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We calculate the total flux of Hawking radiation from Kerr-(anti)de Sitter black holes by using
gravitational anomaly method developed in [S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 95,
011303 (2005)]. We consider the general Kerr-(anti)de Sitter black holes in arbitrary D dimensions
with the maximal number �D=2� of independent rotating parameters. We find that the physics near the
horizon can be described by an infinite collection of (1� 1)-dimensional quantum fields coupled to a set
of gauge fields with charges proportional to the azimuthal angular momentums mi. With the requirement
of anomaly cancellation and regularity at the horizon, the Hawking radiation is determined.
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I. INTRODUCTION

Hawking radiation is one of the most important and
intriguing effects in black hole physics. It shows that black
hole is not really black, it radiates thermally like black
body. Precisely speaking, Hawking radiation is the quan-
tum effect of field in a background space-time with a future
event horizon. It has a feature that the radiation is deter-
mined universally by the horizon properties. It has several
derivations. The original one discovered by Hawking [1,2]
is by directly calculating the Bogoliubov coefficients be-
tween in and out states of fields in a black hole background.
This approach relies on the fact that in a curved back-
ground the choice of vacuum for incoming and outgoing
particle is not unique. Later on a derivation based on the
path-integral quantum gravity was given in [3]. A few
years ago, Parikh and Wilczek [4] proposed a tunneling
picture in which particle pair production happens near the
horizon and Hawking radiation could be obtained by cal-
culating WKB amplitudes for classically forbidden paths.

Very Recently, Robinson and Wilczek [5] have given a
new derivation of Hawking radiation in the Schwarzschild
black hole background through gravitational anomaly. This
work is to some extent inspired by the work of Christensen
and Fulling [6], in which the radiation created in the
(1� 1)-dimensional Schwarzschild black hole background
was determined by the trace anomaly and the energy-
momentum conservation law. In this approach, boundary
conditions at the horizon and the infinity are required to
specify the Unruh [7] vacuum. Moreover the method in [6]
could not be applied to the cases in more than (2� 1)
dimensions. Robinson and Wilczek found that by dimen-
sion reduction, the physics near the horizon can be de-
scribed by an infinite collections of free (1� 1)-
dimensional fields because the mass and interaction terms
of quantum fields in the background are suppressed. If one
only consider the effective field theory outside the horizon,
the theory become chiral since classically all ingoing

modes can not affect physics outside the horizon.
Quantum mechanically, the effective theory is anomalous
with respect to gauge or general coordinate symmetries.
The anomaly should be cancelled by the quantum effects of
the classically irrelevant incoming modes. The condition
for chiral and gravitational anomaly cancellation and regu-
larity requirement at the horizon, combining with the
energy-momentum conservation law, determines
Hawking fluxes of the charge and energy-momentum.
Robinson and Wilczek’s treatment once again shows that
Hawking radiation (if we neglect the back-reaction on the
background) is universal, it only depends on the property
of the event horizon.

In the further development, Iso et al. [8,9] investigated
the charged and rotating black hole. By using a dimen-
sional reduction technique, they found each partial wave of
quantum fields in d � 4 rotating black hole background
can be interpreted as a (1� 1)-dimensional charged field
with a charge proportional to the azimuthal angular mo-
mentum m. The total flux of Hawking radiation can be
determined by demanding gauge invariance and general
coordinate covariance at the quantum level. And the
boundary conditions are clarified. The results are consis-
tent with the effective action approach. Murata et al. [10]
extended the method to Myers-Perry black holes [11] with
only one rotating axis and also clarified the boundary
condition. The Hawking radiation from general spherically
symmetric black holes [12] and BTZ black holes [13] have
also been investigated.

In this paper, we further extend Robinson and Wilczek’s
derivation of Hawking radiation to general Kerr-(anti)de
Sitter(K(A)dS) black holes [14] in D dimensions. For a
general K(A)dS metric, there are at most N � �D�1

2 �

Killing symmetries corresponding to the rotational sym-
metries in N orthogonal spatial 2-planes. For a quantum
field in such backgrounds, the physics near the future event
horizon could still be effectively described by an infinite
collection of (1� 1)-dimensional fields coupled to N U�1�
gauge fields. We discuss such dimensional reduction in
detail in Sec. II. In Sec. III, we obtain the Hawking fluxes
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by requiring anomaly cancellation and regularity condi-
tion. The final section is devoted to the conclusion.

II. QUANTUM FIELDS IN GENERAL KERR-
(ANTI)DE SITTER BLACK HOLES

In this section, we will discuss the quantum fields in
general Kerr-(anti)de Sitter blacks holes and its effective
dimensional reduction near the horizon. The Kerr-(anti)de
Sitter metric in D-dimension has been studied carefully in
[14]. Here we just give a brief review of its basic property.
The metric takes the form in an Boyer-Lindquist coordi-
nates
 

ds2 � �W�1� �r2�dt2 �
2M
VF
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Here N is the integral part of �D� 1�=2. There are N
independent rotation parameters ai in N orthogonal spatial
2-planes. The ’i’s are azimuthal angular coordinates. And
the�i’s are the latitudinal coordinates obeying a constraintPN��
i�1 �2

i � 1, so only N � "� 1 latitudinal coordinates
�i are independent. The � is the cosmological constant. Up
to the sign of �, the above metric describes different Kerr
black holes in D dimensions:

 

8>><>>:
� > 0; Kerr-de Sitter metric

� � 0; Myers-Perry metric�14�

� < 0; Kerr-Anti-de Sitter metric

Hawking fluxes of Myers-Perry black holes with only one
azimuthal angular momentum has been discussed in [10].
In this paper, we will discuss Hawking radiation of the
other two cases with any permissible angular momentums.
Certainly our discussion apply to the Myers-Perry black
holes with more than one angular momentums.

It is remarkable that for the black holes in de Sitter
space-time, there exist a cosmological event horizon.
However, our motivation is to study the Hawking radiation
of the black hole so we focus on the physics near the black
hole event horizon.

The metric (2.1) could be cast into a generalized Boyer-
Lindquist form,
 

ds2 � Xdt2 � 2Yidtd’i � Zijd’id’j � gabdxadxb

�
1

B
dr2 (2.2)

where ’i, i � 1; 
 
 
N are periodic with period 2� and xa,
a � 1; 
 
 
 n with n � N � �� 1 are independent latitu-
dinal coordinates. All the metric components only depend
on xa��i� and the radial coordinate r. The Zij and gab are
positive definite and their corresponding inverses are Zij

and gab with ZijZjk � �ik, g
abgbc � �ac .

From the discussion in [14], the angular velocities of the
horizon are given by �i � �i

H

 �i
H � �Y

ijr�rH �
ai�1� �r

2
H�

r2
H � a

2
i

(2.3)

where Yi � ZijYj and rH is the radius of the horizon. Using
(2.1), rH is just the largest positive root of equation V �
2M � 0 or in the metric (2.2) a largest positive root of
equation B � 0. The angular velocities, relative to a non-
rotating frame at infinity, is a little different from (4.4) in
[14], which is defined relative to a rotating frame at infinity.
The null generator l of the horizon is a linear combination
of the Killing vector fields

 l �
@
@t
��i

H
@
@’i

(2.4)

The surface gravity on the horizon is

 �2 � �r�L��r�L�jr�rH (2.5)

where

 � L2 � l�l� � X� 2Yi�
i
H � Zij�

i
H�j

H (2.6)

Note that L and B vanish on the horizon but @rL and @rB
are nonzero. So near the horizon, we have

 L2 � �@rL
2�jr�rH �r� rH�; B � �@rB�jr�rH �r� rH�

(2.7)

Thus the surface gravity is:

 � �
1

2

�����������������������������������
�@rL2��@rB�jr�rH

q
�

1

2
�1� �r2

H�
V 0�rH�
V�rH�

(2.8)

The property that � is a constant and YiYi � X � 0 on the
horizon are very important to the following discussions.

In order to do dimensional reduction, we need some
other properties of the metric near the horizon. Define A �
YiYi � X then
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 L2 � A � �Zij��i
H � Y

i���j
H � Y

j� (2.9)

From the definition (2.3) �i
H � Y

ijr�rH � 0, so near the
horizon �i

H � Y
i � Ci�r� rH�, then we have

 L2 � A � �ZijC
iCj�r� rH�

2; @rL
2 � @rAjr�rH

(2.10)

When A � 0, the inverse of the metric (2.2) can be
written as

 gtt � �
1

A
; gij � �

1

A
YiYj � Zij;

gti � git �
1

A
Yi; grr � B;

(2.11)

Note that near the horizon A! 0, Yi, Zij and gab are
finite. This property is essential to the dimensional reduc-
tion. The metric (2.2) can be written in another form
 

ds2 � �Adt2 � Zij�d’i � Yidt��d’j � Yjdt� �
1

B
dr2

� gabdxadxb (2.12)

with
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�����������������
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s
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where g � det�g���, g1 � det�Zij�, g2 � det�gab�
Now let us consider a free complex scalar field for

simplicity in the general Kerr-(anti)de Sitter black hole
background. Using the inverse of metric (2.11), the free
part of the action is
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where @i denotes @
@’i and @a denotes @

@xa .

In order to consider the physics near the horizon, we
make a coordinate transformation dr�

dr � f�r��1, where
f�r� 	

����������
A0B0
p

jr�rH �r� rH� � 2��r� rH�. In this frame,
considering the region near the outer horizon rH, the finite
terms Zij@i��@j� and gab@a��@b� are suppressed by the
factor f�r�r���, vanishing exponentially fast near the hori-
zon. We can also substitute

�������
AB
p

, g1g2 by f�r�, g1g2jr�rH
because the omitting terms are suppressed for the same
reason. Similarly, one can redefine Yi by� ai�1��r2�

r2�a2
i

. So the

action with dominant terms is
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Z
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We can expand � by a complete set of orthogonal
functions of �’i; xa� with the measure

���������������������������
g1�rH�g2�rH�

p
. As

we know, the angles ’i are periodic with period 2� and
coordinates xa come from �i which obey a constraintP
i�

2
i � 1. So �’i; xa� describe a compact manifold with

a metric

 ds2 � Zij�rH�d’id’j � gab�rH�dxadxb (2.16)

whose measure is
���������������������������
g1�rH�g2�rH�

p
. Then the eigenfunctions

of the operator r2 of the compact manifold with the metric
(2.16) comprise a complete orthogonal functions. Note that
there are N killing vectors @

@’i which generate isometry.

The eigenfunctions can be given by
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YN
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expimj’jf	�xa� (2.17)
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dxad’i
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Performing the partial wave decomposition of � in terms
of these functions,

 � �
X

m1;


;mN;	

�m1


mN	Ym1


mN	; (2.19)

the theory is reduced to a two-dimensional effective theory
with an infinite collection of fields with quantum numbers
�m1; 
 
 
 ; mN; 	�, simply denoted as �n. It is straightfor-
ward to show that the physics near the outer horizon can be
effectively described by an infinite collection of massless
(1� 1)-dimensional fields with the following action
 

S � �
Z
dtdr��f�r��1�@t � imjYj����n�@t � imjYj��n

� f�r�@r�
�
n@r�n� (2.20)

III. ANOMALIES AND HAWKING FLUXES

In this section, we will try to obtain the Hawking fluxes.
We will follow the approach firstly proposed in [8,9]. The
basic point is that the Hawking fluxes can be determined by
the anomaly cancellation of the effective chiral theory.

From the effective action (2.20), near the horizon, each
partial wave mode of the scalar field �n can be considered
as (1� 1)-dimensional complex scalar field in the back-
grounds of the metric g�� and N gauge potentials Ai�
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 gtt � �f�r�; grr � f�r��1; grt � 0

Ait � Yi; Air � 0
(3.1)

In this case, there are N U�1� gauge symmetries and N
gauge currents which actually relate to angular momentum
currents. Each gauge symmetry originates from the axial
isometry along ’i direction. With respect to gauge fields
Ai�, the field �n has charges mi, which is the azimuthal
quantum number rotating along ’i direction. The corre-
sponding U�1� currents Jri can be defined from the
D-dimensional energy-momentum tensor.

 Jri � �
Z
dnxadN’i

�������
�g
p

Tr’i : (3.2)

In effect, performing a partial wave decomposition and an
integral, we find the result of right side of the above
equation is just the current obtained from the two-
dimensional effective action. Similarly the energy-
momentum tensor in two-dimensional effective action is
the reduction of the one in D-dimension

 Trt�2� �
Z
dnxadN’i

�������
�g
p

Trt : (3.3)

Without bringing any confusion, from now on we denote
Trt�2� as Trt for simplicity.

As shown in [8], we can divide the region r 2 �rH;1�
into two regions. One is r 2 �rH � ";1� which is apart
from the horizon and the other is r 2 �rH; rH � "�which is
near the horizon. In the region r 2 �rH � ";1�, each
current is conserved. So we have

 @rJri�o� � 0 (3.4)

On the other hand, in the near horizon region, the effective
two-dimensional theory become chiral since classically the
ingoing modes are irrelevant and there are only outgoing
modes. In this effective chiral theory, the gauge symme-
tries and general coordinate transformation symmetries
become anomalous quantum mechanically. The anomaly
equation for each U�1� current near the horizon is [15,16]

 @rJri�H� �
mi

4�
@rAt (3.5)

where At � miA
i
t is the sum of N U�1�’s.

Actually one can take A�r� more seriously. From ef-
fective action, we can take the point of view that the scalar
field coupled to a single gauge potential A�r�. There exist
a U�1� gauge symmetry associated with gauge potential
A�r�. The corresponding current denoted as J �r� can be
constructed from the original N U�1� gauge symmetries.
Note that each Jri is not independent for a fixed azimuthal
angular momentum mi. Their expectation values are re-
lated as 1

mi
Jri �

1
mj
Jrj � J r. The anomaly equation for

J �r� is

 @rJ
r �

1

4�
@rAt; (3.6)

so we have anomaly Eq. (3.5). Solving the above equations
in each region, we have,

 Jri�o� � Ci�o� Jri�H� � Ci�H� �
mi

4�
�At�r� �At�rH��

(3.7)

where Ci�o� and Ci�H� are two integration constants. Ci�H� is
the value of the consistent current of the outgoing modes at
the horizon and Ci�o� is the value of the angular momentum
flux at infinity. It is our goal to determine Ci�o�, which
encodes the information of Hawking radiation.

Under gauge transformations, the variation of the effec-
tive action is given by

 � �W �
Z ������������
�g�2�
p

�r�J
�
i (3.8)

where � is a gauge parameter, and

 J�i � J�i�o����r� � J
�
i�H�H�r�: (3.9)

Here ���r� � ��r� rH � "� and H�r� � 1� ���r�,
where ��x� is a step function. Note that we have not take
the contribution of the ingoing modes into account. Using
Eqs. (3.4) and (3.5) we have

 � �W �
Z
d2x�

�
��r� rH � ��

�
J�i�o� � J

�
i�H�

�
mi

4�
At

�
� @r

�
mi

4�
AtH�r�

��
(3.10)

Since the underlying theory must be gauge invariant, so
�W � 0. Actually the last term is cancelled by quantum
effects of the classically irrelevant ingoing modes [5]. Then
the coefficient of the delta-function should vanish. With the
results (3.7), we can obtain a relation between the two
constants

 Ci�o� � Ci�H� �
mi

4�
At�rH� (3.11)

In order to determine the value of Ci�o�, one need to
impose the regularity condition. As discussed in [8,9], the
regularity requires that the covariant current is zero on the
horizon,

 

~J ri � Jri �
mi

4�
AtH�r�; ~Jri �rH� � 0 (3.12)

Then the flux of the angular momentum is obtained as

 Ci�o� � �
mi

2�
At�rH� �

mi

2�

XN
j�1

mj
aj�1� �r

2
H�

r2
H � a

2
j

(3.13)

Similarly we can determine the flux of the energy-
momentum tensor radiated from general Kerr-(anti)de
Sitter black holes. In the presence of the effective gauge
potentials Ait�r�, the conservation equation outside the
horizon is modified to be

 @rT
r
t�o� � F rtJ

r
�o� (3.14)
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where F rt � @rAt. Note that the right hand side of the
above relation depends simply on At. With the definition
of J r, we have J r

�o� � �
1

2�At�rH� 	 Co, where

 Co �
XN
j�1

mj
aj�1� �r2

H�

r2
H � a

2
j

: (3.15)

The solution of the above equation gives the value of the
energy flux at spatial infinity

 Trt�o� � ao � CoAt�r� (3.16)

where ao is an integration constant. Physically, it could be
taken as the value of the total energy flow of radiation
measured at spatial infinity.

On the other hand, there are gauge and gravitational
anomalies near the horizon and the anomaly equation is
now as

 @rT
r
t�H� � F rtJ

r
�H� �Atr�J

�
�H� � @rN

r
t (3.17)

where Nr
t � �f

02 � ff00�=192� [8]. The second term in-
dicates gauge anomaly while the third term is gravitational
anomaly [17] for the consistent energy-momentum tensor.
From the definition of J r and Eqs. (3.7) and (3.11) we have
J r
�H� � Co �

1
4�At�r�. Trt�H� can be solved as

 Trt�H� � aH �
Z r

rH
dr@r

�
CoAt �

1

2�
A2

t � N
r
t

�
(3.18)

where aH is an integration constant.
Under the general coordinate transformation, the varia-

tion of the effective action is
 

��W �
Z
d2x

������������
�g�2�
p

�tr�T
�
t

�
Z
d2x�t

�
C0@rAt�r� � @r

�
1

4�
A2

t H�r�

� Nr
tH�r�

�
�

�
Trt�o� � T

r
t�H� �

1

4�
A2

t � N
r
t

�

� ��r� rH � ��
�

(3.19)

where �t is the transformation parameter and T�� �
T���o����r� � T

�
��H�H�r�. The first term is generated by

classical current. The second term should be cancelled by
the quantum effect of the ingoing modes. As we discussed
before, the last term should vanish because the underlying
theory is general coordinate transformation covariant. So
we have:

 ao � aH �
1

4�
A2

t �rH� � N
r
t �rH� (3.20)

Similarly we need to impose the regularity condition,
which requires that the covariant energy-momentum flux
vanish on the future horizon. The covariant energy-
momentum is defined by [18,19]

 

~T r
t � Trt �

1

192�
�ff00 � 2f02� (3.21)

Combining with (3.18), the condition reads

 aH � �2=24� � 2Nr
t �rH�; (3.22)

where � � 2�=
 is the surface gravity of the black hole.
Therefore the total flux of the energy-momentum tensor is
given by

 ao �
A2

t �rH�
4�

� Nr
t �rH� �

1

4�

�XN
i�1

mi�
i
H

�
2
�

�

12
2

(3.23)

IV. CONCLUSION

In this paper we studied the Hawking radiation of gen-
eral Kerr-(anti)de Sitter black holes. We considered a
complex scalar field in a general Kerr-(anti)de Sitter black
hole background. Near the horizon, the field can be de-
scribed by an infinite collection of (1� 1)-dimensional
fields. A formal derivation of the dimensional reduction
based on the properties of the horizon is given and each
term in the effective action has obvious physical meaning.
Although there are no gauge fields in the original D
dimensional theory, the metric has N isometries, which
induce N U�1� gauge symmetries in the effective two-
dimensional theory. Each partial wave mode is charged
under the gauge symmetries with charge mi’s, where the
mi’s are angular quantum numbers. We have shown that
Hawking radiation from general Kerr-de Sitter space can
be determined by the cancellation condition of the gravi-
tational anomaly and gauge anomaly, combining with the
boundary condition required by regularity at the horizon.
We obtained the Hawking flux of each angular momentum
Ci�o� and energy-momentum tensor ao for each partial
wave mode:

 Ci�o� �
mi

2�

XN
j�1

mj
aj�1� �r

2
H�

r2
H � a

2
j

(4.1)

 ao �
1

4�

�XN
i�1

mi�
i
H

�
2
�

�

12
2 : (4.2)

Our work shows that the proposal in [5,8,9] can be
applied to more general blackhole backgrounds in higher
dimensions which have more than one angular momentum.
It would be interesting to apply the gravitational anomaly
method to study other problems in blackhole physics.

ACKNOWLEDGMENTS

The work was partially supported by NSFC Grant
No. 10405028, 10535060, NKBRPC
(No. 2006CB805905) and the Key Grant Project of
Chinese Ministry of Education (NO. 305001).

HAWKING RADIATION FROM GENERAL KERR-(ANTI)DE . . . PHYSICAL REVIEW D 75, 024041 (2007)

024041-5



[1] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[2] S. W. Hawking, Nature (London) 248, 30 (1974).
[3] J. B. Hartle and S. W. Hawking, Phys. Rev. D 13, 2188

(1976).
[4] M. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042

(2000).
[5] S. P. Robinson and F. Wilczek, Phys. Rev. Lett. 95, 011303

(2005).
[6] S. Christensen and S. Fulling, Phys. Rev. D 15, 2088

(1977).
[7] W. Unruh, Phys. Rev. D 14, 870 (1976).
[8] S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. Lett. 96,

151302 (2006).
[9] S. Iso, H. Umetsu, and F. Wilczek, Phys. Rev. D 74,

044017 (2006).
[10] K. Murata and J. Soda, Phys. Rev. D 74, 044018 (2006).
[11] R. C. Myers and M. J. Perry, Ann. Phys. (N.Y.) 172, 304

(1986).
[12] E. C. Vagenas and S. Das, J. High Energy Phys. 10 (2006)

025.
[13] M. R. Setare, hep-th/0608080.
[14] G. W. Gibbons, H. Lü, D. N. Page, and C. N. Pope, J.

Geom. Phys. 53, 49 (2005).
[15] R. A. Bertlmann, Anomalies in Quantum Field Theory

(Oxford Science, Oxford, 2000).
[16] K. Fujikawa and H. Suzuki, Path Integrals and Quantum

Anomalies (Oxford Science, Oxford, 2004).
[17] L. Alvarez-Gaume and E. Witten, Nucl. Phys. B234, 269

(1984).
[18] W. A. Bardeen and B. Zumino, Nucl. Phys. B244, 421

(1984).
[19] R. A. Bertlmann and E. Kohlprath, Ann. Phys. (N.Y.) 288,

137 (2001).

ZHIBO XU AND BIN CHEN PHYSICAL REVIEW D 75, 024041 (2007)

024041-6


