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I. INTRODUCTION

In a recent paper [1], one of us has investigated the black
hole solutions of a dimensionally reduced gravity model
with Gauss-Bonnet (GB) corrections to the Einstein-
Hilbert (EH) lagrangian of general relativity. Using global
methods it was possible to classify the solutions in terms of
their asymptotic behavior, in analogy with what done in [2]
in the pure Einstein-Hilbert case and in [3] in the presence
of a cosmological constant (CC). The results of the work of
[1] showed a remarkable similarity between the EH-GB
and the EH-CC system. It is therefore interesting to extend
that investigation to the case where both the GB term and a
cosmological constant are added to the EH lagrangian.

As it is well known, GB terms arise as a natural exten-
sion to higher dimensions of the EH Lagrangian, sharing
most properties of general relativity [4]. They have there-
fore found many applications in Kaluza-Klein theories [5].
Of course, the properties of black hole solutions in dimen-
sionally reduced models are of great interest. In the case of
pure Einstein gravity they were studied in [2], where it
was shown that the only solution of physical interest is the
four-dimensional Schwarzschild metric with flat internal
space. When a cosmological constant is added, physically
relevant solutions have anti-de Sitter asymptotics and
negative-curvature internal space [3]. The case of a six-
dimensional EH-GB model without cosmological constant
was studied in [1]. It displayed some similarities with the
case of EH-CC, in particular, the existence of asymptoti-
cally anti-de Sitter black holes.1

In this paper, our aim is to extend these investigations to
the case of the EH-CC-GB system, classifying all the
solutions having the form of a direct product of a four-
dimensional spherically symmetric black hole with a maxi-
mally symmetric internal space. Since a general discussion
would be too involved, we shall limit ourselves to the case
of six dimensions, where the only relevant GB correction

is quadratic in the curvature and has the form S �
R����R���� � 4R��R�� �R2.

In Refs. [1–3], this topic was studied by considering the
phase space of the solutions of the field equations. In fact,
much information on the physics can be obtained from this
investigation. For example, the classification of the critical
points of the dynamical systems at infinity permits to know
the asymptotic behavior of all possible solutions of the
field equations, while the behavior of the solutions near the
critical points at finite distance determines if the corre-
sponding metrics admit a horizon. However, some problem
arise when a GB term is present in the action. It is well
known that in this case the field equations remain second
order and linear in the second derivatives, but they are no
longer quadratic in the first derivatives. By consequence,
the potential of the dynamical system is no longer poly-
nomial, but presents poles for some values of the variables.

The result of our investigation is that all the relevant
solutions, i.e. all spherically symmetric solutions with the
radius of the internal space going to constant at spatial
infinity, have anti-de Sitter asymptotic behavior, as in the
EH-CC case. However, in our case the possibility emerges
of a flat or positive-curvature internal space, which is not
allowed in the EH-CC case.

Let us consider the (n� 4)-dimensional action

 I �
Z �������
�g
p

d�n�4�x�2��R�n�4� � �S�n�4��; (1.1)

where R�n�4� is the curvature scalar, S�n�4� the quadratic
GB term of the manifold, 2� the cosmological constant,
and � a coupling parameter of dimension �L�2.

We perform a dimensional reduction which casts the
metric in the form of a direct product of a four-dimensional
manifold with an n-dimensional space of constant curva-
ture, whose size is parametrized by a scalar field �. As
discussed in [1], it is not possible to find an ansatz for the
metric of the EH-GB system that completely disentangles
the scalar field � from the curvature in the dimensionally
reduced action, except when the internal space is flat.
Therefore we maintain the usual ansatz

 ds2
�n�4� � e�n�ds2

�4� � e
2�g�n�abdx

adxb; (1.2)
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higher-dimensional spherical symmetry have been extensively
studied in the literature [6].
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where ds2
�4� is the line element of the four-dimensional spacetime and g�n�ab is the metric of the n-dimensional maximally

symmetric internal space, with R�n�
ab � �ig

�n�
ab . The action is dimensionally reduced to

 

I �
Z �������
�g
p

d4x
�
�1� 2��ie

�2��R�4� � �en�S�4� � 4n�en�G�4���r��r��

�

�
n�n� 2�

2
� �n2 � 2n� 12���ie

�2�
�
�r��2 �

n�n� 2��n2 � n� 3�

3
�en��r��4 � 2�e�n�

� �ie��n�2�� � �n� 2��n� 3���2
i e
��n�4��

�
(1.3)

The ground state of the theory is assumed to have the form of a direct product of a four dimensional and an
n-dimensional maximally symmetric space, i.e. R�4�

���� � �e�g
�4�
��g

�4�
�� � g

�4�
��g

�4�
���, R�n�

���� � �i�g
�n�
��g

�n�
�� � g

�n�
��g

�n�
���.

Substituting this ansatz into the field equations derived from (1.1), one obtains

 

���n� 1��n� 2��n� 3��n� 4��2
i � 24�2

e � 24�n� 1��n� 2��e�i� � �n� 1��n� 2��i � 12�e � 2� � 0;

��n�n� 1��n� 2��n� 3��2
i � 12n�n� 1��i�e� � n�n� 1��i � 6�e � 2� � 0:

(1.4)

In the case of interest, n � 2, if �� � 3=4 and �� �

5=12, the system admits two solutions
 

�e �
1

4�

�
�1	

�������������������
1�

4��
3

s �
;

�i �
3��1	

����������������
1� 4��

3

q
� � 4����1	 3

����������������
1� 4��

3

q
�

4��5� 12���
:

(1.5)

If �> 0 and �> 0, the values of �e are both negative,
corresponding to anti-de Sitter spacetime, if �< 0 and
�< 0, both positive (de Sitter spacetime); finally, if �
and � have opposite sign one solution is positive and one
negative. The values of �i are both negative, correspond-
ing to internal space H2, if �> 0, and 0<��< 5=12,
both positive (internal space S2) if �< 0 and 0<��<
5=12, one positive and one negative otherwise. An inter-
esting limit case arises when �� � 3=4. In this limit the
internal space is flat.

Consequently, for a range of values of � and � black
hole solutions of (1.1) may have anti-de Sitter behavior at
spatial infinity (we are not interested in de Sitter space-
times since they do not have an asymptotic region). In the
limit �! 0 one recovers the solutions with vanishing
cosmological constant of Ref. [1]. The limit �! 0 is
instead singular: in absence of GB corrections the unique

solution of (1.4) is given by �e � ��=6, �i � ��=2 and
is therefore AdS
H2 for �> 0, or dS
 S2 for �< 0.

II. THE DYNAMICAL SYSTEM

In [1] the dynamical system associated to the spherically
symmetric solutions of the model was derived when � �
0. We now review that derivation when a cosmological
constant is added to the Lagrangian. For the four-
dimensional metric we adopt the ansatz [1–3]

 ds2
�4� � �e

2�dt2 � ��2e4	�2�d
2 � e2	�2�gijdxidxj;

(2.1)

where �, 	 and � as well as � are functions of 
 and gab is
the metric of a two-dimensional maximally symmetric
space, with Rij � �egij. This ansatz enforces radial sym-
metry and is convenient for the following discussion, but of
course the case of physical interest is that of spherical
symmetry, �e > 0.

Defining the new variables [1]

 � � 2	 � ���; � � 2	 � �� 2�; (2.2)

and substituting the ansatz (1.2) and (2.1) into the action,
after factoring out the internal space the action can be cast
in the form

 

I � �8
Z
d4x

�
��6�02 � 3	 02 � 3�02 � 8�0	 0 � 8�0�0 � 4	 0�0� �

1

�
��ee

2	 � �ie
2� � �e2��

� 4�e�2�
�
���0 � �0��4	 0 � 3�0 � 5�0��ee2	 � ��	 0 � �0��3	 0 � 4�0 � 5�0��ie2�

� �3�	 0 � �0���0 � �0��11�02 � 4	 02 � 4�02 � 7	 0�0 � 13�0	 0 � 13�0�0� � �e�i
e2�	���

�

��
: (2.3)
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As usual, the action (2.3) does not contain derivatives of
�, which acts therefore as a Lagrangian multiplier enforc-
ing the Hamiltonian constraint. Moreover, in spite of the
presence of the higher-derivative GB term, it contains only
first derivatives of the fields, although up to the fourth
power, and therefore gives rise to second order field equa-
tions. Finally, the action is invariant under the interchange
of 	 and �.

One can now vary (2.3) and then write the field equations
in first order form in terms of the new variables,
 

W � �0; X � 	 0; Y � �0;

U � e�; Z � e	 ; V � e�;
(2.4)

which satisfy

 U0 � WU; Z0 � XZ; V0 � YV: (2.5)

Varying with respect to � and then choosing the gauge
� � 1, one obtains the Hamiltonian constraint

 

E � P2 � �eZ
2 � �iV

2 � �U2

�
4�

U2 ��e�iZ
2V2 � �eZ

2�Y �W�A

� �iV
2�X�W�B� 3�X�W��Y �W�C2� � 0;

(2.6)

where

 

P2 � 6W2 � 3X2 � 3Y2 � 8WX� 8WY � 4XY;

C2 � 11W2 � 4X2 � 4Y2 � 7XY � 13WX� 13WY;

A � 4X� 3Y � 5W;

B � 3X� 4Y � 5W:

Variation with respect to �, 	 and � gives rise to the other
field equations

 

2X0 � 2Y0 � 3W0 �
�
2�

U2 ��eZ
2�2X� 4Y � 5W� � �iV

2�4X� 2Y � 5W� � 22W3 � 2X3 � 2Y3 � 36W2X� 36W2Y

� 12X2Y � 12Y2X� 17WX2 � 17WY2 � 44XYW�
�
0

�
�
2
U2 �

2�

U2 ���e�iZ
2V2 � �eZ

2�Y �W�A� �iV
2�X�W�B� �X�W��Y �W�C2�; (2.7)

 

X0 � 2Y0 � 2W0 �
�
4�

U2 ��eZ
2�2X� 2Y � 3W� � �X�W��10W2 � 2X2 � 5Y2 � 6XY � 9WX� 14WY � �iV

2��

�
0

� �eZ2 � �U2 �
4�

U2 ��iV
2�X�W�B� �X�W��Y �W�C2�; (2.8)

 

2X0 � Y0 � 2W0 �
�
4�

U2 ��iV
2�2X� 2Y � 3W� � �Y �W��10W2 � 5X2 � 2Y2 � 6XY � 14WX� 9WY � �eZ

2��

�
0

� �iV
2 � �U2 �

4�

U2 ��eZ
2�Y �W�A� �X�W��Y �W�C2�; (2.9)

In the variables (2.4), the problem takes the form of a
six-dimensional dynamical system, subject to a constraint.
Notice that the function E defined in (2.6) is a constant of
the motion of the system (2.5), (2.7), (2.8), and (2.9), whose
value vanishes by virtue of the Hamiltonian constraint.

The Einstein limit

In the Einstein limit � � 0 one recovers the results of
[3]. We summarize them in terms of the variables intro-
duced above: when � � 0, the dynamical system reduces
to Eqs. (2.5) and
 

2X0 � 2Y0 � 3W0 �
�
2
U2;

X0 � 2Y0 � 2W0 � �eZ
2 � �U2;

2X0 � Y0 � 2W0 � �iV2 � �U2;

(2.10)

subject to the constraint

 E � P2 � Z2 � V2 � �U2 � 0: (2.11)

The physical trajectories lie on the four-dimensional hy-
persurface E � 0.

The critical points at finite distance correspond to the
short radius limit of the solutions. They lie on the surface
U0 � Z0 � V0 � P0 � 0, but only points with X0 � Y0 �
W0 correspond to regular horizons, while the others give
rise to naked singularities. The eigenvalues of the linear-
ized equations around the critical points are 0, with degen-
eracy 3, X0, Y0 and W0.

The asymptotic properties of the solutions are related to
the structure of the phase space at infinity. This can be
investigated defining new variables
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t �
1

W
; x �

X
W
; y �

Y
W
;

u �
U
W
; z �

Z
W
; v �

V
W
:

(2.12)

In terms of these variables, the field equations at infinity
are then obtained for t! 0, and read
 

_t � �
�
2v2 � 2z2 �

5

2
�u2

�
t;

_u �
�
1� 2v2 � 2z2 �

5

2
�u2

�
u;

_x � z2 � 2v2 � 2�u2 �

�
2v2 � 2z2 �

5

2
�u2

�
x

_z �
�
x� 2v2 � 2z2 �

5

2
�u2

�
z;

_y � 2z2 � v2 � 2�u2 �

�
2v2 � 2z2 �

5

2
�u2

�
y;

_v �
�
y� 2v2 � 2z2 �

5

2
�u2

�
v;

(2.13)

where a dot denotes td=d
. The critical points at infinity
are found at t0 � 0 and

(a) �u2
0 � �iv2

0 � �ez2
0 � 0, x � x0, y � y0, with

3x2
0 � 3y2

0 � 4x0y0 � 8x0 � 8y0 � 6 � 0.
(b) �u2

0 � �iv2
0 � 0, �ez2

0 � 1=4, x0 � 1=2, y0 � 1.
(c) �u2

0 � �ez2
0 � 0, �iv2

0 � 1=4, x0 � 1, y0 � 1=2.
(d) �u2

0 � 0, �iv2
0 � �ez2

0 � 3=16, x0 � y0 � 3=4.
(e) �ez2

0 � 0, �iv2
0 � �1=3, �u2

0 � 2=3, x0 � 2=3,
y0 � 1.

(f) �iv2
0 � 0, �ez2

0 � �1=3, �u2
0 � 2=3, x0 � 1, y0 �

2=3.
(g) �iv2

0 � �ez2
0 � �1, �u2

0 � 2, x0 � y0 � 1.
(h) �iv2

0 � �ez2
0 � 0, �u2

0 � 2=5, x0 � y0 � 4=5
Points (a) are the endpoints of the hypersurface U �

V � Z � 0, points (b) of the hypersurface U � V � 0,
points (c) of the hypersurface U � Z � 0. Clearly,
points (e)–(h) exist only for �> 0.

The eigenvalues of the linearized equations around the
critical points and their degeneracies are:

(a) 0(3), 1, x0, y0.
(b, c) �1=2�3�, �1, 1=2�2�.
(d) �3=4�2�, �3=2, 1=4, � 1

8 �3	 i
������
15
p
�.

(e, f) �1�2�, �1=3, �2, � 1
6 �3	

������
33
p
�.

(g) �1, �2�3�, 1(2).
(h) �1�3�, �1=5�2�, �2.
From the study of the eigenvalues and eigenvectors of

the linearized equations one can deduce the structure of
phase space at infinity. It results that points (a) attract only
unphysical trajectories on the surface at infinity, while
points (b)–(d) attract only trajectories with � � 0. The
relevant critical points are therefore (e)–(h). Of these,
(e) attracts trajectories with �e � 0, �i < 0, (f) attracts
trajectories with �e < 0, �i � 0, (g) attracts trajectories

with both �e < 0, �i < 0 and (h) trajectories with �e � 0,
�i � 0.

The asymptotic behavior of the solutions can be deduced
from the location of the critical points at infinity [2].
Excluding points (a) that do not correspond to physical
trajectories, one has, in terms of a radial variable r:

(b) ds2 �dt2 � dr2 � r2d�2
�, e2�  const:

(c) ds2 �r2dt2 � r2dr2 � r2d�2
0, e2�  r2.

(d) ds2 �rdt2 � dr2 � r2d�2
�, e2�  r.

(e) ds2 �r2dt2 � r�2dr2 � r2d�2
�, e2�  const:

(f) ds2 �r4dt2 � dr2 � r2d�2
�, e2�  r2.

(g) ds2 �r2dt2 � r�2dr2 � d�2
�, e2�  const:

(h) ds2 �r2dt2 � r�1dr2 � r2d�2
�, e2�  r:

We have denoted with d�2
� the metric of a unitary 2-

sphere, with d�2
� that of a 2-dimensional space of constant

negative curvature, and with d�2
0 that of a flat 2-plane. The

solutions ending at points (b) are asymptotically flat, those
ending at (e) asymptotically anti-de Sitter, while the others
have more exotic behavior. Exact solutions displaying the
asymptotic behaviors listed above are presented in
Appendix A.

From a Kaluza-Klein point of view, the only solutions
with physical relevance are those with �e > 0 and e2� !
const, namely, those ending at (e), which have a negative-
curvature internal space. The solutions ending at (h) can
also have �e > 0, but decompactify for r! 1. It follows
that, as one could have guessed, the only significant solu-
tions of this model are the asymptotically anti-de Sitter
solutions (e), which asymptote to the exact ground state
discussed at the end of Sec. I.

III. THE EH-CC-GB PHASE SPACE

As discussed in Sec. I, for a range of values of � and �
Eqs. (1.4) admit the ground state (1.5), and therefore black
holes with anti-de Sitter asymptotic behavior may be ex-
pected. The phase space of the system can be studied by the
same methods that were used in the Einstein case.
However, as usual in the presence of GB terms, some
problems arise because of the poles in the field equations
forU � 0 [1,7]. Special care must therefore be taken when
approaching this limit.

Equations (2.7), (2.8), and (2.9) have to be solved for the
variables X0, Y0 and W0 in order to put the system in its
canonical form. One can then find the critical points at
finite distance by requiring the vanishing of the derivatives
of the fields. As in the EH-CC case, they lie on the hyper-
surface U0 � Z0 � V0 � 0. However, in the present case,
the other variables must satisfy the constraint W0 � X0 �

Y0, or X0 �
4	

��
5
p

5 W0, Y0 �
4�

��
5
p

5 W0, in order to avoid
singularities of the field equations. Only the first instance
corresponds to regular horizons. In that case the eigenval-
ues of the linearized equations near the critical points are
identical to those found in the Einstein limit.
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The critical points at infinity are obtained by introducing
the variables (2.12) in the dynamical system and requiring
the vanishing of their derivatives as t! 0. They are listed
in Table I, where we have set � � ��.

Of course, the critical points (e), (f) can only exist if � �
3=4, the points (g) if � � 1=4 and the points (h) if � �
5=12. For � < 3=4, the location of the critical points is
rather similar to that obtained in the � � 0 limit, except for
the point d), that has disappeared and the new points i)–
m	), that are typical of the GB theory [1]. In the limit �!
0 one recovers the critical points of the EH-CC model.

A stronger similarity is however present with the phase
space of the EH-GB limit � � 0. In fact, one has exactly
the same critical points as for nonvanishing �, with only
the values of u0, z0 and v0 shifted. As we shall see,
however, the nature of the critical points may be different
in the two cases. Moreover, the limit �! 0 is not trivial.

In Table II are listed the eigenvalues of the linearized
equations near the critical points with their degeneracy. In
the last eigenvalues at the critical points (g), � is a cum-
bersome function of �. It turns out that the real part of both
these eigenvalues is negative for � <�3=4, while for
�3=4<�< 1=4, one of the eigenvalues has positive
real part.

From the study of the linearized equations, one can
deduce that point a) attracts only trajectories lying on the
surface at infinity, while the points (i), (l), m	) attract only
trajectories on the hypersurface U � 0, which corresponds
to the limit �! 1 of pure GB gravity [1]. Therefore, these
points are not of interest for our problem. Moreover,
points (b), (c) are endpoints only of trajectories with � �
0. The other points can attract trajectories with nonvanish-
ing �. In particular, (e) attracts trajectories with �i � 0,
(f) trajectories with �e � 0, (g) trajectories with �e < 0,
�i < 0, and (h) trajectories with any values of �e, �i.

The critical points (a)–(h) generalize those found in the
EH-CC case, and have the same asymptotic behavior as the
corresponding ones. We do not discuss the asymptotic
behavior of the new points (i), (l), (m	), since they corre-
spond to the limit �! 1. Special exact solutions of the
EH-CC-GB system with asymptotic behavior (e)–(h) are
listed in Appendix B.

Of particular interest are the solutions that end at the
critical point (e). These asymptote to the exact ground state
solution discussed in Sec. I, namely AdS4 
 S2, if �> 0
and 5=12< �< 3=4 or �< 0 and �> 0, or to AdS4 

H2, if �> 0 and � < 5=12. Contrary to the EH-CC case,
solutions with anti-de Sitter asymptotics can therefore exist
also if �< 0. In the present coordinates they take the form
 

ds2 � ��j�ejr
2 � 1�dt2 � �j�ejr

2 � 1��1dr2 � r2d�2
�;

e2� � j�ij
�1; (3.1)

where �e, �i are given by (1.5).
Also interesting is the solution (g), that asymptotes to

the exact solution AdS2 
H2 
H2. Its four-dimensional
section is analogous to a Bertotti-Robinson metric. The
other solutions have less common asymptotic behavior.

The structure of the solutions of the EH-GB-CC model
is more complicated than that of pure EH-CC, although
less critical points are available for � � 0. The trajectories
start at the points U � V � Z � 0, W � X � Y and can
terminate at one of the points (e)–(h), depending on the
value of �e, �i and on the value of �. From the Kaluza-

TABLE II. The eigenvalues of the linearized equations near
the critical points at infinity and their eigenvalues.

Eigenvalues (with degeneracy)

(a) 0(2), 1(3), 4�

(b), (c) � 1
2 , � 1

2� 4�, 1
2 �2�, �

3�8�	
���������������������
1�16��32�2
p

4

(e), (f) �1�2�, �2, � 1
3 , �

3	
�������������
33�32�
p

6

(g) �1, �2�2�, 1, � 1
2 �1	

����
�
p
�

(h) �1�3�, �2, � 1
5 �2�

(i), (l) � 2
3 , � 1

3 , �1, 1
3 �3�

(m	) � 2
3 �2�, 0, 1

3 , 2	3
��
5
p

15

TABLE I. Location of the critical points at infinity.

x0 y0 �t20 �ez
2
0 �iv

2
0

(a) 1 1 0 0 0
(b) 1=2 1 0 1=4 0
(c) 1 1=2 0 0 1=4

(e) 2=3 1
3	

�����������
9�12�
p

9 0 �
9�12�	2

�����������
9�12�
p

9�5�12��

(f) 1 2=3
3	

�����������
9�12�
p

9 �
9�12�	2

�����������
9�12�
p

9�5�12�� 0

(g) 1 1 1	
���������������
1� 4�
p

�1 �1

(h) 4=5 4=5
5	

�������������
25�60�
p

25 0 0
(i) 2=3 1 0 1=3 0
(l) 1 2=3 0 0 1=3
(m	) 4	

��
5
p

5
4�

��
5
p

5 0 0 0
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Klein point of view, the relevant solutions are those with
�e > 0 and e2� ! const at infinity. As in the � � 0 case,
these are solutions ending at (e), but if � � 0, the internal
space can be flat, if � � 3

4� , or compact, if 5
12� < �< 3

4� .

IV. CONCLUSIONS

We have shown that regular black holes in EH-CC-GB
theory have the same asymptotic behavior as the maxi-
mally symmetric ground states. In contradistinction to the
EH-CC case, the internal space can have positive, negative
or vanishing curvature.

Although the calculation are easier in our six-
dimensional model, we believe that the situation is essen-
tially unchanged in higher dimensions, except that in case
of three or more internal dimensions ground states with flat
spacetime can exist for some values of the parameters.

APPENDIX A: EXACT SOLUTIONS IN THE
EINSTEIN LIMIT

In the Einstein limit, � � 0, the field equations reduce to
 

�00 � 2�ee2	 � 2�ie2� �
5�
2
e2�;

	 00 � �ee2	 � 2�ie2� � 2�e2�;

�00 � 2�ee2	 � �ie2� � 2�e2�;

(A1)

subject to the constraint
 

6�02 � 3	 02 � 3�02 � 8�0	 0 � 8�0�0 � 4	 0�0 � �ee
2	

� �ie
2� � �e2� � 0: (A2)

Some exact solutions of the system (A1) and (A2) can be
found in special cases. The limit � � 0 has been discussed
in [1,2]: when �i � 0 one obtains the Schwarzschild met-
ric with constant scalar field,

 ds2 � �

�
1�

2m
r

�
dt2 �

�
1�

2m
r

�
�1
dr2 � r2d�2

�;

e2� � const;

with m a free parameter. This is a special case of solutions
(b) of Sec. II.

For �e � 0, one has instead a solution of the form

 ds2 � �r2

�
1�

2m
r

�
dt2 � r2

�
1�

2m
r

�
�1
dr2 � r2d�2

0;

e2� � r2;

which corresponds to the asymptotic behavior (c).
Finally, if �0 � 	 0, one has

 ds2 � �r
�

4

27
�

2m

r3=2

�
dt2 �

�
4

27
�

2m

r3=2

�
�1
dr2 � r2d�2;

e2� � r;

which corresponds to (d).

In the following, it will be useful to write the solutions in
their six-dimensional Schwarzschild-like form

 ds2 � �e2�dT2 � e�2�dR2 � e2�d�2
e � e

2�d�2
i ; (A3)

where

 e2� � e4	�4��6�; �2� � e2��2	 ; �2� � e2��2�:

(A4)

In these coordinates the previous solutions read respec-
tively
 

ds2 � �

�
1�

2M
R

�
dT2 �

�
1�

2M
R

�
�1
dR2 � R2d�2

�

� c2d�2
0;

ds2 � �

�
1�

2M
R

�
dT2 �

�
1�

2M
R

�
�1
dR2 � c2d�2

0

� R2d�2;

ds2 � �

�
1�

2M

R3

�
dT2 �

�
1�

2M

R3

�
�1
dR2

�
R2

3
�d�2

i � d�2
e�;

with c constant.
We pass now to consider the case when � � 0.

1. �e � 0, �i < 0, �0 � �0.

The field equations (A1) reduce to

 e2� �
�
2
e2�; �00 �

3

2
�e2�; 	 00 �

2

3
�00:

Integrating,

 e2� �
2

3�
a2

sinh2a

; e2	 � Ae2�2��b
�=3;

for constant a and b. Substituting in the constraint (A2) and
requiring the presence of a regular horizon, one obtains the
condition b � a. Then, defining R � �c=�1� e2a
��1=3,
with c a positive constant, one gets

 e2� � AR3�R3 � c�; e2	 � BR�R3 � c�;

where A � 8a2=3�c2 and B is an integration constant.
Finally, choosing B � A, rescaling the time coordinate,
and defining M � �c=12, one obtains

 e2� �
�
6
R2 �

2M
R
; e2� � R2; e2� �

2

�
: (A5)

In four-dimensional coordinates the solution reads
 

ds2 ��

�
�2

12
r2�

2m
r

�
dt2�

�
�2

12
r2�

2m
r

�
�1
dr2� r2d�2

0;

e2� �
2

�
;

and has therefore the asymptotic behavior (e).
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The solution (A5) can also be generalized to the case of
positive �e, although the solution is not trivial in the
coordinates 	 , �, �. It reads

 �

�
�
6
R2 � 1�

2M
R

�
dT2 �

�
�
6
R2 � 1�

2M
R

�
�1
dR2

� R2d�2
� �

2

�
d�2

�;

and is the direct product of AdS4 with a two-dimensional
space of constant negative curvature H2.

2. �i � 0, �e < 0, � 0 � �0

This system is identical to that of the previous case, after
interchanging 	 and � (and hence � and �). Proceeding as
before, one obtains

 e2� �
�
6
R2 �

2M
R
; e2� �

2

�
; e2� � R2: (A6)

In four-dimensional coordinates (2.1), the solution reads

 ds2 � �r4

�
1

3
�

2m

r3

�
dt2 �

�
1

3
�

2m

r3

�
�1
dr2 � r2d�2

�;

e2� � r2;

and has therefore the asymptotic behavior (f).
In analogy with the previous case, the solution (A6) can

be generalized to positive �i,

 �

�
�
6
R2 � 1�

2M
R

�
dT2 �

�
�
6
R2 � 1�

2M
R

�
�1
dR2

�
2

�
d�2

� � R2d�2
�:

3. �e � �i � 0, �0 � � 0

In this case, the field equations reduce to

 �00 �
5

2
�e2�; 	 00 �

4

5
�00:

Integrating,

 e2� �
2

5�
a2

sinh2a

; e2	 � e2� � Ae2�4��b
�=5;

for constant a and b. Substituting in the constraint, and
requiring the presence of a regular horizon, one obtains the
condition b � a. Defining R � �c=�1� e2a
��1=5, for con-
stant c, one gets

 e2� � AR5�R5 � c�; e2	 � BR3�R5 � c�;

where A � 8a2=5�c2 and B is an integration constant.
Finally, choosing B � A, rescaling T, and defining M �
5�c=4, one obtains

 e2� �
5�
2
R2 �

2M

R3 ; e2� � e2� � R2: (A7)

In four-dimensional coordinates the solution can be
written

 � r2

�
10��

2m

r5=2

�
dt2 �

1

r

�
10��

2m

r5=2

�
�1
dr2 � r2d�2

0;

e2� � r;

and has therefore the asymptotic behavior (h). In this form,
the solution was obtained in [2].

The solution (A7) can also be generalized to the case of
positive �e and �i,

 �

�
5�
2
R2 � 1�

2M

R3

�
dT2 �

�
5�
2
R2 � 1�

2M

R3

�
�1
dR2

�
R2

3
�d�2

� � d�2
��:

In this form it generalizes the six-dimensional
Tangherlini–anti-de Sitter metric [8], with S4 replaced by
S2 
 S2.

4. �e < 0, �i < 0, �0 � � 0 � �0

The field equations yield

 �00 �
�
2
e2�; e2	 � e2� �

�
2
e2�;

and hence

 e2� �
2

�
a2

sinh2a

:

Defining a variable R � 2a=�1� e2a
�, one gets

 e2� �
�
2
R�R� 2M�; e2� � e2� �

2

�
; (A8)

where M � a. The metric is clearly the direct product
AdS2 
H2 
H2. After dimensional reduction,

 ds2 � �r�r� 2m�dt2 �
dr2

r�r� 2m�
�

4

�2 d�2
�;

e2� �
2

�
;

which corresponds to the asymptotic behavior (g).

APPENDIX B: EXACT SOLUTIONS OF THE
EH-CC-GB SYSTEM

Some of the exact solutions of the previous appendix can
be extended to the GB case. We write them in six-
dimensional form, since the duality is more apparent.

(e) ds2 � ��j�ejr2 � 1�dt2 � �j�ejr2 � 1��1dr2�
r2d�2

� �
1
j�ij

d�2
�, or ds2 � �j�ejr2dt2 �

�j�ejr2��1dr2 � r2d�2
0 �

1
j�ij

d�2
�

(f) ds2 � ��j�ejr2 � 1�dt2 � �j�ejr2 � 1��1dr2�
1
j�ij

d�2
� � r2d�2

�, or ds2 � �j�ejr2dt2 �

�j�ejr2��1dr2 � 1
j�ij

d�2
� � r2d�2

0.
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(g) ds2 � ��r
2

� � m�dt2 � �r
2

� � m��1dr2 � �d�2
��

�d�2
�.

(h) ds2 � � r2

� dt
2 � �

r2 dr2 � r2d�2
0 � r

2d�2
0. where

�e and �i are given by (1.5) and

 � �
1	

�������������������
1� 4��
p

2�
; � �

5�1	
���������������������������
1� 12��=5

p
�

2�
:

An interesting two-parameter exact solution for special
values of � and � has recently been given in [9].
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