub-NUT metric:

 

ds2 � �dt2 �
X5

i�1

R2
i dx

2
i

�

�
1�

R6

2r

�
�1
R2

6

�
dx6 �

1

2
sin�d�

�
2

�

�
1�

R6

2r

�
�dr2 � r2�d�2 � sin2�d�2�	: (19)

This metric has an isometry corresponding to the Killing
vector @=@x6. The isometry has fixed points at r � 0 where
it acts nontrivially as a rotation of the tangent space. By
modifying the periodicity conditions on the coordinates to

 x6 � x6 � 2�N1 � 2��0N2; x1 � x1 � 2�N2;

�N1; N2 2 Z�;
(20)

where �0 
 �=�R1R2R3�, we can realize the geometry (7)
near the origin r � 0 of (19), in the limit R6 ! 1. (A
similar setting was also used in [23] to construct the dual of
�p; q� 5-branes, and in [24] to solve the moduli space of
certain gauge theories with twisted boundary conditions.)
From the point of view of type-IIA string theory on T6, all
that (20) does is change the asymptotic metric on T6 at
infinity. Specifically, the T2 in the 1st and 6th directions
now has a complex structure given by � � �0 � i�R1=R6�.
We can then borrow BPS bounds [25] on the mass of a
configuration of charges (a ‘‘black-hole’’) in toroidally
compactified type-II string theory to construct BPS bounds
on the energy of states in PFT. In particular, the Kaluza-
Klein momentum in the 6th direction is 2j.

I will now present the result, after the appropriate limits
are taken. Let k1, k2, k3 2 Z be the integer Kaluza-Klein
charges (the quantized units of momenta), let e1, e2, e3 2
Z be the number of units of electric flux, and let m1, m2,
m3 2 Z be the number of units of magnetic flux, in direc-
tions 1, 2, 3, respectively. Set

 V 
 R1R2R3; (21)

and let n̂1, n̂2, n̂3 be unit vectors in directions 1, 2, 3,
respectively, and define the spatial momentum vector

 P 

X3

i�1

ki
Ri

n̂i; (22)

and spatial electric and magnetic field vectors

 E 

X3

i�1

eiRi
2�V

n̂i; B 

X3

i�1

miRi
2�V

n̂i: (23)

Then, the BPS bound on the energy turns out to be
 

E � 2
M4

st

gst
j��

2�2V2

jnV � 2j�j

�g2
ym

2�
E2 �

2�

g2
ym

B2

�

�

��������P�
4�2V2

jnV � 2j�j
E�B

��������: (24)

The first term on the right-hand side of (24) contains the
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string scale Mst and is dominant. This term is to be ex-
pected following the picture sketched at the beginning of
Sec. II B: j units of R-charge carry an intrinsic volume of
2�2��3j�, which in turn accounts for extra energy. (Note
that �2���3M4

st=gst is the tension of a D3-brane [26], and
2�2��3j� is the effective extra volume.) This term can be
eliminated by a redefinition of the Hamiltonian H of PFT:

 H ! H �
M4

st

2gst
Trf�Ĵg: (25)

Since R-charge Ĵ is conserved, the extra term commutes
with the Hamiltonian and therefore has no effect on the
dynamics. The redefinition (25) is equivalent to a time
dependent field redefinition, whereby each field is multi-
plied by a time dependent phase proportional to its
R-charge.

The remaining terms in (24) reveal some of the peculiar
features of PFT. Set ~E 
 E� 2�M4

st=gst�j�, and let us
assume that the BPS bound is attained for some BPS state.
First note that if we set the electric and magnetic fluxes to
zero in (24) we get ~E � jPj, and so the dispersion relation
of massless particles in vacuum is unchanged. Next, note
that with the definition

 E eff 


��������1�
2j�
nV

��������
��1=2�

E;

Beff 


��������1�
2j�
nV

��������
��1=2�

B;
(26)

we can rewrite (24) as
 

~E �
2�2

n
V
�g2

ym

2�
E2

eff �
2�

g2
ym

B2
eff

�

�

��������P�
4�2

n
Eeff � BeffV

��������: (27)

This is the same expression as for undeformed N � 4
SYM, except with E, B replaced by Eeff , Beff . The first
term in (27) is the energy stored in the electric and mag-
netic fluxes, and the second term is the energy associated
with particles that carry momentum, in excess of the
momentum stored in the electric and magnetic fields. The
novelty in PFT is that the quantization condition on the
effective electric and magnetic fluxes, as given by the
combination of (23) and (26), depends on the total
R-charge of the system, which is obviously a nonlocal
effect.

The singularity in (24) when nV � 2j� � 0 requires
some discussion. In the following, I will relax the super-
symmetry restriction on � and allow �1, �2, �3 to be
generic. Let H �n; Ĵ; �; V� be the sector of the Hilbert
space of U�n� PFT with R-charge specified by Ĵ, as in
(15), and compactified on a T3 of volume �2��3V.
According to (10), this sector can be thought of as having
an effective net D3-brane volume of �2��3�

�nV � 1
2 Trf�Ĵg�. This volume can be either bigger or

smaller than the original sum of the volumes of all the
D3-branes, �2��3nV. Let �j01; j

0
2; j
0
3� be a set of integers, and

collect them into an so�6� matrix Ĵ0 as in (15). Then, the
above consideration suggests that we should have an
equivalence of Hilbert spaces:

 H �n; Ĵ; � � Ĵ0V; V� ’H �n� 1
2 TrfĴ0Ĵg; Ĵ; �; V�: (28)

(Note that 1
2 TrfĴ0Ĵg is an integer.) As presented, the con-

struction in Sec. II only depends on the fractional part of
�1; . . . ; �3. But it is actually discontinuous in these pa-
rameters, because as we increase, say, �1 continuously
from the value of 0 to 1 we end up generating j1 additional
Kaluza-Klein particles, by a mechanism similar to
spectral-flow. We can modify the construction of Sec. II
and place �n�

P3
a�1 ja��a	� Kaluza-Klein particles in-

stead of n (where �x	 denotes the largest integer not ex-
ceeding x). Then, (28) holds.

Now, let us return to the supersymmetric case. If nV �
2j� � 0, the effective number of D3-branes is zero. The
Hilbert space should then be trivial, and there are no states
with nonzero electric or magnetic flux. If nV � 2j� < 0,
the effective number of D3-branes is negative, and we
should interpret it as jnV � 2j�j anti D3-branes. (It may,
in fact, also make sense to define the sector as empty if
nV � 2j� < 0).

Equation (28) suggests that even the n � 0 PFT is mean-
ingful, as long as V <1 and we restrict to sectors with
R-charge that satisfies Trf�Ĵg> 0. In the limit V ! 1, we
see from (24) that the energy levels with finite electric or
magnetic flux have energies that scale with the volume like
V2=3 for n � 0 (compared to V�1=3 for n > 0). Thus, in the
limit V ! 1 the n � 0 theory does not accommodate
electric or magnetic flux. (It might, in fact, become empty
altogether in that limit.)

IV. ADDITIONAL PROPERTIES OF PFT

This section is devoted to a few additional observations
and conjectures regarding the properties of PFT. PFT is a
deformation of N � 4 SYM, and the deformation parame-
ter is � . By construction, this parameter is in the adjoint
representation 15 of the R-symmetry group SU�4�, and it
has dimension � � �3.

The transformation of � under the SO�3; 1� Lorentz
group is less clear. The construction in Sec. II singles out
both the time direction and the 1st direction. However, both
the heuristic picture of Section II B as well as the BPS
formula (24) suggest that � is the 123 component of a 3-
form. If this conjecture is true, PFT preserves the SO�3�
symmetry of spatial rotations, and � transforms under
SO�3; 1� as the time component of a 4-vector. Another
argument for SO�3� symmetry is that the U-duality trans-
formation that was used in the construction of PFT in
Sec. II, after (1) and (2), can be applied in the presence
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of the Kaluza-Klein monopole (19). After the duality we
then get n D3-branes at the origin of the Taub-NUT space,
and the parameter � becomes a nonzero asymptotic value
for a component of the Ramond-Ramond 4-form potential
at infinity with indices 1236 [referring to Eq. (19)]. But in
the presence of such a nonzero boundary condition, the
topology of the Taub-NUT metric implies a nonzero
Ramond-Ramond 5-form field- strength at the origin. In
this way we transform the PFT setting into n D3-branes
sitting at a place (the origin of the Taub-NUT space) with
strong Ramond-Ramond 5-form field-strength that has a
component with three indices parallel to the D3-branes
(directions 123) and two indices perpendicular to the
branes (see also [27] for related constructions).
Additional arguments in favor of the SO�3� symmetry of
PFT will be presented in [28], where the supergravity dual
is constructed using techniques similar to [10,22,29–31].

Although PFT is generally a nonlocal theory, order by
order in � it has to be describable by a local Lagrangian.
This would be a low-energy expansion. In particular, to
first order in � the correction to the N � 4 SYM
Lagrangian density has to be of the form Trf�Og, where
O is a local operator of dimension � � 7, and in the
adjoint representation of SU�4�. Furthermore, if � trans-
forms as the time component of a 4-vector, O must also be
the time component of a 4-vector. In addition, if � is taken
to preserve N � 2 supersymmetry (see Sec. II A) then, up
to total derivatives, Trf�Og must commute with the unbro-
ken supersymmetry generators. These arguments suggest
that O is in a protected supermultiplet. In fact, the list of
local operators in short supersymmetry multiplets of N �
4 SYM [32] contains a unique natural candidate for O. It is
a descendant of a chiral primary operator of dimension
� � 4, and is obtained by acting on the chiral primary with
supersymmetry generators 6 times. The explicit expression
is rather long, and will be presented elsewhere [28].

Now set n � 1 in (24) and expand to first order in � to
obtain

 

~E � jP0j � 2�2V
�g2

ym

2�
E2 �

2�

g2
ym

B2

�
� Tr��J	�T

0	

�O��2�; (29)

where

 P 0 
 P� 4�2V�E�B�;

is the excess momentum in addition to the electromagnetic
field, T	
 is the energy-momentum tensor of the electro-
magnetic field, and the R-symmetry 4-current J	 is defined
to have components

 J	 �
�

1

V
Ĵ;

P0

jP0jV
Ĵ
�
: (30)

Therefore, in this case the correction O reduces to T0	J	.
(In general O has more terms which do not contribute to
the BPS state in this discussion.)
S-duality of N � 4 SYM is also preserved by PFT. It is

obvious from (4) that the duality gst ! 1=gst follows from
T-duality in directions 2, 3 in the type-IIA setting, and this
duality is not affected by the parameter � . A �-angle can
also be turned on by adding an NSNS 2-form flux in
directions 2, 3.

Additional properties of PFT including a proposal for
the supergravity dual of the theory and an investigation of
the UV properties of the theory will be reported elsewhere
[28].

V. DISCUSSION

On large scales, FRW cosmology breaks Lorentz invari-
ance down to rotational invariance, and it is natural to
wonder whether this Lorentz violation has a counterpart
in high energy phenomena. If such a violation exists at an
energy scale �, then it is quite reasonable to expect � to be
of the order of the (3� 1D) Planck scaleMp, in which case
the effects involve quantum gravity. It is also possible,
however, that �� Mp. For example, � could be around
the grand unified theory scale. It is then possible that an
approximate description around that scale involves a
Lorentz-violating quantum field theory that preserves spa-
tial rotations.

The puffed field theory described in this paper is con-
jectured to be a UV-complete field theory which breaks
Lorentz invariance but preserves spatial rotations. The
Lorentz violation is parameterized by � ��3. Although
it is not a phenomenologically realistic model because of,
among other things, the high amount of supersymmetry, it
is quite possible that more realistic models with like fea-
tures can be similarly constructed.

At low energy, the theory contains a Lorentz-violating
term that has a rather universal structure: it is proportional
to a contraction of the energy-momentum tensor and the
R-current, T0	J	. Such a term can have two interesting
effects. First, suppose we have a soliton of characteristic
size r and mass M. Inside the soliton T00 �M=r3, and the
term �T00J0 translates into an effective potential of the
order of V0 � M=�3r3 for a particle of R-symmetry
charge of the order of1. IfM is big enough, the potential
might have a bound state. In a nonrelativistic order-of-
magnitude analysis, the condition for a bound state is 1 &

mjV0jr
2 �mM=�3r, wherem is the mass of the R-charged

particle. In this model, ignoring other interactions, there
will be a bound state for particles with positive R-charge
and mass m * �3r=M.

Second, in a medium with nonzero R-charge density
� 
 hJ0i, the term T0	J	 is dominated by �T00, and this
modifies the dispersion relation of massless particles so
that the speed of light in such a material becomes approxi-
mately 1� ���=2�. Thus, superluminal velocities can be
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achieved. (This is also the case in noncommutative geome-
try, as was nicely demonstrated in [33,34]). However, it has
to be mentioned that the interaction of PFT with gravity is
not straightforward, and this issue has to be addressed
before extensions to phenomenology can be discussed in
a meaningful way. See [35] for some of the issues that can
arise when a theory with a spontaneously broken Lorentz
invariance is coupled to gravity.

The construction presented in this letter is reminiscent of
the construction of dipole field theories in [10,17,22]. The
difference is that in order to construct a dipole theory we
need to probe the background (7) with a D0-brane, and take
an appropriate limit of R1, R2, R3 ! 0, while in the case of
PFT we are probing the background with a Kaluza-Klein
particle. (See [19,20] for a sample of literature discussing
other configurations of brane-probes in Melvin universes.)

The dipole-theory has a linear nonlocality—
R-symmetry charged objects expand to segments of length
proportional to their R-charge. A similar nonlocality struc-
ture exists in field theories on noncommutative spaces.
There, objects expand to segments in direction transverse
to their momentum [36]. The nonlocality of PFT, on the
other hand, might be described as hyperplanar—objects
acquire a volume proportional to their R-charge and ex-
pand in a spacelike hyperplane. A theory with a linear
nonlocality can often be constructed by defining a non-
commutative product for fields. However, it is harder to
construct a theory where the nonlocal objects are higher
dimensional. Examples of this kind include open-
membrane (OM) theory, which is a deformation of the
six-dimensional (2, 0) theory, and the Open D-brane theo-
ries which are deformations of little string theories [37]. In
these theories there are formally open membrane or open
D-brane excitations on M5-branes or NS5-branes, respec-
tively. Another example is ‘‘disc-pole-theory,’’ which is
also a deformation of the (2, 0) theory [10]. All these
theories are deformations of already mysterious higher
dimensional theories. PFT can formally be classified as
an open D3-brane theory, but it is special in that the open
brane is of the same type (D3) as the underlying branes.
PFT might be easier to study, however, because it is a
deformation of a 3� 1D Yang-Mills theory.
Generalizations of PFT to other types of branes, such as
M5-branes and M2-branes can be constructed along simi-
lar lines.

I will end this paper by mentioning a few recently
discovered new research directions that might be of
relevance.

First, as mentioned in Sec. IV and will be further ex-
plained in [28], PFT is formally related to the behavior of
D3-branes in regions with strong RR 5-form flux. There
might therefore be a connection between the Hamiltonian
discovered in [38], which describes spherical D3-branes in
pp-waves, and a sector of PFT (perhaps defined on S3

rather than T3).
Another recent development that is possibly related to

PFT is an intriguing extension of classical geometry [39]
that contains a nonassociative structure, and could poten-
tially be parametrized by a 3-form. (I am grateful to
Washington Taylor for suggesting this.) The definition of
PFT requires a parameter � which can be thought of as a
component of a spacetime vector, or a dual 3-form.
Thinking about � as a 3-form is more natural, since it
measures spatial volume. In a possibly related develop-
ment, the effective theories on D-brane probes of nongeo-
metric fluxes that are U-dual to 3-form fluxes [40] were
studied in [41], where it was suggested that they involve a
nonassociative structure. Lastly, another modification of
geometry that also involves a spatial 3-form and super-
luminal velocities was recently described in [42]. It re-
mains to be explored whether or not PFT is related to any
of the above mentioned extensions of classical geometry.
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