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The closed, k � 1, FRW model coupled to a massless scalar field is investigated in the framework of
loop quantum cosmology using analytical and numerical methods. As in the k � 0 case, the scalar field
can be again used as emergent time to construct the physical Hilbert space and introduce Dirac
observables. The resulting framework is then used to address a major challenge of quantum cosmology:
resolving the big-bang singularity while retaining agreement with general relativity at large scales. It is
shown that the framework fulfills this task. In particular, for states which are semiclassical at some late
time, the big bang is replaced by a quantum bounce and a recollapse occurs at the value of the scale factor
predicted by classical general relativity. Thus, the ‘‘difficulties’’ pointed out by Green and Unruh in the
k � 1 case do not arise in a more systematic treatment. As in k � 0 models, quantum dynamics is
deterministic across the deep Planck regime. However, because it also retains the classical recollapse, in
contrast to the k � 0 case one is now led to a cyclic model. Finally, we clarify some issues raised by
Laguna’s recent work addressed to computational physicists.
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I. INTRODUCTION

The spatially flat, isotropic, k � 0 model was recently
investigated in detail in the setting of loop quantum cos-
mology (LQC) [1–3]. That investigation introduced a con-
ceptual framework and analytical and numerical tools to
construct the physical sector of the quantum theory. These
methods enabled one to systematically explore the effects
of quantum geometry both on the gravitational and matter
sectors and to extend previous results in LQC. The purpose
of this paper is to use the ‘‘improved dynamics’’ of [3] to
carry out a similar analysis for the closed, k � 1 model,
coupled to a massless scalar field. In our presentation, we
will skip those constructions, proofs, and arguments which
are direct analogs of the ones used in the k � 0 case in [1–
3]. The focus will be on the differences from the existing
treatments of the k � 1 model and also our earlier analysis
of the k � 0 model.

Although current observations favor spatially flat mod-
els, the k � 1 closed model is of considerable conceptual
and technical interest. On the conceptual side, an outstand-
ing problem in quantum cosmology—and indeed in full
quantum gravity—is whether one can construct a frame-
work that cures the short-distance difficulties faced by the
classical theory near singularities, while maintaining an
agreement with it at large scales. By their very construc-
tion, perturbative and effective descriptions have no prob-
lem with the second requirement. However, physically
their implications cannot be trusted at the Planck scale
and mathematically they generally fail to provide a deter-

ministic evolution across the putative singularity. In loop
quantum gravity (LQG) the situation is just the opposite.
Quantum geometry gives rise to new discrete structures at
the Planck scale that modify the classical theory in such a
way that, at least in simple models, spacelike singularities
of general relativity are resolved. However, since the em-
phasis is on background independence and nonperturbative
methods, a priori it is not clear whether the theory also has
a rich semiclassical sector. Do the novel dynamical cor-
rections unleashed by the underlying quantum geometry
naturally fade away at macroscopic distances or do they
have unforeseen implications that prevent the theory from
reproducing general relativity at large scales? While there
is recent progress which indicates that LQG does admit a
viable semiclassical sector near Minkowski space-time [4],
further evidence is needed in other contexts such as cos-
mological settings.

The improved dynamics of [3] successfully addressed
this issue in the k � 0 case. However, because of classical
recollapse, the k � 1 model provides a more stringent test.
In particular, using numerical evolutions of equations used
in the early LQC works [5], Green and Unruh [6] had
concluded that there may be a key difficulty: the LQC
evolution appeared not to reproduce the recollapse pre-
dicted by general relativity. Since curvatures at the epoch
of the classical recollapse are very small, this feature
appeared to indicate that LQC would deviate from general
relativity in perfectly ordinary situations. Thus, although
the LQC equations used in the Green-Unruh analysis did
cure the ultraviolet difficulties by resolving the singularity
in the sense of [7], they appeared not to have a viable
infrared behavior. Can this difficulty be resolved? Or, does
the situation in the k � 1 model indicate that LQG may not
admit a good semiclassical sector in this cosmological
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setting? We will employ methods developed in the k � 0
case [3] to probe this issue in the physical sector of the
quantum theory. A systematic analysis will show that not
only is the big-bang singularity resolved but the quantum
evolution in fact faithfully mirrors the predictions of gen-
eral relativity, including the recollapse, when the curvature
is small compared to the Planck scale.

A second conceptual issue is whether the general fea-
tures of the Planck scale physics found in the k � 0 case in
[3] are robust. For example, there the Friedmann equation
� _a=a�2 � 8�G�=3 is replaced in LQC by the quantum-
corrected equation � _a=a�2 � �8�G�=3��1� �=�crit�,
where �crit � 0:82�Pl. The correction comes with a nega-
tive sign, making it possible for _a to vanish—triggering a
bounce—when the matter density reaches a critical value,
�crit. One then has a pre-big-bang branch joined on to the
current post-big-bang branch by a deterministic evolution,
both behaving classically when the density is low com-
pared to �crit. Does this feature survive in the k � 1 case or
does space-time simply become fuzzy near and to the
‘‘past’’ of the big-bang? Is there only one cycle in which
the universe resembles our own? Is the value of the critical
density �max at the bounce point essentially the same as in
the k � 0 model or does it depend on the spatial topology?
Our analysis will show that the big bang and the big crunch
are replaced by a quantum bounce leading, in a precise
sense, to a cyclic quantum universe. Furthermore, the value
of �max is robust as long as the maximum radius of the
universe attains a macroscopic size.

On the technical side, this model also provides a number
of challenges. In LQG, the configuration variable is a
connection Aia, related to the spin connection �ia (deter-
mined by the spatial triad) and the extrinsic curvature Ki

a

via Aia � �ia � �K
i
a, where � is the Barbero-Immirzi pa-

rameter. However, because of certain technical difficulties
with the methods used, so far the k � 1 case has been
treated in the literature by regarding the extrinsic curvature
Ki
a as a connection and constructing holonomies from it

[5]. Because of gauge fixing this is a mathematically viable
strategy. However, as emphasized in, e.g. [6], to make
closer contact with the full theory, it is desirable to con-
struct the theory using connections Aia. So an important
question arises: Can the improved dynamics of [3] over-
come the difficulties faced in the earlier treatments, allow-
ing us to formulate the theory in terms of Aia? We will find
that the answer is in the affirmative. A second technical
challenge arises in the definition of the operator represent-
ing the field strength Fiab that features in the expression of
the Hamiltonian constraint. In LQC, this operator is con-
structed from holonomies [8]. In the k � 0 model, one can
use the integral curves of the (right- and left-invariant)
fiducial triad oeai to build the holonomy loops. In the k �
1 case, oeai (is only left invariant and) satisfies the commu-
tation relations of so(3). Hence, none of the three pairs of
triad vectors is surface forming. If one uses a general loop

which is not tangential to these triads, holonomies (fail to
be almost periodic functions of connections and) do not
lead to well-defined operators in the quantum theory. Thus,
finding suitable loops poses an interesting technical chal-
lenge. We resolve this issue.1 Finally, to numerically solve
the quantum Hamiltonian constraint, one has to find nor-
malizable eigenfunctions of a certain difference operator
�. Recall that, in the case of, e.g., a simple harmonic
oscillator, the differential operator representing the
Hamiltonian admits an eigenfunction with any real number
as its eigenvalue. Normalizable eigenfunctions exist only
for discrete eigenvalues and thus constitute a set of zero
measure in the space of all eigenfunctions. In the k � 1
case, the situation is similar with the operator �. However,
now the normalizable eigenfunctions and their eigenvalues
are not known analytically and, since they constitute a set
of zero measure, one has to exercise considerable care in
singling them out numerically.

Insights gained from the resolution of these conceptual
and technical issues are likely to be important as one
considers more and more general situations and develop
new tools to tackle the Hamiltonian constraint of full LQG.

The paper is organized as follows. In Sec. II we sum-
marize the basics of the classical and quantum theories for
our model, arriving at the form of the Hamiltonian con-
straint operator. In Sec. III we sketch the Wheeler-DeWitt
(WDW) theory and in IV we introduce the physical sector
of the theory in LQC. Numerical simulations are discussed
in Sec. V. In Sec. VI we summarize effective equations of
the semiclassical sector, list the main numerical results,
and compare them with predictions of the effective theory.
We also clarify some issues that have been raised by a
numerical analysis by Laguna [10] and remove confusion
caused by an unfortunate use of terminology there.
Section VII places these results in a broader context and
discusses their relation with that by Green and Unruh [6].
Appendix A summarizes some background material on the
fiducial geometrical structures used in k � 1 models with
the so-called ‘‘Bianchi IX’’ symmetries.

II. THE BASIC FRAMEWORK

This Sec. is divided into two parts. In the first we
summarize the classical theory and in the second we
present the basics of the quantum theory.

A. Classical theory

Space-time manifolds under consideration are of the
form M� R, where M has the topology of a 3-sphere,
S3. As explained in Appendix A, one can identify M with
the symmetry group SU(2) (which ensures spatial homo-
geneity and isotropy) and endow it with a fixed fiducial

1This issue was resolved independently by the Warsaw group
[9]. Their method of evaluating the holonomy is more intrinsic,
elegant and insightful.
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basis of 1-forms o!i
a and vectors oeai . The resulting fiducial

metric is

 

oqab :� o!io
a !

j
bkij;

kij: the Cartan-Killing metric on su�2�:
(2.1)

oqab turns out to be the metric of the round 3-sphere with
radius ao � 2 (rather than ao � 1). The volume of M with
respect to (w.r.t.) this fiducial metric oqab is Vo �
2�2a3

o � 16�2 and the scalar curvature is oR � 6=a2
o �

3=2. We shall set ‘o :� V1=3
o . (For details, see

Appendix A.)
To facilitate comparison with the spatially flat, k � 0

case and to directly use results of [1–3] obtained in that
case, we will set our conventions in a parallel fashion. The
dynamical, isotropic homogeneous connections and triads
will be parametrized by c and p, respectively:

 Aia � c‘�1
o

o!i
a; Eai � p‘�2

o

�����
oq

p
oeai : (2.2)

As in the k � 0 case, c is dimensionless while p has
dimensions of area and the density weight of Eai is ab-
sorbed in the determinant of the fiducial metric. At the
point �c; p� of the phase space, the physical 3-metric qab
and the extrinsic curvature Kab are given by
 

qab � jpj‘�2
o

oqab and

�Kab �
�
c�

‘o
2

�
jpj1=2‘�2

o
oqab:

(2.3)

The corresponding physical volume of M is jpj3=2. The
scale factor a associated with a physical metric qab is
generally expressed via qab � a2oq

ab
, where oq

ab
is the

unit 3-sphere metric. Then, the scale factor is related to p
via jpj � a2‘2

o=4. As usual p can take both positive and
negative values, the change in sign corresponds to a flip in
the orientation of the triads oeai which leaves the physical
metric qab invariant.

Expressions of the total action, the symplectic structure,
and the Hamiltonian constraint require an integration over
M. In the k � 0 case the underlying manifold is noncom-
pact (R3), whence the naive integrals would simply di-
verge. Therefore, irrespective of which quantization
scheme one uses, one has to fix a fiducial cell with finite
volume, say V o (w.r.t. the fiducial flat metric), and restrict
all integrations to this cell. In the k � 1 case,M is compact
and the introduction of a cell is unnecessary. Nonetheless,
in many of the key equations our Vo plays the role of the
volume V o of the cell in the k � 0 case. In both cases, the
fundamental Poisson bracket is

 fc; pg �
8�G�

3
; (2.4)

where � is the Barbero-Immirzi parameter. Finally, using
the fact that the Cartan orthonormal triad !i

a on a 3-sphere
of radius ao satisfies the identity

 d!k �
1

ao
�ij

k!i ^!j � 0; (2.5)

it is straightforward to calculate the field strength Fkab of
the connection Aia on M

 Fkab � ‘�2
o

�
c2 � c‘o

�
2

ao

��
�ij

k o!j
a
o!k

b: (2.6)

Our fiducial cotriad o!i
a corresponds to ao � 2. But we

have refrained from using this numerical value in (2.6) to
clarify the relation with the k � 0 case. To pass to this case,
one has to set Vo equal to the volume V o of the fiducial
cell there but take the limit as ao goes to infinity. In this
limit, the fiducial cotriad o!i

a goes to the (flat) fiducial
cotriad used in the k � 0 case [see (2.5)] and the field
strength Fkab goes over to its value V�2=3

o c2�ij
k o!i

a
o!j

b

in the k � 0 case [1–3,8].
As in the k � 0 models, we have completely gauge fixed

the Gauss and the diffeomorphism constraints by fixing
o!i

a and oeai and using the parametrization (2.2) of the
phase space variables Aia, Eai . So, we are left only with the
Hamiltonian constraint. The gravitational part of this con-
straint is given by [11,12]
 

Cgrav �
Z
M

d3x��ijk e
�1EaiEbjFkab

� 2�1� �2�e�1EaiEbjKi
�aK

j
b		; (2.7)

where e :�
��������������
j detEj

p
and Ki

a � Ka
b o!i

b is the extrinsic
curvature, and where, as is usual in minisuperspace analy-
sis, we have set the lapse equal to 1. Using the fact that Aia
is related to the spin-connection �ia (of the physical triad
eai ) and the extrinsic curvature Ki

a through Aia �
�ia � �Ki

a, it is convenient to express the second term in
the integrand of (2.7) in terms of the curvature Fkab of Aia
and the curvature �k

ab of �ia:

 EaiEbjKi
�aK

j
b	 �

1

2�2 �
ij
k E

aiEbj�Fkab ��k
ab�: (2.8)

In the k � 0 case, the spatial curvature �k
ab vanishes and

the extrinsic curvature term in (2.7) reduces to a multiple of
the first term involving Fkab. In full general relativity, by
contrast, while �i

ab is determined by the momenta Eai , its
expression is rather complicated and this strategy of han-
dling the extrinsic curvature terms, by itself, does not
simplify matters. The situation in general homogeneous
models [5] as well as black hole interiors [13] is in between
the two: Although �k

ab is nonzero, its expression is simple
and manageable. In the k � 1 model now under consid-
eration, one has

 �k
ab � �

1
4�ij

k o!i
a
o!j

b: (2.9)

Therefore, the gravitational part of the constraint reduces
to
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Cgrav � �
1

�2

Z
M

d3x�ijk e
�1Eai E

b
j

�

�
Fkab �

�
1� �2

4

�
o�ab

c o!k
c

�
(2.10)

 � �
6
����
p
p

�2

��
c�

‘o
2

2

ao

�
2
�
�2‘2

o

4

4

a2
o

�
; (2.11)

where, in the last step, we have used the expression (2.6) of
Fab. In the k � 1 case now under consideration, ao � 2.
However, as indicated above, we did not substitute this
numerical value because results for the k � 0 case [1–3]
can be recovered by setting ao � 1 (and ‘o � V 1=3

o ).
However, since ao always occurs in the combination
‘o=ao in the Hamiltonian constraint, we can set ao � 2
throughout and recover the k � 0 results simply by setting
‘o � 0. In what follows, we will adopt this strategy.

Remark.—In the above construction, we began with a
fiducial triad oeai and a cotriad o!i

a adapted to a 3-sphere of
radius ao � 2. Therefore, our construction may appear to
be tied to that choice. Had we used a 3-sphere of radius
ao � 2�, the fiducial triad and the cotriad we have rescaled
via oeai ! ��1 o!i

a and o!!a � o!i
a. It is easy to check that

the variables c, p parametrizing the physical fields �Aia; Eai �
are left unchanged. Hence, the entire framework is invari-
ant under this rescaling ‘‘gauge’’ freedom.

B. Quantum kinematics and the Hamiltonian
constraint

To pass to the quantum theory, following Dirac one first
constructs a kinematical description. As in the k � 0 case
[1–3,8], the kinematical Hilbert space H grav

kin is the space
L2�RBohr; d�Bohr� of square integrable functions on the
Bohr compactification of the real line. To specify states
concretely, it is convenient to work with the representation
in which the operator p̂ is diagonal. Eigenstates of p̂ are
labeled by a real number � and satisfy the orthonormality
relation:

 h�1j�2i � ��1;�2
: (2.12)

Since the right side is the Kronecker delta rather than the
Dirac delta distribution, a typical state in H grav

kin can be
expressed as a countable sum; j�i �

P
nc
�n�j�ni, where

c�n� are complex coefficients and the inner product is given
by

 h�1j�2i �
X
n

�c�n�1 c�n�2 : (2.13)

The fundamental operators are p̂ and dexpi��c=2�:

 p̂j�i �
8��‘2

Pl

6
�j�i and

d
exp

i�z
2
j�i � j�� �i;

(2.14)

where � is any real number. From the discussion of the
classical theory of Sec. II A, it follows that the physical
volume operator of M is given by V̂ � jp̂j3=2.

Of special interest to us are holonomies of the connec-
tion Aia along the integral curves of our fiducial triads oeai .
The holonomy h���k along the segment of (directed) length
�‘o, tangential to eak is given by2

 h���k � cos
�c
2
I� 2 sin

�c
2
�k: (2.15)

The corresponding holonomy operator has the action
 

ĥ���k j�i �
1

2
�j�� �i � j�� �i�I

�
1

i
�j�� �i � j�� �i��k: (2.16)

However, just as there is no operator corresponding to the
connection itself in full LQG [11,12], there is no operator ĉ
on H grav

kin [8].
To describe quantum dynamics, we have to first intro-

duce a well-defined operator on H grav
kin representing the

Hamiltonian constraint Cgrav. Since there is no operator
corresponding to c itself, as in the k � 0 case we will use
the integral expression (2.10) of the constraint. For the
passage to quantum theory, one has to first express this
classical constraint in terms of the elementary variables p
and h���k and then replace them with operators p̂ and ĥ���k .
As in the full theory [12,14], the term involving triads
becomes the following operator [2,3,8]
 

�ijk
de�1EajEbk �

X
k

�sgnp�
2i@��G�‘o

o�abc o!k
c

� Tr�ĥ���k �ĥ
����1
k ; V̂	�i�; (2.17)

where V̂ � jp̂j3=2 is the volume operator.
To define F̂kab in (2.10), as in [1–3,8], we use the

standard relation between the holonomies and field
strengths. Because of homogeneity, the components
oeai

oebjFab
k are constant on M. They can be evaluated by

considering a square loop �ij starting and ending at any
point x, with tangent vectors oeai and oebj at x, and then
taking the limit as the area enclosed by the loop shrinks to
zero. In the quantum theory, since there is no operator
corresponding to the connection c, the limiting operator
does not exist. As discussed in detail in [1–3,8], this is a
manifestation of the quantum nature of geometry, i.e., a
reflection of the fact that the area operator has purely
discrete spectrum. As in [3] our strategy is to shrink the

2Here I is the unit 2� 2 matrix and �k is a basis in the Lie
algebra su(2) satisfying �i�j �

1
2 �ijk�

k � 1
4�ij. Thus, 2i�k � 	k,

where 	i are the Pauli matrices. The directed length is positive if
the line segment is oriented along oeak and negative if it is
oriented in the opposite direction.
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loop only until its physical area equals the ‘‘area gap’’ �,
i.e., the minimal nonzero eigenvalue of the area operator.

Now, in the k � 0 case, the edges of �ij can be taken to
be the integral curves of the triad vector fields oeai and oebj .
In the k � 1 model, however, the oeai satisfy the commu-
tation relations of su(2); they do not commute. Therefore
their integral curves cannot provide the desired closed loop
�ij. In the existing literature, a closed loop is formed by
simply adding a fifth edge [5]. However, this strategy is not
viable: Since the five edges do not span an unambiguous 2-
surface, the notion of the area enclosed by the loop has no
obvious meaning. However note that, while oeai are the
‘‘left-invariant’’ vector fields, M also admits three ‘‘right-
invariant’’ vector fields 
ai (see Appendix A). These are the
symmetry fields: they also satisfy the commutation rela-
tions of su(2), act simply and transitively on M and their
action leaves each of our fiducial triads oeai and cotriads
o!i

a invariant. Since they commute with oeai , one can form
the desired closed loops �ij by first moving from x along
the integral curve of say oei then 
k then along �oei and
then along�
k (where 
k is chosen to coincide with oej at
x). An explicit realization of this procedure is presented in
Appendix A and a more geometric construction appears in
[9]. The final field strength operator does not depend on
whether the first segment is chosen to be left invariant or
right invariant and is given by3:

 F̂ k
ab � lim

Ar�ij!�

1

�2‘2
o
�sin2��c� ‘o=2�

� sin2��‘o=2���ij
k o!i

a
o!j

b

�
1

��‘2
o
�sin2 ���c� ‘o=2�

� sin2� ��‘o=2���ij
k o!i

a
o!j

b: (2.18)

Here, as discussed in detail in [3], �� is a specific function
of p:

 �� 2jpj � � 
 �2
���
3
p
���‘2

Pl; (2.19)

and for notational simplicity we have dropped hats on
operators which are trigonometric functions of c. The
fact that �� is a function of p rather than a constant arises
from the requirement that the physical area of �ij be set
equal to �. As explained in [3], this strategy mimics the
full theory in a well-defined sense and the resulting im-
proved dynamics is free of the drawbacks of older
Hamiltonian constraint of LQC. As in [1–3,8], the view-
point is that at the fundamental level—i.e. at the Planck
scale—the field strength operator is nonlocal and the usual
local classical expression arises only on coarse graining in
semiclassical states.

To obtain the explicit action of F̂ab
k on H grav

kin , one has
to face two complications. The first arises already in the
k � 0 case. The operator F̂ab

k for k � 0 can be recovered
by setting ‘o � 0. It depends on the connection only
through sin� ��c�. Since �� is itself a function of p̂, the
action of sin ��c on H grav

kin is rather subtle. As discussed
in detail in [3], it is simplest to express it by going to a basis
jvi which is better adapted to the volume operator V̂:

 V̂jvi �
�
8��

6

�
3=2 jvj

K
‘3

Pljvi; (2.20)

where the dimensionless label v—the eigenvalue of V̂
apart from a constant—is related to the dimensionless
label �—the eigenvalue of p̂ apart from an overall con-
stant—via

 v � K sgn���j�j3=2; where K �
2
���
2
p

3
���������
3
���
3
pp : (2.21)

In this basis, expi ��c are simply the translation operators:

 ei� ��c=2���v� � ��v� 1�; (2.22)

so that

 sin� ��c���v� �
1

2i
���v� 2� ���v� 2��: (2.23)

In the k � 1 case we have an added complication: (2.18)
contains sin ���c� ‘o=2� rather than sin� ��c�. This differ-
ence can be handled as follows: On H grav

kin
 

sin
�

��c�
‘o
2

�
��v� � ei‘of sin ��ce�i‘of��v�;

where f �
sgnv

4

��������vK
��������2=3

: (2.24)

Note that since f�v� is continuous everywhere (including
the point v � 0), the operator expi‘of is well-defined and
unitary on all of H grav

kin .
We now have operators corresponding to each term in

the integrand of the gravitational part (2.10) of the
Hamiltonian constraint. Using (2.17), (2.18), (2.23), and
(2.24), in (2.10) we obtain:
 

Ĉgrav��v� � eif‘o sin ��cÂ sin ��ce�i‘of��v�

�

�
sin2 ��‘o

2
�

��2‘2
o

4
�

‘2
o

9jK2vj2=3

�
Â��v�;

(2.25)

where, as in the k � 0 analysis [3] we have set

 Â��v� � �
27K

4

�������
8�
6

s
‘Pl

�3=2
jvjjjv� 1j � jv� 1jj��v�:

(2.26)

To summarize, there are two main subtleties in the passage
from spatially flat, k � 0 models to the closed, k � 1 ones.

3Here and in what follows, in light of results of [15,16], we
have used the fundamental, j � 1=2 representation. For a more
detailed discussion, see [2,3].
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First, the loop around which holonomy is computed has to
be constructed using both right and left-invariant vector
fields. Second, now the connection dependence is in the
operator sin ���c� ‘o=2� rather than sin ��c and one has to
define its action on H grav

kin using the unitary operators
expi‘of. When this is done, the gravitational part of the
Hamiltonian constraint is symmetric and positive, given by
(2.25).

Finally, to write the complete constraint operator we also
need the matter part of the constraint. For the massless
scalar field, in the classical theory it is given by:

 Cmatt � 8�Gjpj��3=2�p2
�: (2.27)

As usual, the nontrivial part in the passage to quantum
theory is the function jpj�3=2. However, as with the cotriad
operator (2.17), we can use the method introduced by
Thiemann in the full theory [12,14]. This issue is discussed
in detail in [3]. The final result is

 

djpj��3=2���v� �
�

6

8��‘2
Pl

�
3=2
B�v���v�; (2.28)

where

 B�v� � �32�
3Kjvjjjv� 1j1=3 � jv� 1j1=3j3: (2.29)

It is self-adjoint on H grav
kin and diagonal in the eigenstates

of the volume operator.
Collecting these results we can express the total con-

straint

 Ĉ��v� � �Ĉgrav � Ĉmatt���v� � 0; (2.30)

as follows:

 

@2
���v;�� � ����v;��

� ��o��v;�� �
�G
2
�B�v�	�1

�

�
3K

�
sin2

�
��‘o
2

�
�

��2‘2
o

4

�
jvj

�
1

3
‘2
o�2

��������vK
��������1=3

�
� �jjv� 1j � jv� 1jj	��v;��: (2.31)

Here, �o is the operator that appears in the k � 0 quantum
constraint in place of � [3]:

 �o��v;�� � ��B�v�	�1�C��v���v� 4; ��

� Co�v���v;�� � C��v���v� 4; ���;

(2.32)

where the coefficients C��v� and Co�V� are given by:

 C��v� �
3�KG

8
jv� 2jjjv� 1j � jv� 3jj

C��v� � C��v� 4� Co�v� � �C��v� � C��v�:

(2.33)

Thus, the k � 1 quantum constraint has the same form as
in the k � 0 case. As one would expect from the classical
expression (2.10), the difference ���o is diagonal in the
v-representation and vanishes when we set ‘o � 0.

In the remainder of the paper, we will work with the
Hamiltonian constraint (2.31). As in the k � 0 case [2,3],
the form of this constraint is similar to that of a massless
Klein-Gordon field in a static space-time, but now with an
additional static potential. � is the analog of the static time
coordinate and the difference operator � of the spatial
Laplace-type operator plus the static potential. Hence,
the scalar field � can again be used as ‘‘emergent time’’
in the quantum theory. We will examine the operator � in
some detail in Secs. IV and V. Finally, in the above con-
struction we made a factor ordering choice, the motivations
behind which are the same as those discussed in [3]. This
choice will facilitate comparison between the LQC results
in the k � 1 and k � 0 cases and yield the WDW equation
with its ‘‘natural’’ factor ordering in the ‘‘continuum
limit.’’

Remark.—Velhinho [17] has pointed out that in quan-
tum kinematics it would suffice to consider the algebra
generated by p and just two almost periodic functions of
the connection, ei�1c and ei�2c, where �1=�2 is irrational,
because these functions already separate points of the
phase space. In the older, ‘‘�o-evolution’’ [2,8], this strat-
egy would be natural; one could set �1 � 1 and �2 �

�o 
 3
���
3
p
=2. However, as discussed in [2], this evolution

is not viable physically. The ‘‘improved’’ ��-evolution used
in [3] and in this paper is free of those drawbacks. But since
�� is now not a constant but a function (2.19) of �, the

Velhinho kinematics will not support the ‘‘improved quan-
tum dynamics.’’

III. WHEELER DEWITT THEORY

In this section we will briefly discuss the WDW limit of
LQC in which effects specific to quantum geometry in the
difference equation (2.31) are ignored by letting the area
gap go to zero. This discussion will bring out the key role
played by quantum geometry near the big-bang and the
big-crunch singularities. The WDW theory has its roots in
geometrodynamics which is insensitive to the choice of the
triad orientation—i.e., to the sign of v. Therefore, as in
[2,3], we will restrict ourselves to wave functions ��v�
which are symmetric under the orientation reversal opera-
tor �,

 ���v;�� � ���v;��; (3.1)

where (and in what follows) we have denoted the WDW
analogs of the LQC quantities with an underbar. As in [3],
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we will find that the scalar field � can again be used as
emergent time and, in the resulting physical sector of the
theory, the big-bang and the big-crunch singularities persist
in the WDW limit. Details of motivation and background
material as well as underlying assumptions and technical
steps involved in the WDW limit can be found in [3].

A. The WDW constraint and its general solution

To pass to the WDW theory, one sends the area gap to
zero and restricts oneself to smooth wave functions
��v;��. As explained in [2,3], this corresponds to taking
the continuum limit of the difference equation (2.31). The
nontrivial part of the task lies in the limit of �o since the
remainder is diagonal in v. This has already been com-
pleted in [3]. The required WDW limit is then given by4

 @2
���v;�� � �� ��v;��

� ��o��v;�� �
�G‘2

o�
2

3K4=3
jvj4=3��v;��;

(3.2)

where, as in [3],

 � o��v;�� :� �12�G�v@v�2��v;��: (3.3)

As explained in [3], this factor ordering is ‘‘covariant’’
from the geometrodynamical perspective and coincides
with the one used in the older WDW literature (see e.g.
[18]).

The operator � is self-adjoint and positive definite on
the Hilbert space L2�R;B�v�dv� 
 L2�R; �K=jvj�dv�,
where, as in [3], to facilitate comparison with LQC results
we have denoted the WDW limit K=jvj of B�v� by B�v�.
The general solution of (3.2) can be readily expressed in
terms of the spectral family of �. Let us begin by consid-
ering all eigenfunctions of the differential operator �:

 � 12�G�v@v�
2 !�v� �

�G‘2
o�2

3K4=3
jvj4=3 !�v�

� !2 !�v�: (3.4)

In their most general form, they can be expressed as linear
combinations of modified Bessel functions I , K [18]

  !�v� � �Kik

�
‘o�

4K2=3
jvj2=3

�
� I ik

�
‘o�

4K2=3
jvj2=3

�
;

(3.5)

where k :� �3=16�G�1=2! and �,  are constants. [We

have used calligraphic letters to denote the modified Bessel
functions to avoid confusion with the constant K of (2.21)].
As x! 1, the function I ik�x� grows exponentially
whereas Kik�x� decays exponentially.

These properties of eigenfunctions imply that the spec-
trum of the operator � is continuous and that I ik�x� cannot
feature in its spectral decomposition. Therefore to obtain
this decomposition, we will set �k� � 0 and choose con-
stants ��k� such that the resulting eigenfunctions ek�v� :�
��k�Kik�v� are orthonormal,

 hekjek0 i � ��k; k0�: (3.6)

The Dirac distribution appears on the right-hand side be-
cause the spectrum of � is continuous. This may appear
surprising because ek�v� decay for large v. However, ek�v�
fail to have a finite norm in L2�R; �K=jvj�dv� because they
have the following oscillatory form for small v:

 K ik

�
‘o�

4K2=3
jvj2=3

�
!
jvj�k

a�!� cos
�

!�������������
12�G
p lnjvj � 	�!�

�
;

(3.7)

where 	�!� is a constant (but !-dependent) phase shift.
In the spatially open, k � 0 models [3], the spectrum of

� is twofold degenerate, reflecting the fact that in the
classical theory there are two sets of distinct solutions,
one perpetually expanding and the other perpetually con-
tracting. In the present case, this degeneracy is broken
because I ik�v� diverge at large v. Its classical counterpart
is the fact that, because each solution has both contracting
and expanding epochs, we no longer have two distinct sets
of universes.

Eigenfunctions ek�v� provide the standard spectral de-
composition on L2�R;B�v�dv�:

 ��v� �
Z 1

0
dk ~��k�ek�v�: (3.8)

Hence, the general solution to (3.2) with smooth initial data
consisting of rapidly decreasing functions can be written as

 ��v;�� �
Z 1

0
dk ~���k�ek�v�e

i!� � ~���k��ek�v�e
�i!�

(3.9)

for some suitably regular function ~���k�. Following the
terminology generally used in the Klein-Gordon theory, the
solution will be said to be of positive (respectively nega-
tive) frequency if ~���k� (respectively ~���k�) vanishes.

As usual, the positive and negative frequency solutions
satisfy first order ‘‘evolution’’ equations, obtained by tak-
ing a square root of the constraint (3.2):

  i@���v;�� �
�����
�

p
��v;��: (3.10)

If f�v� is the initial data for these equations at ‘‘time
� � �o,’’ the solutions are given by

4The appearance of the Barbero-Immirzi parameter � in the
WDW limit is an artifact of our conventions, i.e., definition of v.
If instead we use the eigenvalue �v of the volume operator,
V̂j �vi � �v‘3

Plj �vi, so that �v � �8��=6�3=2�v=K�, the WDW equa-
tion (3.2) would be manifestly independent of �: @2

��� �v;�� �
12�G� �v@ �v�

2�� �v;�� � �G‘2
o=16�� �v4=3�� �v;��.
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 ���v;�� � e�i
���
�
p
����o�f�v�: (3.11)

B. Physical sector of the WDW theory

Solutions (3.9) to the WDW equation are not normal-
izable in H wdw

kin (because zero is in the continuous part of
the spectrum of the WDW operator). Therefore, one has to
use one of the standard methods [19,20] to construct the
physical Hilbert space H wdw

phy . Since the procedure is com-
pletely analogous to that used in [2,3], we will simply
summarize the final results.

H wdw
phy consists of positive frequency solutions ��v;��

to (3.2) which are symmetric under the reversal of the
orientation of the triad, i.e. satisfy ��v;�� � ���v;��,
and which have a finite norm w.r.t. the inner product:

 h�1j�2iphy �
Z
���o

dvB�v� ��1�v;���2�v;��; (3.12)

where for notational simplicity here (and in what follows)
we have dropped the subscript � denoting positive fre-
quency. On this space, a useful complete set of Dirac
observables is provided by the momentum p̂� of the scalar
field,

 p̂ ���v;�� :� �i@
@��v;��
@�

; (3.13)

and the operator ^jvj�o
corresponding to volume at the

emergent time � � �o,

 jv̂j�o
��v;�� � ei

���
�
p
����o�jvj��v;�o�: (3.14)

Using the physical Hilbert space and this complete set of
Dirac observables, we can now introduce semiclassical
states and study their evolution. Let us fix an ‘‘instant of
time’’ � � �o and construct a semiclassical state which is
peaked at p� � p?� and jvj�o

� v?. Since we would like
the peak to be at a point that represents a large classical
universe, we are led to choose v? � 1 and p?� � @ (in the
natural classical units c � G � 1). The second condition is
necessary to ensure that the universe expands out to a size
much larger than the Planck scale. At time � � �o, con-
sider the state

 

��v;�o� �
Z 1

0
dk ~��k�ek�v�ei!��o��?�;

where ~��k� � e���k�k
?�2=2	2�: (3.15)

Here

 

k? �
�����������������������
3=16�G@2

q
p?� and

�? � �o �

�������������
3

16�G

s
cosh�1

��3K2�p?��
2

‘2
oG@2�2

�
1=2
�v?��2=3

�
:

(3.16)

In the spatially flat case, the eigenfunctions ek�v� were just
plane waves [3] and one could evaluate this integral ana-
lytically. The modified Bessel functions are much more
complicated. Therefore, in the closed model we have to use
numerical methods. They show that this state is sharply
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FIG. 1 (color online). (a) The absolute value of the WDW wave function. The initial state at time �o was constructed using (3.15)
and is sharply peaked at p?�, and v?j�o

. It remains sharply peaked on the classical trajectory with p� � p?�, passing through v? at
� � �o. For clarity of visualization, only the values of j�j greater than 10�4 are shown. Being a physical state, � is symmetric under
v! �v. In this simulation, the parameters were p?� � 5000 and �p�=p

?
� � 0:02. (b) The expectation values (and dispersions) of

jv̂j� are plotted for the WDW wave function and compared with the classical trajectory. The WDW wave function follows the classical
trajectory into the big-bang and big-crunch singularities.
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peaked at values v?, p?� of our Dirac observables [see
Fig. 1(a)].

We can now ask for the evolution of this state. Does it
remain peaked at the classical trajectory defined by p� �
p?� and passing through v � v? at � � �o? This question
is easy to answer because (3.11) implies that the (positive
frequency) solution ��v;�� to (3.2) defined by the initial
data (3.15) is obtained simply by replacing �o by � in
(3.15). Since 	, the measure of dispersion in (3.15), does
not depend on �, it follows that ��v;�� continues to be
peaked at a trajectory which is precisely the classical
solution of interest. This is just what one would hope
during the epoch in which the universe is large. However,
the property holds also in the Planck regime and the
semiclassical state simply follows the classical trajectory
into the big-bang and big-crunch singularities [see
Figs. 1(a) and 1(b)]. In this sense, the WDW evolution
does not resolve the classical singularity.

We will show in the next three sections that the situation
is very different in LQC. This can occur because the WDW
equation is a good approximation to the discrete equation
only for large v. Furthermore, as discussed in [3], the
approximation is not uniform but depends on the state: in
arriving at the WDW equation from LQC we had to neglect
� dependent terms of the form O�vn�3 dn�

dvn � for n � 3. For
semiclassical states considered above, this implies that the
approximation is excellent for v� k? but becomes inade-
quate when the peak of the wave function lies at a value of
v comparable to k?. Then, the LQC evolution departs
sharply from the WDW evolution. We will find that, rather
than following the classical trajectory into the big-bang
singularity, the peak of the LQC wave function now ex-
hibits a bounce. Since large values of k? are classically
preferred, the value of v at the bounce can be quite large.
However, as in the k � 0 models [3], we will find that the
matter density at the bounce point is comparable to the
Planck density, independently of the precise value of k? so
long as p?� � @.

IV. LOOP QUANTUM COSMOLOGY:
ANALYTICAL ISSUES

Since generic solutions in the closed, k � 1 cosmologies
undergo a recollapse in classical general relativity, the
scale factor cannot serve as a global time variable. This
fact has been used as a criticism of the implicit use of the
scale factor as time in the older LQC literature (see, e.g.,
[6]). However, if matter sources include a massless scalar
field �, that field is monotonic and single valued in all
classical solutions. Therefore it can be chosen as the ‘‘in-
ternal’’ time variable with respect to which the scale factor
and other fields evolve. Furthermore, as discussed in
Sec. II, for the model considered in this paper the
Hamiltonian constraint (2.31) of LQC has the same form
as the wave equation in a static space-time, with � playing

the role of time and � of the elliptic spatial operator plus a
static potential. Therefore as in the k � 0 case � can be
regarded as emergent time also in the quantum theory. This
choice is free of the criticisms mentioned above.5 In this
section we will construct the physical sector of LQC by
exploiting this fact. As mentioned in Sec. I, we will find
that quantum geometry effects resolve both the big-bang
and the big-crunch singularities, leading to a cyclic quan-
tum universe. Still the scalar field will continue to be a
viable emergent time globally.

A. General solution to the LQC Hamiltonian constraint

As in the spatially flat k � 0 case, our kinematical
Hilbert space will be H total

kin
:� L2�RBohr; B�v�d�Bohr� �

L2�R; d��. Since � is to be thought of as time and v as
the genuine, physical degree of freedom which evolves
with respect to this time, we have chosen the standard
Schrödinger representation for � but the ‘‘polymer repre-
sentation’’ for v to correctly incorporate the quantum
geometry effects. This is a conservative approach in that
the results will directly reveal the manifestations of quan-
tum geometry. Had we chosen a nonstandard representa-
tion for the scalar field, these effects would have been
mixed with those arising from an unusual representation
of ‘‘time evolution’’ and, furthermore, comparison with the
WDW theory would have become more complicated.

The form of the LQC Hamiltonian constraint (2.31) is
the same as that of the WDW constraint (3.2). Properties of
�o analyzed in [3] immediately imply that � is again a
positive, symmetric operator on L2�RBohr; B�v�d�Bohr�,
whence it admits a self-adjoint (Friedrich) extension.
(For precise domains, see [9].) The main difference is
that, while the WDW � is a differential operator, the
LQC � is a difference operator. This gives rise to certain
technically important distinctions. For now the space of
physical states—i.e. of appropriate solutions to the con-
straint equation—is naturally divided into sectors each of
which is preserved by the evolution and by the action of our
Dirac observables. Thus, there is superselection. Let Lj"j
denote the ‘‘lattice’’ of points fj"j � 4n; n 2 Zg on the
v-axis, L�j"j the lattice of points f�j"j � 4n; n 2 Zg,
and let L" � Lj"j [L�j"j, where as usual Z denotes the
set of integers. Let H grav

j"j , H grav
�j"j, and H grav

" denote the
subspaces of L2�RBohr; B�v�d�Bohr� with states whose sup-
port is restricted to lattices Lj"j, L�j"j, and L". Each of
these three subspaces is mapped to itself by � which is

5Furthermore, as emphasized in [2,3], while the availability of
a global time variable simplifies the constructions considerably
and makes physical interpretation transparent, it is not essential.
Using the group averaging procedure [20], for example, the
physical sector of the theory can be constructed even when a
global intrinsic time does not exist. Furthermore, in simple
examples [21] physical interpretation can be aided by the in-
troduction of a suitable local notion of time which exists, e.g., if
the scalar field comes with an inflationary potential.
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self-adjoint and positive definite on all three Hilbert
spaces. However, for reasons explained in detail in [3],
our physical states will be invariant under the orientation
reversing operator � of (3.1). Thus, we are primarily
interested in the symmetric subspace of H grav

" ; the other
two Hilbert spaces will be useful only in the intermediate
stages of our discussion.

Our first task is to explore properties of the operator �.
Since it is self-adjoint and positive definite, its spectrum is
non-negative. Therefore as in the WDW theory we will
denote its eigenvalues by !2. On each Hilbert space
H grav
�j"j, we can solve for the eigenvalue equation

� !�v� � !2 !�v�, i.e.,

 

C��v� !�v� 4� � Co�v� !�v� � C
��v� !�v� 4� �

�G
2

�
3K

�
sin2

�
��‘o
2

�
�

��2‘2
o

4

�
jvj �

1

3
‘2
o�

2

��������vK
��������1=3

�
� �jjv� 1j � jv� 1jj	 !�v� � !2B�v� !�v�: (4.1)

Since this equation has the form of a second order recur-
sion relation, as in the k � 0 case one might expect a
twofold degeneracy. However, there is an important
subtlety. Let us consider the asymptotic regime v� 1.
Then, each  ! approaches a solution to the WDW equation
and as we saw in Sec. III A there is only one linearly
independent solution which does not diverge for large v.
The form of the inner product on H grav

" now implies that,
as in the WDW theory, the degeneracy is removed; only
one of the two linearly independent solutions can belong to
the spectral family of �. Furthermore, numerical calcula-
tions show that this solution, which decays exponentially
for v� 1, will in general diverge in the other asymptotic
limit �v� 1. It is only for some discrete values !n of !
that one obtains solutions which do not diverge in either
asymptotic limits. (This phenomenon was already noted in
[22] in a simpler model without a scalar field but with a
negative cosmological constant.) Since these solutions de-
cay exponentially in both limits, they are normalizable in
H grav

" . Thus, in contrast to the k � 0 case, on each super-
selected sector, the spectrum of � is discrete and each of its
eigenvalues is nondegenerate.6 We will denote the normal-
ized eigenfunctions in H grav

j"j by en�v�:

 �en�v� � !2
nen�v� and hemjeni � �m;n: (4.2)

Finally, physical states will be built from eigenfunctions
e�s�n which are symmetric under orientation reversal. Since
� commutes with the orientation reversal operator �,
en��v� � �en�v� is an eigenfunction of � with the
same eigenvalue !2

n as en�v�, but belongs to H grav
�j"j rather

than H grav
j"j . Therefore,

 e�s�n �
1���
2
p �en�v� � en��v�� (4.3)

also has eigenvalue !2
n, but belongs to H grav

" .
We can now write down the general symmetric solution

to the quantum constraint (2.31) with initial data in H grav
" :

 ��v;�� �
X
n

� ~��n e
�s�
n �v�ei!n� � ~��n �e�s�n �v�e�i!n�	;

(4.4)

where ~��n are square summable. As in the WDW theory, if
~��n vanishes, we will say that the solution is of positive
frequency and if ~��n vanishes we will say it is of negative
frequency. Thus, every solution to (2.31) admits a natural
positive and negative frequency decomposition. The posi-
tive (respectively negative) frequency solutions satisfy a
Schrödinger-type first order differential equation in �:

  i
@��
@�

�
�����
�
p

�� (4.5)

with a Hamiltonian
�����
�
p

(which is nonlocal in v). Therefore
the solutions with initial datum ��v;�o� � f��v� are
given by

 ���v;�� � e�i
���
�
p
����o�f��v;��: (4.6)

To summarize, the overall structure is analogous to that
in the spatially open, k � 0 case. A key difference is that
the spectrum of � is discrete on each of the three Hilbert
spaces, H grav

�j"j and H grav
" . In particular, while in the k � 0

case all eigenfunctions have an oscillatory asymptotic
behavior, now they all decay exponentially for sufficiently
large jvj. This difference neatly encodes in the quantum
theory the key qualitative difference between the two
models in the classical theory: In the k � 0 case any one
classical solution is either ever expanding or ever contract-
ing, while in the k � 1 case each solution expands to a
maximum volume and then recollapses.

B. The physical sector

We will now summarize the mathematical structure of
the physical sector of the theory. The construction is en-

6See [9] for an analytical proof which does not rely on
numerical results. Recall that in the WDW theory the spectrum
is nondegenerate but continuous. This difference arises because
in the WDW theory the eigenfunctions oscillate more and more
wildly as v goes to zero and thus fail to be normalizable in the
WDW Hilbert space L2�R; �K=v�dv�. Because of the discrete-
ness of lattices L�j"j, nothing special happens ‘‘near’’ v � 0 in
LQC.
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tirely analogous to that in the k � 0 case since the spec-
trum of the full constraint operator @2

� �� is still continu-
ous (because of the @2

� part). Therefore we will only state
the final results.

The sector of the physical Hilbert space H "
phy labeled

by " 2 �0; 2	 consists of positive frequency solutions
��v;�� to (4.5) with initial data ��v;�o� in the symmet-
ric sector of H "

grav. Equation (4.4) implies that they admit
an explicit expansion

 ��v;�� �
X
n

~�ne
�s�
n �v�ei!n�; (4.7)

where we have suppressed the superscript � because from
now on we will only work with positive frequency solu-
tions. The physical inner product is given by

 h�1j�2i" �
X

v2f�j"j�4n;n2Zg

B�v� ��1�v;�o��2�v;�o�

(4.8)

for any �o. The action of the Dirac observables is inde-
pendent of ", and has the same form as in the WDW
theory:
 

jv̂j�o
��v;�� � ei

���
�
p
����o�jvj��v;�o�;

and p̂���v;�� � �i@
@��v;��
@�

: (4.9)

The kinematical Hilbert space H total
kin is nonseparable but,

because of superselection, each physical sector H "
phy is

separable. Eigenvalues of the Dirac observable jv̂j�o
con-

stitute a discrete subset of the real line in each sector. The
set of these eigenvalues in different sectors is distinct.
Therefore which sector actually occurs is a question that
can be in principle answered experimentally, provided one
has access to microscopic measurements which can distin-
guish between values of the scale factor which differ by
about a Planck length. This will not be feasible in the
foreseeable future. Of greater practical interest are the
coarse-grained measurements, where the coarse graining
occurs at significantly greater scales. For these measure-
ments, different sectors would be indistinguishable and one
could work with any one.

V. LOOP QUANTUM COSMOLOGY: NUMERICAL
ISSUES

As we saw in Sec. IV, physical states can be readily
constructed from eigenfunctions of the difference operator
�. In the first part of this section, we study properties of
these eigenfunctions. We show that � admits only normal-
izable eigenfunctions with discrete eigenvalues and nu-
merically construct an orthonormal basis. In the second
part we use this basis to construct and analyze physical
semiclassical states.

A. Spectrum of �

Eigenfunctions of � are solutions to the difference
equation (4.1). Since its coefficients are real, any eigen-
function can be expressed as a complex linear combination
of real eigenfunctions. Therefore, it will suffice to restrict
ourselves to real eigenfunctions.

Consider a generic lattice L", i.e., a lattice where " does
not equal 0 or 2. Since L" � Lj"j [L�j"j, to obtain an
eigenfunction which is symmetric under orientation rever-
sal v! �v it suffices to solve the eigenvalue equation just
on Lj"j and then reflect it. Because � is invariant under
orientation reversal, the reflected function is automatically
an eigenfunction with the same eigenvalue, but supported
on L�j"j. Furthermore, if the original eigenfunction is
normalizable on Lj"j, the reflected one is normalizable
on L�j"j whence the sum is a symmetric, normalizable
eigenfunction on L". Therefore, in what follows, for a
generic " we will restrict ourselves to Lj"j and examine
all eigenfunctions. Since lattices with " � 0 or 2 are
symmetric under reflection, on these exceptional lattices
we will restrict ourselves only to symmetric
eigenfunctions.

Every such eigenfunction  !�v� is uniquely determined
by its ‘‘initial’’ values  !�"� 4n�,  !�"� 4�n� 1�� for
some integer n.7 For later convenience, we note that the
initial data can be represented by a pair of real parameters
b 2 R and � 2 �0; �	:

 

 !�"� 4n� � b cos���;

 !�"� 4�n� 1�� � b sin���:
(5.1)

Thus on generic lattices, for any !, the eigenspace is two-
dimensional and the degeneracy is parametrized by b, �.
On the exceptional lattices, the symmetry requirement
imposes an additional constraint which determines  !�"�
4� as a function of  !�"�. Therefore on these lattices the
eigenspace is only one dimensional.

The generic behavior of eigenfunctions  !�v� is shown
in Fig. 2. One can distinguish three regions on the positive
(or negative) v axis in each of which the eigenfunction
 !�v� has a qualitatively different behavior.

(i) Genuine quantum region: jvj & vb in which j !j
grows/decays exponentially. For " � 0 or 2, j !j
always grows with jvj. vb turns out to be propor-
tional to !.

(ii) ‘‘Semiclassical’’ region: vb & jvj & vr in which
 ! oscillates. vr turns out to be proportional to
!3=2 (and approximately equals the maximal jvj
of a classical universe of momentum p� � @!).

7If " � 2, the eigenvalue equation (4.1) recursively determines
 !�v� on the entire L�j"j. If " � 2 the coefficients C��2� and
C���2� in Eq. (4.1) vanish. Therefore, we can calculate  !�v�
only on half of the v axis. However, values of  !�v� on the other
half are determined by the symmetry condition.
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(iii) Classically forbidden region: jvj * vr, where  !
grows/decays exponentially as jvj increases.

(However, numerical simulations show that the distinction
between the first two regions gets blurred for eigenfunc-
tions corresponding to ! & 5.) Note that for a generic
lattice, the eigenfunction may decay in one asymptotic
region (say, v! 1) but grow in the other (v! �1).
Eigenfunctions growing on either side fail to be normal-
izable, whereas the ones decaying for both signs of v are
normalizable. While eigenfunctions exist for any !, they
decay on both sides only for certain discrete values of !.
Consequently, the spectrum of � is discrete and the nor-
malizable eigenfunctions form a set of zero measure in the
space of all eigenfunctions. We will now describe the
search algorithm to find them. We begin with the simpler
case of " � 0 or 2 lattices and then discuss the more subtle
case of generic lattices.

Fix " � 0 or 2. Because of symmetry, it suffices to
analyze the behavior of  !�v� just for v > 0. Let us focus
on an interval W � �!1; !2	 of frequencies and fix a point
v0 2 L" such that v0 � vr�!2�. Equation (4.1) implies
that the value  !�v0� is a continuous function of
 !�v�jv�" and !. One can fix the initial value  !�"� to
1, thus leaving the dependence only on !. Numerical
inspection shows that  !�v� changes sign quasiperiodi-
cally as ! increases (see the right plot of Fig. 2). Let us
take one of the (possibly many) values !n;v0 such that
 !n;v0

�v�jv�v0 � 0. The limits

 !n � lim
v0!1

!n;v0 (5.2)

are the only eigenvalues corresponding to normalizable
eigenfunctions. In practice, the values !n;v0 for v0 �
1:3vr approximate the limiting value !n with precision
10�16.

In actual calculations the following algorithm was ap-
plied:

(i) First we consider a set of frequency values !i uni-
formly distributed within the interval �0; !max	. For
each fixed v0, the separation !i�1 �!i was chosen
to be much smaller than separation between values
of ! at which  !�v0� vanishes. (In practice the
separations turned out to be greater than 1 for !<
3� 105.)

(ii) Whenever the change of sign between  !i�1
�v0� and

 !i
�v0� was detected, the value !n;v0 corresponding

to the root of  !�v
0� was found via bisection

method.

For this scan, !max was chosen as 3� 105. The first of the
two steps in the algorithm ensures that all eigenfunctions in
the chosen interval have been found.

Let us now consider a generic lattice. Now there are two
factors which complicate the task of finding normalizable
eigenfunctions. First, the eigenspaces are two dimensional,
parametrized by b, � as in (5.1). Therefore, even if we fix
the normalization freedom by setting b � 1, for each
frequency ! we have a 1-parameter family of eigenfunc-
tions, labeled by � (rather than a single eigenfunction as on
" � 0 or 2 cases). Second, since the desired eigenfunctions
do not have to be symmetric on Lj"j, now we have to
analyze the behavior of  ! when jvj � vr separately for
positive and negative values of v. We therefore modified
the algorithm specified for the " � 0 or 2 lattices as
follows.

First, keeping ! fixed and varying � instead of ! in the
above procedure, we searched for  !�v� which decays on
the negative v side. For this we probed the domain of � in
100 points uniformly distributed within �0; �	 and, when-
ever the sign of  !�v0� changed, we narrowed the choices
of � using bisection. The analysis shows that for each !
there exists unique � such that  ! satisfies this condition.
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FIG. 2 (color online). Examples of normalizable and generic eigenfunctions of �. The plot (a) presents eigenfunctions supported on
the lattice with " � 0:5. Since the scale on the y-axis is logarithmic, it is clear that in the asymptotic region generic eigenfunctions
diverge exponentially while the normalizable ones decay exponentially. Plot (b) shows eigenfunctions supported on the " � 0 lattice.
Since the scale on the y-axis is linear, this plot brings out the detailed behavior of eigenfunctions in the region where j !j is small.
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With � so determined, we again have a 1-dimensional
eigenspace  !�v� for each !. Therefore, we could now
apply the procedure used for " � 0 or 2 to look for
eigenfunctions which decay on the positive side. Thus,
the two complications so to say compensate one another:
while there is an additional, 1-dimensional freedom
(labeled by �) in the choice of eigenfunctions, since the
requirement that the eigenfunctions decay on the negative
v side is now decoupled from the requirement that they
decay on the positive side, we have an additional constraint
(which determines � for any given !). Therefore, the only
modification to the algorithm used in the " � 0 or 2 cases
was to first determine �.

To gain insight into the qualitative features of eigen-
functions and eigenvalues, this method was first applied to
! 2 �0; 50	 by choosing L�j"j. Normalized eigenfunc-
tions decay exponentially as jvj increases for both positive
and negative v. It was found that these eigenfunctions
generically have an additional feature: in the semiclassical
region described above, their values on the positive or
negative sides of the v axis are suppressed relative to their
values on the other half, the difference in the amplitudes
growing exponentially with !. Since we will be primarily
interested in large !, if the initial data are specified on the
side where  ! is large, the suppression on the other side
enhances the numerical errors making the results unreli-
able. For these cases, the search of normalizable eigen-
functions was performed again, now starting from the side
where  ! is small.

After implementing all these precautions to control er-
rors, a much more exhaustive search for eigenvalues and
eigenfunctions was made. The results can be summarized
as follows.

(i) The spectrum of � is discrete for all lattices. Each of
its eigenvalues is nondegenerate. Normalizable ei-

genfunctions decay exponentially as jvj tends to
infinity.

(ii) For generic ", the restrictions to sublattices L�j"j of
eigenfunctions  n�v� are in general strongly sup-
pressed for one sign of v. The side on which sup-
pression occurs depends on parity of n.

(iii) The density of eigenvalues has the following fea-
tures. As shown in Fig. 3(a) it is roughly indepen-
dent of " except that for generic lattices it is twice
as large as that for exceptional ones. It slowly
grows with ! [see Fig. 3(b)]. The best fit to the
data in Fig. 3(b) leads to the behavior in the large!
limit as

 !n �!n�1 !
1

� lnj!n=j
(5.3)

with � � �0:025 927 2� �5� 10�7�	G�1=2 and
 � �0:044 12� �1� 10�5�	G1=2.

(iv) A state ��v� which is sharply peaked at some !?

can be well approximated by a linear combination
only of eigenfunctions with eigenvalues lying in a
small compact interval around !?. If !? is very
large the estimate given in (iii) above implies that
the distribution of !n is approximately uniform.
Consequently, the wave function will be approxi-
mately periodic in � with a period

 T��!n� �
2�

!n �!n�1
: (5.4)

For an LQC physical state obtained from evolution
of the initial data at � � �o corresponding to a
WDW coherent state (see Sec. V B), the period of
expectation value hjv̂j�i turns out to be in good
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FIG. 3 (color online). (a) Distribution of lowest (!< 50) eigenvalues (corresponding to normalizable eigenfunctions) for different
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agreement with T�. This provides an independent
check on our numerical analysis.

B. Evaluation of semiclassical state and observables

The numerical method presented in the previous sub-
section allows us to find all the eigenstates of � which span
the physical Hilbert space. To obtain the normalized ei-
genbasis e�s�n (which is symmetric under orientation rever-
sal), we first note that in the expression of the norm it
suffices to evaluate just a finite sum:
 

k nk
2
" �

X
v2f�"�n;�N<n<Ng

B�v� 2
n�v�; where N >

vr
4
;

(5.5)

since  n�v� decay exponentially for jvj> vr / !
3=2. With

the basis at hand, one can construct physical states which
are semiclassical at late times. As in the k � 0 case [2], this
can be done in two different ways:

(i) Direct evaluation of the wave function using (4.7),
and

(ii) evolution in � of the initial data specified at � �
�o using Eq. (2.31). [The initial data can be chosen
to be the same as that of a semiclassical solution to
the WDW equation at some late time (see Sec. III).]

The direct evaluation of the integral expression (4.7) al-
ready provides the full LQC solution. However, we also
used this expression to obtain just the initial data at � �
�o and then evolved this data using (2.31). Agreement
between the two solutions provides an independent check
on numerics. Finally, we also evolved the initial data
extracted from a WDW coherent state and used the result-
ing LQC solution thereby obtaining an independent check
on completeness of the eigenbasis constructed in Sec. VA.
The rest of this section provides the relevant details of the
numerical implementation of this procedure.

In order to evaluate the integral solution, we need the
spectral profile ~�n used in the expansion (4.4). Since we
are primarily interested in states which are semiclassical at
late times representing a macroscopic universe, we chose
a Gaussian profile peaked around large !?: ~�n �
exp���!n �!

?�2=�2	2��. Since the contribution from ei-
genfunctions corresponding to ! sufficiently far away
from !? can be neglected, to calculate ��v;�� via (4.7)
one has to only sum a finite number of terms. In numerical
simulations the summation in (4.7) was restricted to n such
that !? � 10	<!n < !? � 10	.

To calculate the initial data from the WDW coherent
state we evaluated (3.15). Now the eigenfunctions ek�v� are
appropriately normalized Bessel functions Kik. They were
calculated using the methods of Gil, Segura, and Temme
[23]. As in the initial data construction discussed in the last
paragraph, it is sufficient to restrict the domain of integra-
tion to a compact set �k? � 10	; k? � 10		. The resulting

integral was then numerically evaluated using a simple
trapezoid method with set of 104 ‘‘probing’’ points distrib-
uted uniformly. On the one hand, this calculation immedi-
ately leads to the solution to the WDW equation presented
in Fig. 1. On the other, it provides us LQC initial data for
any lattice L" which was evolved using (2.31).

Equation (2.31) constitutes a countable number of ordi-
nary differential equations. Its domain in v is the lattice
L". However, as noted in Sec. VA, the symmetry of the
wave function allows us to restrict the calculations to the
sublattice L�j"j for generic " and to the part v > 0 in the
exceptional cases " � 0 or 2. Because of technical limita-
tions, the size of the domain was restricted by requiring
that its elements vi satisfy the inequality jvi � "j � 4N �
vr�!?�. To ensure that the system remains closed, we
impose boundary conditions on the outermost points jvi �
"j � 4N in the generic case and at the right outermost
point vi � " � 4N in the exceptional cases. Since these
points lie deep in the classically forbidden region for all the
eigenvalues contributing significantly to the state, one can
safely impose reflective boundary conditions:

 ���4N � ";�� � @����4N � ";�� � 0: (5.6)

In actual simulations we chose 4N � 1:3vr�!
?�which was

sufficient for the boundary condition to not affect the
dynamics.

The resulting finite set of equations was integrated using
the adaptive 4th order Runge-Kutta method. To estimate
the numerical errors due to discretization in �, restrictions
�j� calculated for different step sizes were compared
using sup-norm

 kfk��� � sup
jvi�"j�4N

f�vi; ��: (5.7)

The step sizes �� were chosen to satisfy the inequality

 k��� ����=2k � �k���=2k�� (5.8)

for small preset �, where ��� and ���=2 are profiles
calculated with step sizes �� and ��=2, respectively.
The dependence of k��� ����=2k on the number of
steps of the integration for one of the calculations is
presented in Fig. 4. It shows that the numerical errors
manifest themselves mainly in phases. The differences
between the absolute values of the wave function profiles
are approximately 1 order of magnitude smaller. Thus the
expectation values and dispersions of observables jv̂j� are
determined with much better precision than � itself.

The resulting wave functions ��v;�� were finally used
to calculate the expectation values hp̂�i, hjv̂j�i of observ-
ables defined by (4.9). With the inner product h�j�i"
given by (4.8), they are equal to the following sums over
L";N :� fv � �"� 4n;�N � n � Ng:
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h�jjv̂j�j�i � h�j�i�1
"

X
v2L";N

B�v�jvjj��v;��j2 (5.9a)

h�jp̂�j�i � h�j�i
�1
"

X
v2L";N

B�v� ���v;����i@�

� @���v;��: (5.9b)

The dispersions corresponding to considered observables
were calculated via

 

h�p̂�i2 � hp̂2
�i � hp̂�i

2 (5.10a)

h�jv̂j�i � hv̂2
�i � hjv̂j�i

2; (5.10b)

where the expectation values hp̂2
�i and hv̂2

�i are of the form
(5.9).

In actual simulations !? ranged from 500 to 104, with
relative uncertainties �!=! between 7� 10�3 and 2:5�
10�2. Wave functions were calculated on lattices L" cor-
responding to 5 different values of ". Peaks in v of initial
profiles were chosen to be no smaller than half of the
maximal v predicted by classical theory. For example,
for p?� � 500, v? � 2000 whereas for p?� � 5000 the
value of v? ranged between 5–6� 104. Evolution was
performed in both forward and backward direction.
Representative results of numerical evaluation of
j��v;��j and the expectation values of jv̂j� are shown
in Figs. 5 and 6. A detailed discussion of the properties of
j��v;��j, the comparison of classical and quantum evo-
lution, and a summary of our results is presented in
Sec. VI B.

VI. PHYSICAL IMPLICATIONS

In this section we discuss the physics of our numerical
simulations. We first obtain the quantum-corrected effec-
tive Friedmann equation and show that it is an excellent
approximation to the numerical quantum evolution. We
then list the numerical results and compare and contrast
the exact quantum evolution, the effective theory, and the
classical Friedmann dynamics.
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A. Effective equations

The right-hand side of the standard Friedmann equation

 H2 


�
_a
a

�
2



�
_v

3v

�
2
�

8�G
3

��
1

a2 (6.1)

vanishes if and only if � � 3=8�Ga2. In any classical
solution, at this point the scale factor reaches its maximum
value, the matter density its minimum value, and the
classical dynamics exhibits a turning point from an ex-
panding phase to a contracting phase. Our numerical simu-
lations show that quantum dynamics retains this turning
point but also gives rise to additional turning points, re-
solving the big-bang and the big-crunch singularities (see
Fig. 5). To gain an analytical understanding of the physics
underlying this phenomenon, in this subsection we will
obtain the leading LQC corrections to the classical
Friedmann equation. This quantum corrected or ‘‘effec-
tive’’ Friedmann equation already suffices to describe the
behavior of the peak of wave functions that we found
numerically in Sec. V (see Fig. 6).

The procedure for obtaining these effective equations is
the same as that in the k � 0 case. Let us begin with a brief
summary of the main ideas. One begins with a geometrical
formulation of quantum mechanics in which the space of
pure quantum states is represented an infinite dimensional
symplectic manifold �quan —called the quantum phase
space (see, e.g., [24]). The quantum phase space has the
structure of a fiber bundle: the base space is the classical
phase space �class and the infinite dimensional fiber over
any point �qo; po� of �class is the space of quantum states in
which the expectation values of the canonically conjugate
operators �q̂; p̂� are �qo; po�.

8 Interestingly, the exact quan-
tum dynamics provides a Hamiltonian flow on the sym-
plectic manifold �quan (the corresponding Hamiltonian
being just the expectation value function of the quantum
Hamiltonian operator). To obtain the desired, first order
quantum corrections, one finds a cross section of �quan —
i.e., an embedding of �class into �quan —to which this flow
is approximately tangential in a well-defined sense [25].
This approximate quantum Hamiltonian flow unambigu-
ously projects down to �class and provides the desired
corrections to classical equations of motion. In a certain
sense, this procedure encapsulates the more familiar ‘‘ef-
fective action’’ calculations in the Hamiltonian framework
[26]. In LQC, these quantum corrections have been ob-
tained for various matter sources [25,27], where judi-
ciously chosen generalized coherent states are used to
define the required embedding of �class into �quan. Just as
the standard effective action refers to the in and out vac-

uum states, the final effective Hamiltonian (and thus the
Friedmann and Raychaudhuri equations) depend on the
specific choice of coherent states. However, the first order
corrections we are interested in are insensitive to these
details. In our case, the resulting effective Hamiltonian is
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where A�v� denotes eigenvalues (2.26) of Â.
Since the Friedmann equations involve _a=a, to obtain

modifications, we first derive the Hamilton’s equations of
motion:
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and
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Using the constraint equation H eff � 0, i.e.,
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we can eliminate the dependence on the connection c in
(6.3) and obtain the desired quantum-corrected Friedmann
equation
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�
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�

A�v�

�
; (6.6)

which, as with the classical Friedmann equation (6.1),

8In LQC (and LQG) an important subtlety arises because there
is no operator corresponding to the configuration variables, i.e.,
the connections. One has to use holonomies instead. This issue is
handled in [25].
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involves only v, _v, and p�. To take the classical limit, we
note that the volume is given by �8��=6�3=2�jvj=K�‘3

Pl and
that (the area gap and hence) �� goes to zero in this limit.
Therefore, in the limit (6.6) reduces precisely to (6.1).
Terms containing �� represent the quantum geometry
corrections.

In view of the fact that the quantum equations are
invariant under the orientation reversal map ���v� �
���v�, it will suffice to restrict ourselves to v � 0.
Now, for v > 1 we have

 A�v� � �

���������
48�
p

�3=2 ��2

�
jvj
K

�
1=3
‘Pl (6.7)

and for v� 1, we have

 B�v� �
K
v
�O�v�3�: (6.8)

Therefore, the leading order quantum-corrected equation is
given by
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�
8�G
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��

1

�2 ��2

�
8��‘2
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�
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�
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4
�

�
�crit

�
�O�v�3�; (6.9)

where � denotes the eigenvalues of the energy density

operator �̂ 
 dp2
�=jpj

3 and as in the k � 0 case we have
set �crit � 3=�16�2�3G2

@� � 0:82�Pl. Although for brev-
ity we have kept the sine functions in this equation, since
v�1 � ��3, to the leading order considered here one only
needs to keep terms O� ��8� in their Taylor expansions.
Finally, note that on substituting ‘o � 0 in (6.9), we im-
mediately obtain the effective Friedmann equation of [3]
for the k � 0 model.

To probe the possible turning points, it is useful to
rewrite the modified Friedmann equation (6.9) in the fol-
lowing form:

 H2 �
8�G

3
��� �1�

�
1

�crit
��2 � ��

�
�O�v�3� (6.10)

with
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(6.11)

and

 �2�v� � �crit

�
1� sin2

�
��‘o
2

�
� �1� �2�

��2‘2
o

4

�
: (6.12)

Note that while �crit is a constant, �1; �2 are functions of v
(and � is a function of v, p�). Along each dynamical
solution of the effective evolution equations (6.3) and
(6.4), �, �1, �2 all evolve. In the effective dynamics, along
any given dynamical trajectory turning points occur when
� � �1 or � � �2. Plots of solutions to the effective
equations show that the classical recollapse occurs when
� � �1, where the universe reaches its maximum radius
amax and minimum density �min, and the quantum bounce
occurs when � � �2, where the universe reaches its mini-
mum radius amin and maximum density �max. Now, an
examination of the expressions of �1 and �2 show

 

�min :� �1ja�amax
�

3

8�Ga2
max

�
1�O

�
‘4

Pl

a4
max

��
and

�max :� �2ja�amin
� �crit

�
1�O

�
‘2

Pl

a2
min

��
: (6.13)

Numerical simulations showed that our notion of ‘‘semi-
classicality at late times’’ is surprisingly weak. For ex-
ample, in the simulation with p� � 5� 103

@ (in the
classical units c � G � 1), the universe grows only to a
maximum radius of � 23‘Pl before undergoing the classi-
cal recollapse. Even for this small universe, effective equa-
tions predict that the density �min at the recollapse should
agree with the classical Friedmann formula �min �
3=8�Ga2

max to one part in 10�5 and the density �max at
the quantum bounce would equal the critical density
�crit—the density at the bounce in the k � 0 models—to
within a couple of percent. These predictions are borne out
in the numerical simulations of the exact LQC equations.
Since amax scales as �p��1=2 and amin as �p��1=3, effective
equations imply that both approximations improve as p�
increases and become almost exact for universes which
grow to interesting macroscopic sizes.

In particular, as one would hope, the effective theory
accurately reproduces the predictions of classical general
relativity in the low curvature regime. Yet, already the
leading order correction from quantum geometry is strong
enough to resolve singularities and replace them with a
bounce. It is also noteworthy that, for universes which
grow to large macroscopic sizes, the density at the quantum
bounce is universal, and equals that in the k � 0 models.
These general features represent key predictions of the
numerical evolution of the full quantum equations. The
effective theory provides a physical understanding of how
they come about. In particular, it shows that the most
important corrections come from the gravitational part of
the quantum Hamiltonian constraint. Indeed, since we need
only the leading, classical part of B�v� in this analysis, the
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quantum modifications of the matter Hamiltonian play no
role in the leading order corrections discussed here.

In the last part of our above discussion we have ignored
terms O�v�3�. A priori it is possible that the sum of these
terms is not negligible and could even dominate the leading
term. However, a comparison with numerical simulations
shows that the predictions obtained from just the leading
order quantum corrections in the effective theory accu-
rately describe the full quantum dynamics of states which
are semiclassical at late times and the accuracy improves as
p� increases. Thus, although one could not draw definitive
conclusions just from effective equations, when used in
conjunction with numerical simulations, they provide an
easily manageable and powerful tool to probe quantum
geometry effects for universes which grow to amax �
25‘Pl or more.

B. Results

Main results on quantum dynamics can be summarized
as follows.

(1) Consider a classical solution which evolves from the
big bang to the big crunch, reaching a large maxi-
mum radius amax. Fix a point on this trajectory
where the universe has reached macroscopic size
and consider a semiclassical state peaked at this
point (see Sec. V B). Such states remain sharply
peaked throughout the given ‘‘cycle,’’ i.e., from
the quantum bounce near the classical big bang to
the quantum bounce near the classical big crunch.
The notion of semiclassicality used here is rather
weak: these results hold even for universes with
amax � 25‘Pl and the ‘‘sharply peaked’’ property
improves as amax grows.

(2) The trajectory defined by the expectation values of
the Dirac observable v̂j� in the full quantum theory
is in good agreement with the trajectory defined by
the classical Friedmann dynamics until the energy
density of the scalar field becomes comparable to
the maximum energy density �max � �crit �
0:82�Pl. Then the classical trajectory deviates from
the quantum evolution. In the classical solution, the
matter energy density keeps increasing on further
evolution, eventually leading to a big-bang (respec-
tively, big-crunch) singularity in the backward (re-
spectively, forward) evolution, when v! 0. The
situation is very different with quantum evolution.
Now the universe bounces at � � �max, avoiding the
past (or the big-bang) and future (or the big-crunch)
singularities.

(3) The expectation values and relative dispersions of
p̂� remain constant during different stages of evo-
lution. Thus the expanding and contracting branches
correspond to the same value of hp̂�i. Further, as a
check on numerics we verified that the norm of the
states is also preserved during the entire evolution.

(4) After the quantum bounce the energy density of the
universe decreases and, when �� �max, the quan-
tum evolution is well approximated by the classical
trajectory. On subsequent evolution, the universe
recollapses both in classical and quantum theory at
the value v � vmax when energy density reaches a
minimum value �min.

(5) The trajectory obtained from effective Friedmann
dynamics (6.9) is in excellent agreement with quan-
tum dynamics throughout the evolution. [See Figs. 6
and 7(a).] In particular, the maximum and minimum
energy densities predicted by the effective descrip-
tion agree with the corresponding expectation values

of the density operator �̂ 
 dp2
�=jpj

3 computed nu-
merically. Evolution of the expectation values of �̂
with jvj� is shown in Fig. 7(b).

(6) For quantum states under discussion, the density
�max is well approximated by �crit � 0:82�Pl up to
terms O�‘2

Pl=a
2
min�, independently of the details of

the state and values of p�. (For a universe with
maximum radius of a megaparsec, ‘2

Pl=a
2
min �

10�76.) The density �min at the recollapse point
also agrees with the value �3=�8�Ga2

max� predicted
by the classical evolution to terms of the order
O�‘4

Pl=a
4
max�. Furthermore the scale factor amax at

which recollapse occurs in the quantum theory
agrees to a very good precision with the one pre-
dicted by the classical dynamics.

(7) The relative dispersion of jvj� increases—but very
slowly—as one evolves through many cycles.
Effective Friedmann dynamics provides insight
into this behavior of the quantum state. Let us first
consider two nearby solutions to the effective equa-
tion with slightly different p� but with the same
value of v at a chosen � � �o. Then the relative
difference between v of the two solutions after one
cycle can be estimated using Eqs. (6.3) and (6.4) as

 

�v
v
�

���������������
48�3G

p
�
�p�
p�

; (6.14)

where �p� is the difference between values of p�
of the two effective trajectories and

����
G
p

� �
0:025 927 2� �5� 10�7� [see (5.3)]. This estimate
was found to provide a good upper bound on the
relative dispersions computed using numerical evo-
lution of the quantum state.

(8) The state remains sharply peaked for a very large
number of cycles. This number can be estimated
using Eq. (6.14). Consider the example of a semi-
classical state with an almost equal relative disper-
sion in p� and jvj� and peaked at a large classical
universe of the size of a megaparsec. When evolved,
it remains sharply peaked with relative dispersion in
jvj� of the order of 10�6 even after 1050 cycles of
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contraction and expansion. Any given quantum state
eventually ceases to be sharply peaked in jvj�
(although it continues to be sharply peaked in p�).
Nonetheless, the quantum evolution continues to be
deterministic and well defined for infinite cycles,
i.e., on the entire real line of the emergent time �.
This is in sharp contrast with the classical theory
where the equations break down at singularities and
there is no deterministic evolution from one cycle to
the next. In this sense, in LQC the k � 1 universe is
cyclic, devoid of singularities. As in the k � 0 case,
this nonsingular evolution holds for all states, not
just the ones which are semiclassical at late times.
There is no fine-tuning of initial conditions. Also,
there is no violation of energy conditions. Indeed, as
discussed in Sec. VI A, quantum corrections to the
matter Hamiltonian do not play any role in the
resolution of the singularity. The standard singular-
ity theorems are evaded because the geometrical
side of the classical Einstein’s equations is modified
by the quantum geometry corrections of LQC.

(9) In the k � 1 model, certain effective equations have
been written down and used to predict nonsingular
bounces [28] in the broad framework of LQC. The
presence of these bounces was also used to study the
onset of a successful period of inflation in closed
models [29]. How do these analyses compare with
that presented in this paper? There are two impor-
tant differences. First, these works focused on the
matter part of the Hamiltonian constraint and made
a crucial use of quantum corrections to the matter
Hamiltonian arising from the use of representations
[of SU(2)-holonomies] labeled by large values of j.
Second, these large j representations were used only
in the matter part of the Hamiltonian and not in the

gravitational part. Since then Perez [16] has shown
that mathematical consistency requires us to use the
j � 1=2 representation in 3-dimensional gravity. He
also argues that the same should hold in 4 dimen-
sions. In any case, while the use of, say j � 1,
representation could be justified because the model
has no spinor fields, the use of large j values appears
to be unnatural and needs an independent justifica-
tion which is still lacking. Similarly, without an
independent justification, an asymmetric treatment
of the gravitational and matter appears to be ad hoc
[15], somewhat similar to using two different met-
rics on the right- and left-hand side of classical
Einstein’s equations. Our analysis used the funda-
mental, j � 1=2 representation for geometry as well
as matter. Our numerical simulations as well as
effective equations show that with this choice the
modifications of the matter Hamiltonian play no
role. This is consistent with findings in the older
literature; indeed this is the reason why large j
values were used there. In our analysis, it is the
modification of the gravitational part of the
Hamiltonian constraint that plays a key role in the
singularity resolution. In the older literature, by
contrast, these modifications were ignored.
Nonetheless, basic physical ideas in these older
works are intriguing and it would be interesting to
reanalyze those issues using the Hamiltonian con-
straint introduced in this paper.

We will conclude this section by clarifying two issues
that have arisen from a recent work [10] addressed to
computational physicists, particularly numerical relativ-
ists. Although this discussion refers only to the k � 0
model considered in [1–3], it is included here because
the same issues can arise in the k � 1 model.
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FIG. 7 (color online). (a) Zoom on the portion near the bounce point of comparison between the expectation values and dispersion of
v̂j�, the classical trajectory and the solution to effective dynamics. At large values of jvj�, the classical trajectory approaches the
quantum evolution. Values of parameters are the same as in Fig. 6. (b) The behavior of expectation values of �̂ for different values of
p?� are shown. On each solution, these are bounded between a �max and a �min. For a universe peaked at large values of p�, �max �

�crit.
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The phrase ‘‘These bounces can be understood as spu-
rious reflections’’ in the abstract (and again in the body) of
[10] was interpreted by some as suggesting that the boun-
ces reported in [1–3] were artifacts of bad numerics. This
is certainly not the case: Not only were those simulations
performed with all the due care but our result that the LQC
equations predict a genuine, physical bounce was in fact
reproduced in the first half of [10]. Indeed, this part is a
nice summary of our numerical results geared to computa-
tional physicists. From discussions with the author we
understand that the intent of that phrase was to say: ‘‘had
the physical problem been to solve a wave equation in the
continuum and had one used nonuniform grids, one would
also have found bounces which, from the perspective of
continuum physics of this hypothetical problem, would
be interpreted as spurious reflections in finite difference
discretizations.’’ This is likely to be an illuminating
point for computational physicists but is not physically
relevant in LQC where the basic equation is a difference
equation.

The second part of the paper considers a modification of
the quantum Hamiltonian constraint by ‘‘adding ad hoc
higher order terms.’’ It is then suggested that such mod-
ifications could remove the bounce. Let us analyze the
issue from a mathematical perspective even though the
analysis and conclusions have no obvious physical signifi-
cance since the modifications do not result from any sys-
tematic, physical considerations. Then, since the physical
state is symmetric under orientation reversal, simulations
reported in [10] imply that the bounce would not disappear
but change its character. In the physical solution there
would again be a pre-big-bang, contracting branch which
would be joined in a deterministic fashion to a post-big-
bang expanding branch. However, now the two branches
will meet at v � 0. Although the ensuing differences are
not trivial, the qualitative picture is not changed even by
these ad hoc modifications.9

VII. DISCUSSION

A. Key features

Key features of the k � 1 model can be summarized as
follows.

(i) The scalar field � serves as emergent time at all
three levels: classical general relativity, WDW the-
ory, and LQC. In the classical theory, every solution
undergoes a recollapse but � remains single valued.
Each solution begins with a big bang and ends with a

big crunch and � ranges over the entire real line
irrespective of the constant of motion p�. In the
WDW theory and LQC the form of the
Hamiltonian constraint operator implies that � can
serve as emergent time also in the quantum theory.
The situation with the range of� in the WDW theory
is the same as that in classical general relativity since
the singularities are not resolved, i.e., since quantum
dynamics cannot unambiguously evolve the state
across these singularities. In LQC, on the other
hand, the singularities are resolved and the quantum
evolution across the putative classical singularities is
deterministic. The range of � continues to be the
entire real line.

(ii) In LQC, three sets of results show that the big-bang
and the big-crunch singularities are both resolved.
First, the LQC effective equations do not break
down. Rather, while the classical Friedmann equa-
tion has only one root at which H2 � � _a=a�2 van-
ishes, quantum corrections introduce a second root
when the matter density enters the Planck regime,
altering classical dynamics and giving rise to boun-
ces. The second result refers to full quantum dy-
namics: in contrast to the WDW theory, in LQC
every state in H phy has a well-defined unitary
evolution for the full range ��1;1� of the ‘‘emer-
gent time’’ �. The third set of results is more de-
tailed. It again involves the full dynamics of LQC
but only semiclassical states in H phy. Consider a
classical trajectory in the v-� plane in which the
universe evolves to a macroscopic maximum size.
The classical Friedmann equation implies that the
universe attains its maximum volume Vmax at the
recollapse point and this value is related to the
constant of motion p� via 10

 Vmax � �16�G=3‘2
o�

3=4p3=2
� � 0:6p3=2

� : (7.1)

Hence, in the solution under consideration p� has to
be large. Consider a point on this classical trajectory
at a late time when the volume is macroscopic and a
semiclassical state in which Dirac observables p̂�
and jv̂j�o

are peaked at this point at time � � �o.
When evolved, this quantum state remains semi-
classical, sharply peaked at the classical solution
under consideration during the entire cycle, except
near the big bang and the big crunch. There, because
of repulsive effects of quantum geometry, the wave
function bounces when the peak reaches a minimum
volume:

9Indeed, as the numerical simulations of [2,3] show, the
‘‘reflection’’ and transmission phenomenon discussed in the
second part of [10] occurs even in standard LQC. It does not
have deep physical significance in the final picture because
physical states are symmetric under the orientation reversal
map �.

10Here and in what follows, numerical values are given in the
classical units G � c � 1. In these units p� has the same
physical dimensions as @ and the numerical value of @ is 2:5�
10�66 cm2.
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 Vmin �

�
4�G�2�

3

�
1=2
p� � �1:28� 10�33 cm�p�:

(7.2)

Thus, the wave function does not enter a neighbor-
hood of the classical singularity. The size of this
neighborhood is dictated by the value of the con-
stant of motion p� and can be much larger than the
Planck size. Finally, note that in the mathematical
limit in which the area gap � is taken to zero, Vmin

vanishes. More generally, this is also the limit in
which LQC reduces to the WDW theory. Thus, one
can use � as a knob to turn on or off quantum
geometry effects and understand the ‘‘mechanism’’
behind the singularity resolution.

(iii) To better understand the physical conditions at the
quantum bounce, let us consider a couple of ex-
amples. Consider first a quantum state describing a
universe which attains a maximum radius of a
megaparsec. Then the quantum bounce occurs
when the volume reaches the value Vmin � 5:7�
1016 cm3, some 10115 times the Planck volume. As
a second illustration, consider a semiclassical state
representing a large universe whose density at the
classical recollapse is about the current density
of our universe � � 9:7� 10�30 gm=cc. Then,
the quantum bounce would occur at Vmin � 1:4�
1024 cm3. Thus the ‘‘quantum’’ or the ‘‘Planck’’
regime is defined not by the volume of the universe
but by the value of the matter density, or space-time
curvature. In universes which grow to large macro-
scopic sizes, these quantities can attain Planck
scale even when the volume of the universe is large.
Figures quoted above were arrived at using our
model where the scalar field is massless. The pres-
ence of potentials could significantly modify their
values. Still, since the values of Vmin are so huge,
these considerations are useful in drawing qualita-
tive conclusions. For example, they suggest that, in
universes which grow to macroscopic sizes, the so-
called ‘‘dj-effects’’ associated with modifications
of the matter Hamiltonians due to quantum geome-
try will not be dynamically significant in homoge-
neous models (unless one considers astronomically
large—and hence implausible—values of j).

(iv) Since detailed predictions were obtained only for
states which are semiclassical at late times, it is
interesting to ask how semiclassical these states
have to be. How quantum mechanical can we
make the parameters of the universe, still keeping
the quantum state semiclassical in the sense used in
this paper? The typical values of p� used in the
simulations reported in Sec. V was 5� 103‘2

Pl.
These universes evolve only to a maximum volume
of Vmax � 2:3� 105‘3

Pl before undergoing a recol-
lapse. Results of our numerical simulations show

that the necessary semiclassical considerations hold
already for such small universes. In particular, the
maximum value �max of the matter density is well
approximated by the critical value �crit � 0:82�Pl

already for these universes. A combination of nu-
merics and effective equations shows that the ap-
proximation becomes increasingly better as one
considers larger and larger universes. Similarly,
our numerical results have shown that the recol-
lapse occurs at the classically predicted values al-
ready for these universes. In these cases, the matter
density even at the recollapse point is quite high,
approximately 2:2� 10�4�Pl. Thus, several inter-
esting phenomena occur in a rather small interval
(of just four to 5 orders of magnitude) of density
and volume. As our detailed plots show, there is a
very narrow range of these parameters in which
quantum geometry effects become significant.
They grow extremely quickly, overwhelm the clas-
sical attractive force, cause the bounce, and then
become insignificant very quickly again.

(v) We would like to emphasize that, while quantum
geometry effects resolve classical singularities, we
did not predict the emergence of classicality at late
times within any given cycle.11 These two issues are
logically distinct. Indeed, in our detailed analysis we
simply restricted ourselves to a single cycle and to
states which are semiclassical at late times therein.
At first, it may appear that the problem of actually
specifying such states would be impossibly difficult
in more realistic models since such specification
would have to incorporate all the complexities that
have developed during the epoch during which the
universe grew to a macroscopic size. However, as
discussed above, this ‘‘macroscopic size’’ can be
very small and the required specification of a semi-
classical state could be done at a relatively early
time before complicated structures develop. For
example, in an inflationary scenario, one could spec-
ify the state immediately after the end of inflation, or
perhaps even before the onset of inflation since, in
the current observationally favored scenarios, mat-
ter density is significantly smaller than the Planck
density even at the onset. Thus, while the conceptual
issue of singling out a preferred family of states
using general principles remains largely unexplored,
there do not appear to be any ‘‘practical’’ difficulties
in specifying the state.

(vi) Since both the big-bang and the big-crunch singu-
larities are resolved, the quantum wave function
evolves through infinitely many classical cycles.

11As discussed in the last section of [2], the bounce picture has
a suggestive, intriguing relation to the Hartle-Hawking [30]
proposal for the wave function of the universe. It may well
suggest an avenue to address this issue.

LOOP QUANTUM COSMOLOGY OF k � 1 FRW MODELS PHYSICAL REVIEW D 75, 024035 (2007)

024035-21



Thus, in the k � 1 model, the quantum space-time
of LQG is vastly larger than that of the classical
space-time of general relativity. The issue of emer-
gence of semiclassicality raised above can now be
elevated to the infinite history of the quantum uni-
verse. Let us then begin a classical solution in
which the maximum volume of the universe is
large, say more than a megaparsec, and consider a
quantum state which is peaked at a point on this
classical trajectory at a late time, � � �o. As dis-
cussed in Sec. VI, this state has interesting proper-
ties. Except near the classical singularities, it will
remain sharply peaked not only on the given clas-
sical solution during its cycle but also for over 1050

cycles resulting from quantum bounces. However,
because the eigenvalues of �i@� 


�����
�
p

are not
exactly evenly spaced, eventually the wave function
will spread and cease to be semiclassical. The issue
of converse is intriguing. Consider any state which
is sharply peaked at a large value of the constant of
motion p̂� but has a large spread for the volume
operator jv̂j� at the initial instant of time � � �o.
Initially, such a state is not semiclassical. However,
would the LQC dynamics evolve it to a state which
is eventually sharply peaked at a classical trajec-
tory? The answer appears to be in the affirmative
[31]. If so, all states which are peaked at a very
large value of p� would eventually become semi-
classical. In this precise sense, semiclassicality
would be generic.

B. Classical recollapse from LQC

As discussed in Sec. I, a major challenge to any back-
ground independent quantum gravity approach, such as
LQG, is to ensure that there is a sufficiently large semi-
classical sector. LQC offers a nontrivial context to probe
this issue. Are the quantum geometry effects subtle enough
to dominate near classical singularities but turn themselves
off on large scales? As results of [2] show, this is a delicate
issue. Indeed, the evolution generated by the Hamiltonian
constraint that was generally used in LQC until recently
(the so-called �o-evolution), the answer was in the nega-
tive. Certain quantum effects associated with that evolution
could alter the classical predictions even in regimes in
which the matter densities and space-time curvatures are
completely tame. In the k � 0 case, this severe drawback
was overcome by the improved dynamics of [3].

In the k � 1 models, the classical recollapse provides an
excellent venue to test semiclassical viability because, as
the analysis of Sec. VI shows, both the classical recollapse
and the quantum bounce are governed by the same condi-
tion: the vanishing of H2 � � _a=a�2. For the recollapse, an
agreement with the classical theory requires that quantum
geometry effects be negligible while the bounce can occur
only if these effects dominate. At first sight then there

appears to be a tension. In [6], Green and Unruh analyzed
this issue numerically in the same model as the one con-
sidered in this paper and concluded that the tension is real.
More precisely, they used the then available Hamiltonian
constraint of LQC [5] and found numerical evidence
against the occurrence of recollapse. For large universes,
the classical recollapse occurs when matter density and
space-time curvatures are very small compared to the
Planck scale. Therefore, a theory in which recollapse
does not occur would contradict classical general relativity
in a domain where there is every reason to expect its
validity. Although Green and Unruh did not have access
to a physical inner product or observables to arrive at a
definitive interpretation of their results, they concluded that
it is unlikely that one could find an interpretation in which
such large deviations from the classical theory are
appropriate.

In this paper we have overcome important limitations
pointed out by Green and Unruh, thereby completing the
LQC program. We found that LQC does predict a recol-
lapse and, furthermore, it occurs at the values of matter
density and volume predicted by the classical theory. How
did this strikingly different conclusion come about? We
will conclude by first summarizing how the general
criticisms of [6] were addressed and then discussing the
issue of the recollapse.

(i) General framework.—Green and Unruh began by
pointing out that many of the successes of LQC arose
from effective equations and the interpretation of
quantum states had remained unclear because the
physical inner product and observables had not
been specified. They pointed out that, in particular,
the issue of time had not been addressed explicitly
and the implicit use of the scale factor as time has
obvious problems in the k � 1 model. In this paper
we showed that the use of the scalar field as emergent
time is free of the difficulties associated with the
multivalued character of the scale factor in closed
models. We constructed the physical sector of LQC
in detail, including the physical inner product, Dirac
observables, and well-controlled semiclassical
states. We then numerically solved the Hamiltonian
constraint and calculated the expectation values and
fluctuations of Dirac observables. In particular, we
analyzed dynamics in full LQC, not in just in an
effective approximation.

(ii) Recollapse.—Our Hamiltonian constraint is quite
different from that used in [6]. Thus, the very start-
ing points of the two sets of numerical simulations
are distinct. In particular, while Ĉgrav used in [6] was
not self-adjoint, ours is. This has two consequences:
First, since our operator � is self-adjoint on H grav

kin

and we are guaranteed that it admits a complete set
of eigenfunctions. Furthermore since its spectrum is
discrete [9] the eigenfunctions in the spectral family
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are normalizable. This immediately implies that
they must decay for large jvj. Our numerical simu-
lations showed that the decay is exponential for
large jvj, which ensured that physically appropriate
wave packets would exhibit a recollapse. The nu-
merical task of actually finding these eigenfunctions
was delicate because the normalizable ones consti-
tute a set of ‘‘zero measure’’ among all eigenfunc-
tions, i.e., because ‘‘most’’ eigenfunctions diverge
in at least one of the two asymptotic regimes v!
�1. However, because � is self-adjoint with ap-
propriate properties, the existence of these eigen-
functions was ensured from the beginning. This was
not the case for the analysis of [6]. Indeed the
principal argument there was that the authors found
only exponentially growing eigenfunctions, signal-
ing absence of recollapse. Second, for reasons dis-
cussed in Sec. I, it was important that we used the
improved dynamics of [3] (rather than the older, �o
evolution). Finally, the effective-equation analysis
shows how LQC manages to have both the quantum
bounce and the classical recollapse. For, the modi-
fied Friedmann equation now has two roots: one à la
classical general relativity at a low density causing
the recollapse, and a new one near Planck density
causing the bounce. The quantum geometry effects
are small at the old, classical root but cause and thus
dominate the new root.
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APPENDIX A: INVARIANT FRAMES, EXPLICIT
CHARTS, AND HOLONOMY

In this Appendix we spell out conventions on the fiducial
structures that are used in the main body of the paper and
provide an explicit calculation of holonomy used in the
definition of the Hamiltonian constraint. The discussion on
conventions is somewhat detailed because there has been
some confusion due to unfortunate typos in some of the
standard literature on homogeneous cosmologies.

1. Invariant frames

In the k � 1 case, the underlying, spatial 3-manifold M
is a 3-sphere S3. It is often convenient to identify it with

the symmetry group SU(2) which acts on it simply and
transitively. In what follows we will generally do so. Let us
denote the symmetry vector fields on M by 
ai . All homo-
geneous isotropic tensor fields on M are invariant under
diffeomorphisms generated by 
ai . In particular, these vec-
tor fields are the Killing vectors of all 3-metrics considered
in this paper.

Let us fix a basis �i in the Lie algebra su(2), satisfying
�i�j � 1

2 �
ij
k �

k � 1
4�

ijI and denote by kij the metric on
su(2) for which these �i constitute an orthonormal basis.
In what follows, the internal or Lie-algebra indices will be
lowered and raised using kij and its inverse kij. It follows,
in particular, that �ijk :� �mnkqmiqjn is a 3-form on su(2)
satisfying �ijk�ijk � 6.

Recall that SU(2) admits a natural, left invariant, Lie-
algebra valued, Cartan 1-form ! � g�1dg. It naturally
defines a coframe o!i

a on M via

 g�1dg �: o! � o!i�i: (A1)

We will denote the dual frame by oeai ; thus oeai
o!j

a � �ji
and oeai

o!i
b � �ab. From the definition of the natural left-

invariant 1-form! it follows that the coframes o!i
a and the

frames oeai satisfy the relations

 d o!i �
1

2
�ijk

o!j ^ o!k and �oei;
oej	 � �ij

k oek:

(A2)

These will be our fiducial coframes and frames on M. The
1-forms o!i

a and the vector fields oeai are left invariant.
Thus 
ai , the infinitesimal generators of left translations,
Lie drag these fields:

 L 
i
o!j � 0; L
i

oej � 0 (A3)

and satisfy the su(2) commutation relations �
i; 
j	 �
�ij

k
k. The metric

 

oqab :� o!i
a
o!j

bkij (A4)

on M will serve as the fiducial metric on M. By inspection

ai are Killing fields of oqab. Since they act simply and
transitively on M, it follows that oqab is of constant curva-
ture. However, in contrast to one’s initial expectations, it is
the metric on a 3-sphere of radius a � 2 (rather than
a � 1).12

The volume of M with respect to oqab is Vo � 2�2a3 �
16�2 and its scalar curvature is oR � 6=a2 � 3=2. It will

12This normalization is fixed by our choice that the natural left
invariant 1-forms o!i

a be orthonormal. In the frame formalism it
would be awkward and geometrically unnatural to work with
rescaled o!i

a. If one is interested only in metrics and not frames,
on the other hand, one can just as easily work with an unit 3-
sphere. This is the usual choice in geometrodynamics. In the
literature on cosmology the fiducial metric is sometimes chosen
to have unit scalar curvature oR rather than unit radius; then the
3-sphere radius is a � 1=

���
6
p

.
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be convenient for us to use the symbol Vo (rather than the
numerical value 16�2) to denote the fiducial volume of M.
We will also set ‘o � V1=3

o . In the standard charts used in
textbooks, the components of oqab can be expressed as

 ds2
o � a2�d�2 � sin2��d�2 � sin2�d’2�	

� a2

�
dr2

1� r2 � r
2�d�2 � sin2�d’2�

�
(A5)

with a � 2, where �, � 2 �0; ��, � 2 �0; 2��, and r �
sin� 2 �0; 1�.

Finally, the fact that the choice a � 2 in the fiducial
metric is geometrically natural can also be seen directly in
terms of 3-sphere geometries without reference to SU(2)
and the natural Cartan form thereon. Consider the
Euclidean metric and 3-spheres S�a� of radius a on R4.
The natural action of the rotation group SO(4) on R4 leaves
each S�a� invariant. It is the isometry group of the intrinsic
metric on S�a�. These six Killing fields can be naturally
divided into two SO(3) sub-Lie algebras (resulting from
self-dual and anti-self-dual 2-forms on R4). These are the
right and left rotations and all three right rotations com-
mute with all three left. In the natural chart x, y, z,w on R4,
these six Killing fields K�i can be expressed as

 K�1 �
1
2�x@y � y@x � z@w w@z�

K�2 �
1
2�w@x � x@w � z@y y@z�

K�3 �
1
2�y@w � w@y � z@x x@z�

(A6)

so that �K�i ; K
�
j 	 � �kijK

�
k and �K�i ; K

�
j 	 � 0. Note that,

because of the first set of commutation relations, we do not
have the freedom to rescale theK�i by a constant. The three
vectors K�i in each set are mutually orthogonal. Now we
can ask: On which S3 is this basis orthonormal? The
answer is: the 3-sphere with radius a � 2. On M, these
are the basis foeai g and f
ai g.

2. An explicit chart

In the textbook treatments of SU(2), its elements are
often written as 2� 2 matrices:
 

g �
a �b

b? a?

 !
where a � e�i=2������ cos�=2�

b � e��i=2������ sin�=2�; (A7)

where 0 � �< 2�, 0 �  � �, and 0 � � < 4�. (The
ranges of � and � can be interchanged.) As is usual with
angular coordinates, this chart breaks down at the poles
� � 0,  � 0, � � 0 (which corresponds to the identity, I)
and � � 0,  � �, � � 0 (which corresponds to �I).
Nonetheless, as with the standard spherical polar coordi-
nates, this chart is convenient for explicit calculations.

In this chart, the left invariant coframe o!i
a can be

expressed as

 

o!1 � � cos�d� sin� sind�

o!2 � sin�d� cos� sind� o!3 � d�� cosd�

(A8)

and the left invariant frame eai as
 

oe1 � � cos�
@
@
�

sin�
sin

@
@�
�

cos sin�
sin

@
@�

oe2 � sin�
@
@
�

cos�
cos

@
@�
�

cos cos�
sin

@
@�

oe3 �
@
@�

:

(A9)

Finally the right invariant vector fields—which Lie drag
our coframe and the frame—are given by
 


1 � cos�
@
@
�

cos cos�
sin

@
@�
�

sin�
sin

@
@�

� ��cos� cos�� cos sin� sin�	 oe1

� �cos� sin�� cos sin� cos�	 oe2

� �sin� sin	 oe3


2 � sin�
@
@
�

cos cos�
sin

@
@�
�

cos�
sin

@
@�

� ��cos� sin�� cos cos� sin�	 oe1

� �sin� sin�� cos cos� cos�	 oe2

� �cos� sin	 oe3


3 � �
@
@�
� sin sin� oe1 � sin cos� oe2 � cosoe3:

(A10)

Note that, although the components of eai and 
ai diverge on
the 2-torus � 0, this is just an artifact of the failure of the
chart there. All six vector fields are globally well defined.
In particular, the expressions of 
ai as linear combinations
of eai are globally well behaved.

From the expression of the 1-forms o!i
a we can readily

compute the components of the fiducial metric:

 dS2
o � d�2 � d2 � d�2 � 2d�d�: (A11)

The integral curves of the vector fields oea3 (as well as 
a3)
are circles which provide a Hopf fibration of S3. The
quotient M̂ is topologically S2 with the induced metric

 dŝ2 � d2 � sin2d�2: (A12)

Thus , � are the standard polar coordinates on the quo-
tient M̂ and the induced metric on it is that of a unit 2-
sphere.

3. Holonomy

The Hamiltonian constraint involves the field strength
Fkab of the SU(2)-connection
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 Aia :� c o!i
a: (A13)

In LQG, there is no operator corresponding to the connec-
tion itself; only the holonomy operators are well defined.
Therefore, we need to express the field strength as an
appropriate limit of a suitable holonomy [2,3,8]. Now in
k � 0 cosmologies, the right and left invariant vector fields
on M coincide. Since they generate translations along the
x, y, z directions, they commute. Hence, to calculate the
component Fk32

:� oea3
oeb2 F

k
ab of the field strength, we can

construct a square � by moving along z and y directions a
distance �� (as measured by the fiducial metric oqab),
evaluate the holonomy along this loop, divide it by the
area enclosed by the loop, and take the limit as the loop
shrinks. Because of homogeneity, Fk32 can be evaluated at
any point ofM and because of isotropy, Fk32 determines Fkab
completely.

In the present k � 1 case, we wish to follow a similar
procedure. Again, Fk32 can be evaluated at any point of M
and fully determines Fkab. However, now the vector fields
oea3 and oea2 do not commute. Therefore, as explained in the
main text, we cannot form the desired loop �ij by moving
along 4 segments of their integral curves. However, since
the left invariant vector fields oeai do commute with the
right invariant vector fields 
ai , we can construct the de-
sired closed loop �ij using integral curves of oeai and 
aj .

For definiteness, let us start with the point �� � 0;  �
�=2; � � 0�. At this point, 
a3 � �

oea2 and we can calcu-
late the component oea3

oeb2 Fab using the loop �32 con-
structed from the composition of the following four
segments:

Segment 1: move from �0; �=2; 0� to �0; �=2; �‘o� along
the integral curve of oe3 � @=@�.

Segment 2: move along �0; �=2; �‘o� to ��‘o; �=2; �‘o�

along the integral curve of �
a3 � @=@�.
Segment 3: move from ��‘o; �=2; �‘o� to ��‘o; �=2; 0�

along the integral curve of �oe3 � �@=@�.
Segment 4: return from ��‘o; �=2; 0� to the point of

departure �0; �=2; 0� along the integral curve of 
a3 �
�@=@�.

It is straightforward to calculate the holonomies along
these four segments. One obtains

 

h1 � e�c�3 ; h2 � e��c�sin��1�cos��2�;

h3 � e��c�3 h4 � e��2 :
(A14)

The holonomy h�32
around the loop is just the composition

h4h3h2h1. A simple calculation yields

 

oea3
oeb2 F

k
ab � lim

�!0

4

�2‘2
o

Tr�h�32
�k� � �

1

‘2
o
�c2 � c‘o��

k
1:

(A15)

Finally, using isotropy and homogeneity, one concludes

 Fkab � �lim
�!0

1

�2‘2
o
�Tr h�ij

�k� o!i
a
o!j

b

� �lim
�!0

1

�2‘2
o
�sin2��c� ‘o=2�

� sin2��‘o=2�	�ij
k o!i

a
o!j

b

� ‘�2
o �c

2 � c‘o��ij
k o!i

a
o!j

b: (A16)

The expression of the holonomy in the second step is
used in the discussion of the Hamiltonian constraint in
Sec. II of the main text.
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