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Using a Hamiltonian treatment, charged thin shells, static and dynamic, in spherically symmetric
spacetimes, containing black holes or other specific types of solutions, in d dimensional Lovelock-
Maxwell theory are studied. The free coefficients that appear in the Lovelock theory are chosen to obtain a
sensible theory, with a negative cosmological constant appearing naturally. Using an Arnowitt-Deser-
Misner (ADM) description, one then finds the Hamiltonian for the charged shell system. Variation of the
Hamiltonian with respect to the canonical coordinates and conjugate momenta, and the relevant Lagrange
multipliers, yields the dynamic and constraint equations. The vacuum solutions of these equations yield a
division of the theory into two branches, namely d� 2k� 1> 0 (which includes general relativity, Born-
Infeld type theories, and other generic gravities) and d� 2k� 1 � 0 (which includes Chern-Simons type
theories), where k is the parameter giving the highest power of the curvature in the Lagrangian. There
appears an additional parameter � � ��1�k�1, which gives the character of the vacuum solutions. For
� � 1 the solutions, being of the type found in general relativity, have a black hole character. For � � �1
the solutions, being of a new type not found in general relativity, have a totally naked singularity character.
Since there is a negative cosmological constant, the spacetimes are asymptotically anti-de Sitter (AdS),
and AdS when empty (for zero cosmological constant the spacetimes are asymptotically flat). The
integration from the interior to the exterior vacuum regions through the thin shell takes care of a smooth
junction, showing the power of the method. The subsequent analysis is divided into two cases: static
charged thin shell configurations, and gravitationally collapsing charged dust shells (expanding shells are
the time reversal of the collapsing shells). In the collapsing case, into an initially nonsingular spacetime
with generic character or an empty interior, it is proved that the cosmic censorship is definitely upheld.
Physical implications of the dynamics of such shells in a large extra dimension world scenario are also
drawn. One concludes that, if such a large extra dimension scenario is correct, one can extract enough
information from the outcome of those collisions as to know, not only the actual dimension of spacetime,
but also which particular Lovelock gravity, general relativity or any other, is the correct one at these scales,
in brief, to know d and k.
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I. INTRODUCTION

In a world with extra large space dimensions, of the
order of some microns or less, as postulated in [1], the
gravitational field sees all the dimensions, whereas the
standard model fields are confined to the usual world, or
brane, of three space dimensions. Thus, the four-
dimensional spacetime of the brane can be seen as em-
bedded in the d-dimensional spacetime of the whole world.
In this setup several different problems are tackled. For
instance, one solves, in a way, the hierarchy problem, since
both the Planck scale and the electroweak scale can be
made of the same order, and so quantum gravity, being an

electroweak scale phenomenon, can be experimentally
tested. Indeed, by smashing particles against each other
in experiments with the new generation accelerators or in
eventual cosmic ray collisions, one can produce black
holes, or perhaps other spacetimes with different causal
structure, with tiny masses and radii. As this is a gravita-
tional phenomenon, and the gravitational field spreads into
all dimensions, the newly created spacetimes probe all the
spacetime dimensions, and in addition render visible some
quantum effects (see, e.g., [2–5]).

Now, since in this setting one might expose quantum
gravity and large extra dimension phenomena, in order to
study the higher dimensional black holes, or other space-
times with different causal structure, formed in the colli-
sion of particles, one should consider studying these
objects in possible natural extensions to the theory of
general relativity, conceivably appropriate to a further
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quantum framework development. The action of general
relativity in d spacetime dimensions is proportional to the
integral of the cosmological constant plus the Ricci scalar,
and possible extensions should include powers of the
Riemann tensor, such as the Kretschmann scalar, powers
of the Ricci tensor, and powers of the Ricci scalar [6]. In
principle one has to choose a criterion to pick up the right
combination of curvature scalars. For instance, adopting
the criterion of keeping the same degrees of freedom, one
may wonder what is the most natural generalization of
general relativity for other dimensions. Such a general-
ization is given by the Lovelock action [7], where essen-
tially one keeps the field equations second order. In more
detail, the Lovelock theory looks for an action which when
properly varied yields symmetric tensors that are functions
of the metric and its first and second spacetime derivatives,
and divergence free. In four dimensions the corresponding
action is the Einstein-Hilbert action, proportional to the
cosmological constant and the Ricci scalar. When varied,
the Einstein-Hilbert action yields the Einstein tensor and
the metric tensor, the only tensors that display the above
properties and contribute to the equations of motion. In
dimensions higher than four Lovelock found that only
certain precise combinations of higher powers of the cur-
vature scalars could enter in the action [7]. The interpre-
tation in physical, geometric, and topological terms of
these precise combinations was put forward by
Teitelboim and Zanelli [8] (see also [9,10]). In this context,
one can first argue that in zero spacetime dimensions, a
spacetime point, there is a zero-dimensional topological
invariant which is a numerical constant, called the cosmo-
logical constant. When this term is integrated in one or in
two dimensions to form an action, i.e., when the term is
dimensionally continued to the next odd or even dimen-
sion, it contributes to the equations of motion, which in this
case are somewhat trivial, giving either a zero metric or a
zero cosmological constant with an indeterminate metric.
Now, in two dimensions, there is also the corresponding
topological invariant. This invariant, the Euler character-
istic, is obtained by integrating the so-called Gauss-Bonnet
term. In two dimensions the Gauss-Bonnet term is the two-
dimensional Ricci scalar, which can thus be consistently
considered the corresponding Euler density. This term,
being topological, does not contribute to the equations of
motion in two dimensions. However, when both these
terms, the cosmological constant (the topological invariant
in zero dimensions) and the Ricci scalar (the topological
invariant in two dimensions) are integrated in three or in
four dimensions, i.e., when they are dimensionally contin-
ued to the next odd or even dimensions, they contribute
nontrivially to the equations of motion, and indeed in three
and four dimensions, yield the standard general relativity.
Now, given general relativity in four dimensions, one can
add a generalized Gauss-Bonnet (i.e., a generalized Euler
density) term, in four dimensions, first discovered by

Lanczos [11], which when integrated in the four-
dimensional action gives essentially the corresponding
Euler characteristic, also a topological invariant not con-
tributing to the classical field equations. In turn, in five and
six dimensions, not only an action with the cosmological
constant and the Ricci scalar, mentioned above, contribute
to the equations of motion, but also one can dimensionally
continue the previous generalized Gauss-Bonnet term in
order to have a meaningful extended action, which gives
the desired equations of motion of second order. Of course,
in six dimensions there is a new generalized Gauss-Bonnet
term, which when integrated gives the corresponding Euler
characteristic, not contributing to the equations of motion.
Then, repeating this process of adding a generalized
Gauss-Bonnet term of the previous even dimension to the
next two dimensions, odd and then even, one gets the
Lovelock gravity of that specific dimension. Thus, the
Lovelock theory can also be considered as a dimensional
continuation of the Euler characteristics of lower dimen-
sions [8–10]. The theory has, in addition to Newton’s
constant and the cosmological constant, new arbitrary
dimensionful parameters, which should be chosen care-
fully. We have given a classical motivation for including
certain special new terms in the gravitational action in d
dimensions, but there are also quantum motivations to
study the dimensional continuation of the Euler character-
istics. Indeed, in a string theory context, in order to prevent
the existence of ghosts in a low energy limit of the theory,
one has to add to the d-dimensional general relativity
action all the previous lower dimensional Euler character-
istics [12,13].

Suppose now the world has indeed extra dimensions,
and that the whole bulk spacetime obeys Lovelock gravity
rather than Einstein gravity. Thus, in this case, it is impor-
tant to study generic properties of black holes in the
Lovelock theory. Solutions of spherical black holes in d
spacetime dimensions for Einstein-Hilbert action plus a
generalized Gauss-Bonnet term, i.e., a specially truncated
Lovelock theory, were found in [14–18]. Thermodynamics
were often studied in these works. In [19], where black
hole solutions were also found, no relevant Lovelock term
was put to zero, rather a special choice was made for all the
Lovelock coefficients, which depend only on the cosmo-
logical constant and the dimension of the spacetime. All
nontopological terms are included in the action, and the
theory can thus be called dimensionally continued gravity.
This choice is one among infinite, but it leads to a natural
outcome, where the action in even dimensions has a Born-
Infeld form, i.e., it may be regarded as the gravitational
analogue of the Born-Infeld electrodynamics, and in odd
dimensions has a Chern-Simons form. Also in [19],
Lovelock theory was coupled to Maxwell electromagne-
tism, and the corresponding black hole solutions with
electric charge and cosmological constant were found.
Now, a natural extension of this prescription was advanced
in [20], where it was allowed that the topological term plus
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some nontopological terms, starting from the top, could be
put to zero. For instance, in d � 10 dimensions in this
setting one may work just with the general relativity term
and the following generalized Gauss-Bonnet term, by put-
ting to zero the other higher dimensional Euler densities.
For the nonzero terms, the choice of the coefficients of the
theory is the same as in [19]. This extension has as a special
case the dimensionally continued gravity of [19]. By cou-
pling this extension to Maxwell electromagnetism, a gen-
eral class of charged vacuum spacetimes with a negative
cosmological constant, including of course the black holes
found in [19], were exhibited [20]. These vacuum solutions
yield a natural division of the Lovelock theory into two
branches, namely d� 2k� 1> 0 (which includes general
relativity, Born-Infeld type theories, and other generic
gravities) and d� 2k� 1 � 0 (which includes Chern-
Simons type theories), where k is the parameter that gives
the highest power of the curvature in the Lagrangian. In the
solutions there appears an additional parameter �, with
� � ��1�k�1. This implies that, in addition, the solutions
can be subdivided into two families of different characters,
one family � � 1, comprising solutions of the type found
in general relativity, has a black hole character (meaning
that for a correct choice of the parameters, such as mass
and charge, the solution is a black hole solution, although,
of course, for other choices of parameters it can be an
extremal black hole or a naked singularity), and the other
family � � �1, being of a new type not found in general
relativity, has a naked singularity character (meaning there
is no possible choice of the parameters that gives a black
hole solution, the full vacuum solution is always singular
without horizons). Of course the solutions also include
empty spacetimes. Since in general there is a negative
cosmological constant the spacetimes are asymptotically
anti-de Sitter (AdS), or when empty they are AdS itself or
some form of it (for zero cosmological constant the space-
times are asymptotically flat).

Given that one has a family of spacetimes with either
black hole or naked singularity character, it is now impor-
tant to study matter effects, either static or dynamic (col-
lapsing or expanding), on these solutions. Such a phenom-
enon could be interesting in the aftermath of a collision
between charged particles where the debris formed in the
collision can be accreted or excreted in the newly formed
charged spacetime. Accretion and excretion processes are
usually technically elaborate, so to turn the analysis sim-
pler one can study the case of a thin shell in the background
spacetime, be it a black hole or otherwise. Static and
dynamic solutions on such backgrounds are then of inter-
est. However, in Lovelock theories, even a thin shell and its
dynamics can bring complications. Indeed, in general rela-
tivity for instance, to study a thin shell in a given back-
ground one has to make a smooth junction from the interior
to the exterior spacetime, as was done in [21]. Now, the
junction conditions, in general, depend on the theory one is

studying, and for theories with higher powers on the
Riemann and other tensors this can be nontrivial [22]. An
elegant and useful approach, that bypasses in a way the
junction conditions for a spacetime with a thin shell, uses a
Hamiltonian formalism for the theory under study. This
approach was developed by Hájı́ček and Kijowski [23] for
the theory of general relativity with matter in four dimen-
sions, and was subsequently explored by Crisóstomo and
Olea in d-dimensional general relativity coupled to
Maxwell theory and matter with applications mainly in
three spacetime dimensions [24,25]. The method requires
that one puts the theory in a Hamiltonian form and then one
directly integrates the canonical constraints, producing the
shell dynamics for the background one wants to study. The
payoff is that, not only one avoids to have to develop
covariant junction conditions for each particular theory
one is studying, but moreover the full spacetime, com-
prised of interior, shell, and exterior components, is treated
as whole. This method is particularly well suited for sym-
metric configurations. The great power of the formalism
was brought up in [26] where it was applied in pure
Lovelock gravity to thin shell collapse in the background
of the uncharged spacetimes found in [20]. Now, since the
newly formed spacetime, black hole or otherwise, gener-
ated from a collision between charged particles, is most
probably charged, and for the same reason the collapsing or
expanding debris are also charged, it is of interest to study,
using the Hamiltonian formalism advanced in [26], the
gravitational dynamics of a charged thin shell in the
charged sector of the spacetime solutions, black hole or
otherwise, found in [20], of Lovelock gravity coupled to
Maxwell electromagnetism. In the usual extra dimension
scenarios the electromagnetic and matter fields, being
confined to the brane, do not probe the extra dimensions,
so that an axisymmetric shell, static or collapsing, around a
spherically symmetric black hole is an important configu-
ration to study. However, in order to further simplify the
analysis we study instead, as a zero order approximation, a
spherically symmetric shell around a spherically symmet-
ric black hole (such a configuration would be quite realistic
for charged fields and particles that can probe the extra
dimensions). Of course, within general relativity, a very
special case of Lovelock gravity, such an analysis should
recover the earlier results, obtained through a junction
condition formalism [21] of charged shell dynamics in a
charged black hole spacetime [27–29]. All the works just
mentioned are classical, and an extension of full Lovelock
gravity into the quantum domain, or even within a semi-
classical approximation, although important, seems be-
yond reach.

In the present article we extend the treatment of the
classical dynamics of an uncharged thin shell in an un-
charged spacetime, black hole or otherwise, with a nega-
tive cosmological constant background in Lovelock-
Maxwell theory, given in [26], to the classical dynamics
of a charged thin shell in a charged spacetime, black hole
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or otherwise, with a negative cosmological constant back-
ground in Lovelock-Maxwell theory, and among other
things, show the power of the Hamiltonian method in
unifying in a single unit the three sectors of the problem,
namely, the gravitational, the electrodynamic, and the mat-
ter sectors, as well as taking into account automatically the
smooth junction of the several regions of spacetime in
question, the interior, the exterior, and the thin shell in
between. In Sec. II the system under study, namely,
charged vacuum plus charged thin shell, is initially put in
an action and Lagrangian framework, in tensor language.
The field content of the action is composed of three sectors,
the gravitational, the electrodynamic, and the matter term.
In the gravitational action we establish the coupling con-
stants and make the choice of Lovelock coefficients, cut-
ting off the Lovelock polynomial at the highest possible
power of the curvature for which the theory is sensible. In
the electrodynamic action we write the Maxwell term and
add a current term, which describes the current of charged
matter in the shell, and precede each term with its coupling
constant. In the matter action we define the energy-
momentum tensor of a perfect fluid matter source. We
then write the same action in the Hamiltonian form in
tensorial language. For each of the above mentioned sec-
tors of the action we define the canonical coordinates and
its conjugate momenta, up to surface terms. As the system
under study is a system with constraints, we write the
constraints and their respective Lagrange multipliers for
each of the sectors of the action. Next, we obtain the
Hamiltonian field equations from the Hamiltonian action
by using spherically symmetry in the action and varying it
with respect to the canonical coordinates and momenta, for
the evolution equations, and the Lagrange multipliers, for
the constraint equations. In Sec. III we analyze the vacuum
solutions of the derived Hamiltonian equations and de-
scribe their properties. Afterwards we establish the geo-
metrical framework of the thin shell and its Hamiltonian
description. We divide spacetime into three parts, interior
spacetime, thin shell, and exterior spacetime, and describe
their geometric setup. Then we specify the matter proper-
ties of the thin shell, which we define as being that of a
perfect fluid. We write its energy-momentum tensor and its
relevant projections. We then solve the complete
Hamiltonian equations around the thin shell. First, we
note again that the vacuum solutions yield a natural divi-
sion of the Lovelock theory into two branches, namely d�
2k� 1> 0 and d� 2k� 1 � 0, where k is the parameter
that gives the highest power of the curvature in the
Lagrangian. There appears an additional parameter �,
with � � ��1�k�1, which gives the character of the solu-
tions, namely, the vacuum solutions may have a black hole
character (� � 1) or a naked singularity character (� �
�1). Since there is a negative cosmological constant, the
spacetimes are asymptotically AdS, and AdS when empty,
or some form of it (for zero cosmological constant the
spacetimes are asymptotically flat). Second, the whole

integration of the equations from the interior to the exterior
vacuum regions through the thin shell is performed, where
the smooth junction of the several regions of spacetime in
question is automatically taken into account by the inte-
gration, showing definitely the efficacy of the method. The
shell’s dynamics in the vacuum spacetimes is then derived
and the electrodynamic constraint equation recovers the
electric charge conservation. An analysis of the equations
of the thin shell is performed by studying two interesting
cases, namely, a static thin shell in equilibrium and the
gravitational collapse of a thin shell (the study of gravita-
tional expansion is simply the time reversal of gravitational
collapse, and so it is not necessary to analyze it in any
detail). For the static shell we determine the radii at which
the shell is in equilibrium and the pressure necessary to
maintain the shell at this radius. For the gravitational
collapse of a thin shell we start studying a simple example
of dust matter in an empty interior and then prove cosmic
censorship in a general case. More specifically, following
the natural division of the Lovelock theory into the two
branches mentioned above, we study the collapse of a thin
shell onto an empty interior without cosmological con-
stant, and give as examples collapse in four and ten dimen-
sions in general relativity, collapse in ten dimensions in
Born-Infeld type theories, and collapse in ten dimensions
in general relativity with a single generalized Gauss-
Bonnet term. We also study gravitational collapse in five
dimensions onto an empty interior with a cosmological
constant as an example of Chern-Simons type theories.
Plots are drawn for these cases just mentioned, which
illustrate the dynamics of the collapse and exhibit the
cosmic censorship at work. This example of collapse of a
shell into an empty interior, in a number of theories speci-
fied by d and k, shows that electric charge provides a
mechanism for cosmic censorship for all relevant cases,
including those which, in the uncharged case, did not con-
form to it. Then, more generally, for gravitational collapse
onto black hole interiors, it is proven that the equations
respect the cosmic censorship hypothesis. In Sec. IV
we conclude and draw some physical implications in con-
nection with the extra large dimensions scenario. We put
c � 1.

II. ACTION, LAGRANGIAN, HAMILTONIAN, AND
EQUATIONS OF MOTION IN LOVELOCK

GRAVITY COUPLED TO MAXWELL
ELECTRODYNAMICS AND A CHARGED THIN

SHELL IN A SPHERICALLY SYMMETRIC
BACKGROUND

A. Action, Lagrangian, and Hamiltonian in a general
form

1. Action and Lagrangian

For our purposes of studying charged matter in a
d-dimensional charged background spacetime, the field
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content is divided into three sectors, the gravitational, the
electrodynamic, and the matter sectors. Then, the action I
can be written as the sum of a gravitational action I�g�, an
electrodynamic action I�e�, and a generic matter field action
I�m�, which will be specialized later on to be a charged thin
shell. Thus,

 I � I�g� � I�e� � I�m�: (1)

The gravitational action and Lagrangian:
The gravitational sector of the action, I�g�, depends on

which theory one wants to adopt. General relativity, first
formulated in four spacetime dimensions, can be trivially
extended to higher d spacetime dimensions by changing
the action from a four-dimensional integral of the cosmo-
logical constant term and the Ricci scalar, to a
d-dimensional integral of both terms. However, this exten-
sion is no longer unique. Another natural extension is given
by the Lovelock gravity [7], in which its action results from
demanding that the Euler-Lagrange equations derived from
the corresponding Lagrangian yield all tensors A�� sym-
metric in ��, occurring concurrently with the metric ten-
sor g�� and its first two derivatives, i.e., A�� �
A���g��; g��;�; g��;���, and divergence free. In four di-
mensions only the cosmological constant and the Ricci
scalar yield an action with these properties, which is pre-
cisely the Einstein-Hilbert action. As one goes to higher
dimensions new generalized Gauss-Bonnet terms, topo-
logical in nature in the previous dimension, make their
appearance. As mentioned in the introduction, the
Lovelock theory can then be considered as a dimensional
continuation of the topological Euler characteristics of
lower dimensions [8–10]. The theory has, in addition to
Newton’s constant and the cosmological constant, new
arbitrary dimensionful parameters, which should be chosen
carefully. Because of its interest and generality, we work
here with Lovelock gravity. The gravitational part I�g� in
(1) is then the Lovelock action, which turns out to be a
polynomial in the curvature tensor, of degree �d=2�, where
the brackets �d=2� represent the integer part of d=2. This
action, and the corresponding Lagrangian L defined
through I �

R
ddxL, can be written as

 I�g� ��
Z
M
ddx

X�d=2�

p�0

	p
�������
�g
p

2�p�
�1����2p
�1����2p R

�1�2
�1�2 ���R

�2p�1�2p
�2p�1�2p ;

(2)

where � is inversely proportional to the Newton’s constant
(which will be appropriately chosen below), M stands for
the spacetime manifold, g is the determinant of the space-
time metric, and �1; �2; . . . are spacetime indices. The
generalized � function is antisymmetric in all of the upper
indices and all of the lower indices, and R�1�2

�1�2 is the
Riemann tensor. The coefficients 	p are arbitrary in gen-
eral, apart from the first two 	0 and 	1. Indeed, in the
gravitational action (2), the first term of the integrand is the

cosmological constant � and the second term of the inte-
grand is the Ricci scalar R, i.e., the terms of the Einstein-
Hilbert action. This shows that general relativity is con-
tained in the Lovelock theory as a particular case, namely,
by putting in the action all the 	p � 0 for p 	 2. For even
dimensions, the term p � d=2 in the action (2) is the Euler
characteristic of that d-dimensional manifold and does not
contribute to the field equations. However, although not
relevant for the purposes of this paper, the presence of the
Euler term guarantees the existence of a well-defined varia-
tional principle for asymptotically locally AdS spacetimes
(see [20]). Lovelock gravity, from the way it is constructed,
has the same essence as general relativity. However, the
theory is more complicated, it sets extra problems not
present in general relativity and yields new interesting
features. For instance, for d > 4 the fields may evolve in
a nonunique manner, such that, given initial values for the
fields at t � t0, at t > t0 the equations of motion do not
determine those fields completely. This is due to the pres-
ence in the Lagrangian of high powers in the first derivative
of the metric tensor with respect to time [8–10]. An
interesting aspect of Lovelock gravity is that, although its
linearized approximation is classically equal to the corre-
sponding linearized approximation in general relativity
[13], in the full strong gravity regime of the theory, the
higher powers of curvature in the Lagrangian yield solu-
tions that are different, and such type of solutions in
Lovelock theory cannot be reached through a solution in
general relativity [14–26].

Another feature is the fact that, in addition to the con-
stant � (inversely proportional to an appropriate general-
ization of Newton’s constant) and the cosmological
constant �, there are the ��d� 1�=2� arbitrary dimension-
ful parameters. Now, for a given dimension and an arbi-
trary choice of the coefficients 	p, the dynamical evolution
can become unpredictable [8–10], thus it is advantageous
to restrict these coefficients in order to be able to construct
meaningful black hole and other solutions. An important
step in this direction was taken first in [19] and generalized
in [20], where the coefficients 	p were chosen so that
unique sensible solutions, with well-defined perturbations
could be found. One way to meet these requirements is to
demand, in a consistent way, that the theory has a unique
cosmological constant � as shown in [19,20], which leads
to the choice

 	p :� ckp �

8<
:

l2�p�k�
�d�2p�

k
p

� �
; p 
 k

0; p > k
; (3)

where l is a length scale of the theory given in terms of the
cosmological constant � by

 � � �
�d� 1��d� 2�

2l2
: (4)

As seen in the last expression, in this setting the cosmo-
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logical constant is negative throughout, and so the solu-
tions will be asymptotically AdS solutions. We are then left
with a set of theories labeled by an integer k, with 1 
 k 

��d� 1�=2�. One should explain better the dependence of
the theories on k. In [19] k was put equal to its maximum
value always, k � ��d� 1�=2�, i.e., no pertinent Lovelock
term is put to zero, and one has the corresponding special
choice made in Eq. (3). In this case, all nontopological
terms, plus the topological nondynamical term in the even
dimensional case, are included in the action, and the theory
can thus be called dimensionally continued gravity, since
as one goes one dimension up, what was a topological term
in the previous dimension, is now a term that contributes
dynamically when one continues the dimension. In even
dimensions, d 	 4, this choice leads to a Born-Infeld
gravitational action, the gravitational analogue of the
Born-Infeld electrodynamics, and in odd dimensions,
d 	 5, it leads to a Chern-Simons gravitational action
[19]. This dimensionally continued theory [19] can be
naturally extended by canceling higher order terms, from
a given integer k upwards. This was done in [20]. For
instance one can set up a theory in which only the terms
p � 0 and p � 1 appear, thus k � 1. This theory is general
relativity. If one puts k � 2 one gets general relativity plus
the corresponding generalized Gauss-Bonnet term, and so
on, up to the dimensionally continued gravity where k �
��d� 1�=2�. In brief, for a given dimension d, depending
on the choice of the integer k, one generates different
theories, with k giving the highest power of the curvature
in the Lagrangian. Now, the other fundamental constant �
can be related to a generalized Newton’s constant Gk,
labeled by k, with units �Gk� � �length�d�2k, through

 � �
1

2�d� 2�!��d�2�Gk
; (5)

where �d�2 is the area of the unit sphere in d� 2 dimen-
sions. These theories have well-defined black hole
configurations.

The electrodynamic action and Lagrangian:
The electrodynamic sector of the action (1), the electro-

dynamic action I�e�, can be chosen to be the electromag-
netic Maxwell term plus a matter electric current, and can
be written as

 

I�e� � �
1

4
�d�2

Z
M
ddx

�������
�g
p

F��F
��

�
1




Z
M
ddx

�������
�g
p

J�A�; (6)

where 
 is related to the vacuum permitivity 
0 through the
expression 
 � 
0

�d�2
, g is the determinant of the spacetime

metric g��, F2 � F��F�� is the square of F�� � r�A� �
r�A�, which is the Maxwell tensor, with A� being the
electromagnetic potential, and J� is the electric current.

For vacuum solutions J� is zero, and one has pure Maxwell
electromagnetism.

The matter action and Lagrangian:
The last term in the action (1), the matter action I�m� is

defined as

 I�m� �
Z
ddx

�������
�g
p

Lm; (7)

where the matter Lagrangian Lm is defined through the
energy-momentum tensor of the matter T�� by

 T�� � �
�d� 2�!��d�2�

4�
�������
�g
p

�L�m�

�g��
; (8)

where � here means variation. In vacuum I�m� � 0. Later
on we will specify the matter as being made of a charged
thin shell.

2. Hamiltonian

In order to apply the Hamiltonian framework, we use the
Arnowitt-Deser-Misner (ADM) formulation [30] where
there is a foliation of spacetime into t � constant hyper-
surfaces, denoted by �t. In this foliation of the spacetime
the metric, both inside and outside, is written generically as

 ds2 � ��N?�2dt2 � gij�N
idt� dxi��Njdt� dxj�; (9)

where N? and Ni are the lapse and shift functions of the
foliation, respectively. The gij are the metric coefficients of
the intrinsic geometry of the hypersurfaces �t, where i, j
run only on the spatial components. It is known that the
action I �

R
ddxL, with L the Lagrangian, can be written

as

 I �
Z
dt
Z
dd�1x��ij _gij �H �; (10)

where �ij � �L=� _gij are the momentum components
conjugate to the metric components gij, _gij are the respec-
tive coordinate time derivatives, and H is the Hamiltonian
of the system. It is then useful to write the Hamiltonian in
the form

 H � N?H? � NiH i; (11)

where H? is the normal Hamiltonian constraint that gen-
erates the time translations normal to the hypersurface �t,
and H i are the tangential constraints that generate the
translations in each of the hypersurfaces �t, which is the
same as saying that H i is the generator of hypersurface
diffeomorphisms, or that it generates coordinate transfor-
mations in �t. In addition, one can write
 

H? �H �g�
? �H �e�

? �H �m�
? ;

H i �H �g�
i �H �e�

i �H �m�
i ;

(12)

where the superscript (g) refers to the gravitational sector,
the superscript (e) refers to the electrodynamic sector, and
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the superscript (m) refers to the matter sector of the
Hamiltonian. The lapse functionN? and the shift functions
Ni of the ADM metric act here as Lagrange multipliers.

The gravitational Hamiltonian:
For the Lovelock theory, the Hamiltonian components of

the gravitational field can be taken from the action (2), the
momenta conjugate to the corresponding Lagrangian
�ij � �L=� _gij, and _gij, with the result [8–10]

 H �g�
? � ��

���
g
p X

p

�d� 2p�!	p
2p

�
i1���i2p
j1���j2p

Rj1j2
i1i2
� � �R

j2p�1j2p

i2p�1i2p
;

(13)

 H �g�
i � �2�jijj: (14)

The Rijkl in (13) are the spatial components of the curva-
ture tensor in the d-dimensional spacetime. The Gauss-
Codazzi equations give us the relation between this tensor
and R̂ijkl, the Riemann tensor intrinsic to the surface �t,

 Rijkl � R̂ijkl � KikKjl � KilKjk; (15)

where Kij is the extrinsic curvature tensor of the surface,
given by the expression

 Kij �
�

1

2N?

�
�Ni;j � Nj;i � _gij�: (16)

The semicolon in the indices denotes the intrinsic covariant
derivative in the hypersurface �t, and the dot is the deriva-
tive of the spatial-spatial components of the metric with
respect to the time coordinate. The conjugate momentum
to gij can be found through �L=� _gij, which in this case
gives [8–10]
 

�ij � ��
���
g
p X

p

p!�d� 2p�!	p
2p�1

Xp�1

s�0

Ds�p��
ii1���i2s���i2p�1

jj1���j2s���j2p�1

� Rj1j2
i1i2
� � �Rj2s�1j2s

i2s�1i2s
Kj2s�1
i2s�1
� � �K

j2p�1

i2p�1
; (17)

where

 Ds�p� �
��4�p�2

s!�s�p� s� � 1�!!
: (18)

Here the double factorial is defined by:

 s!! �

8<
:
s � �s� 2� . . . 5 � 3 � 1 s > 0 odd
s � �s� 2� . . . 6 � 4 � 2 s > 0 even
1 s � �1; 0

: (19)

The electrodynamic Hamiltonian:
The action in a Hamiltonian form of the electrodynamic

field in a curved background is given by Ie �R
dt
R
dD�1x�pi _Ai �

1
2N
?��d�2

1��
g
p pipi �

��
g
p

2�d�2
FijFij� �

’pi;i � ’J
0�, where pi is the momentum conjugate to the

spatial components of the gauge field Ai, ’ � A0, Fij are
the spatial components of the Maxwell tensor, J0 is the

time component of the electric current, and �d�2 is the
area of the (d� 2)-dimensional unit sphere. We are ignor-
ing surface terms since they will be automatically taken
into account in this setting. From the electrodynamic ac-
tion, and using the definition given in Eqs. (11) and (12),
we have

 H �e�
? �

1

2
�d�2

1���
g
p pipi �

���
g
p

2�d�2
FijFij; (20)

 H �e�
i � 0: (21)

Besides the usual constraints, there is also a new constraint
E’, associated with the Lagrangian multiplier ’

 E’ � pi;i � J
0: (22)

The matter Hamiltonian:
The matter sector of the Hamiltonian constraint is writ-

ten as

 H �m�
? �

���
g
p
T??; (23)

 H �m�
i � 2

���
g
p
T?i; (24)

where T�� is the matter energy-momentum tensor, and
where the index ? means that the tensor has been con-
tracted with the hypersurface normal n� � ��N?; 0; 0; 0�.
In the following we will specify the matter as being made
of a charged thin shell.

B. Hamiltonian and field equations for thin shells
with interior and exterior static vacua in spherically

symmetric spacetimes

1. Gravitational, electrodynamic, and thin shell
Hamiltonians in spherically symmetric spacetimes

Using the Hamiltonian formalism, we now want to set
up the field equations appropriate for charged thin shells in
static spherically symmetric charged Lovelock back-
grounds. The formalism advanced here can be used for
both static and dynamic thin shells. In the next section we
will make full use of the formalism when we apply it first
to find the pressure necessary to maintain a charged thin
shell in static equilibrium in a vacuum background interior,
black hole or otherwise, and second to the study of the
collapse of a charged thin shell into a vacuum background
interior, black hole or otherwise, in Lovelock gravity
coupled to Maxwell electromagnetism. Since the three
sectors that enter the problem are the gravitational back-
ground, the electrodynamic interaction, and the matter that
constitutes the shell, we have to set up the metrics for the
interior and exterior to the shell, we have to give the form
of vector potential field, and we have also to give the
energy-momentum tensor.

The gravitational Hamiltonian in spherically symmetric
spacetimes:
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We assume now the shell traces its spacetime trajectory
in a static spherically symmetric background. Thus the
generic ansatz both for the exterior and interior to the shell
can be written as

 ds2 � �N2�r�f2�r�dt2 �
dr2

f2�r�
� r2d�2

d�2; (25)

where Schwarzschild type coordinates ft; r; �1; �2;
� � � ; ��d�2�g have been chosen, N�r� is the lapse function
exclusively dependent on the radial coordinate, f�r� is the
metric function, dependent on r only, and d�2

d�2 is the
line element of the d� 2-dimensional unitary sphere,
written explicitly as d�2

d�2 � �d�
1�2 � sin��1�2�d�2�2 �

sin��1�2 sin��2�2�d�3�2 � � � � �
Qd�3
i�1 sin��i�2�d��d�2��2.

With the ansatz (25), the first gravitational constraint (13)
is written as
 

H �g�
? � ��

�d� 2�!

rd�2

���
g
p d

dr

�

�
rd�1

X
p

�d� 2p�	p

�
1� f2

r2

�
p
�
; (26)

and the other gravitational constraints (14) yield the equa-
tion
 

H �g�
i � �

�����
�
p
�d� 2�!

Xk
p�0

p!�d� 2p�!	p
2p�1�d� 2p� 1�!

�
Xp�1

s�0

2sDs�p�f
2�s�p��1� f2�s

�
d
dr
�rd�2p�1�	p _r�2p�2s�1�; (27)

where � is the angular part of the determinant g of the
intrinsic metric gij of the hypersurface �t, with g �
grrr

d�2�, and we use the fact that the metric is diagonal.
The function Ds�p� is defined in Eq. (18).

The electrodynamic Hamiltonian in spherically sym-
metric spacetimes:

For a static system with spherical symmetry the electro-
magnetic field is purely electric and radial for an outside
observer at rest. In this case, the vector potential has only
one nonzero component, which depends exclusively on the
radial coordinate

 At � A�r�: (28)

Given the symmetries and the fact that we are working on a
static background, the totally spatial components of the
Maxwell tensor are null, i.e., Fij � 0; i; j � r; �1; � � � ;
��d�2�. The only nonvanishing component of the Maxwell
tensor is Ftr � �@rAt�r�, with also Frt � @rAt�r�. Thus,
electrically charged, static, spherically symmetric vacuum
solutions imply

 Fij � 0; (29)

 pi � �0; pr; 0; . . . ; 0�; (30)

 

_A i � 0 and _pi � 0; (31)

where Eq. (29) means there is no magnetic field, Eq. (30)
means the electric field is spherically symmetric, and
Eq. (31) means the field is static. From Eqs. (20)–(22),
the electrodynamic constraints, associated with the
Lagrange multipliers N? and ’, are, respectively,

 H �e�
? �

1

2
���
g
p �d�2prpr �

1

2
���
g
p �d�2�pr�2f�2�r�; (32)

 H �e�
i � 0; (33)

 E’ � pr;r � J
0; (34)

where f�r� comes from (25).
The thin shell Hamiltonian in spherically symmetric

spacetimes:
We want to spell out completely the matter constraints,

namely, H �m�
? �

���
g
p
T?? and H �m�

i � 2
���
g
p
T�m�?i , for a

charged thin shell in a charged vacuum background ge-
ometry. More precisely we want to develop a Hamiltonian
framework for this situation and set up a natural junction
which arises in this formalism. For this to be made we have
first to describe the geometrical setup in order to be able to
write the projected components of the energy-momentum
tensor, namely, T?? and T?i.

First we state the nomenclature for the thin shell and for
the interior and exterior spacetimes. The thin shell is a d�
2-dimensional spacelike surface, which evolves in time,
see Fig. 1. This time evolution of the thin shell can be
represented by a timelike hypersurface @V, a boundary
surface, which divides spacetime into two regions, the
interior, denoted by V���, and the exterior, denoted by
V���. At each point on the boundary surface there exists
a unit spacelike vector , with components �, normal to
@V, and pointing from the interior V��� to the exterior
V���. In @V there is a set of intrinsic spacetime coordi-
nates �a, where a runs from 0 to d� 2. In the regions V���

and V��� independent coordinates are introduced, x�� and
x��, respectively (where� runs from 0 to d� 1), and so the
parametric equations for @V in these coordinates are
x����

a� and x����
a�. Thus, @V has tangential vectors ea

with components given by e�a � @x�
@�a . Since @V represents

the spacetime evolution of the d� 2-dimensional thin
shell, the d-velocity u, with components u�, of the matter
of the shell is tangential to @V, with u being orthogonal to
, and vanishing outside the shell. One can also consider an
intrinsic velocity vector �u, with components �ua, related to
the velocity u through the relation u� � e�a �ua, where �u is
built by considering the evolution of matter in the shell
using coordinates ��1; � � � ; �d�2� intrinsic to the shell, and
the intrinsic time �0.
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Working with the spherically symmetric metric (25), we
choose the intrinsic coordinates of the thin shell surface
@V as the proper time �, and the spherical angles of the
Schwarzschild-like coordinates, so that �a � ��; �1; . . . ;
�d�2�. The motion of the shell is governed by the radial
function of the proper time r � R���. The derivative with
respect to � will henceforth be denoted by a dot, e. g.
d
d� R��� �

_R���. The line element for @V in these coordi-
nates is

 ds2
� � �d�

2 � R2���d�2
d�2: (35)

We want to study the spacetime evolution of a thin shell in
a vacuum background with metrics of the type given in
(25). Thus, the interior V��� and exterior V��� spacetimes
have their general line element given by

 ds2
� � �f2

��r�dt2� � f�2
� �r�dr2 � r2d�2

d�2; (36)

 ds2
� � �f

2
��r�dt

2
� � f

�2
� �r�dr

2 � r2d�2
d�2: (37)

The radial and angular coordinates match continuously at
the shell, but the time coordinates do not in general. The
radial and angular coordinates match on account of the fact
that the surface area of the shell is independent of the
coordinates used to determine it, and it should be the
same on both sides, as we are working in the limit of
infinitesimal thickness, the thin shell limit. As the area of
the shell is a function of the radial position of the shell
R���, there should not be a different radius for the shell
inside and outside, as we would be attributing two different
areas to the shell. Also, spherical symmetry allows us to
induce coordinate charts on the manifold @V merely by
restricting the charts of V��� and V��� to their boundary on

@V. As, due to symmetry, the radial and angular coordi-
nates on both sides of the shell are the same, their restric-
tion to the shell should be the same, and hence match
perfectly. However, the restriction of the inside line ele-
ment (36) to the surface of the shell must match the
restriction of the outside line element (37), all having the
general form (35) on the shell. In these coordinates the
vectors u and  defined above (see also Fig. 1) have the
following components,

 u� �
�
�

f2 ;
_R; 0; 0

�
; (38)

 � �
� _R

f2 ; �; 0; 0
�
; (39)

where

 � �
�����������������
f2 � _R2

q
; (40)

where � is a generalized Lorentz factor. These vectors
were obtained through the matching of (36) and (37) to the
surface line element (35), using the relation u� � dx�

d� ,
where the t coordinates and the radial coordinate are
treated as functions of the proper time �. We have also
used u�u� � �1, �u� � 0, and �� � 1 (as  is the
spacelike normal to @V).

The shell matter properties are described by the surface
energy-momentum tensor Tab, which is orthogonal to 
and vanishes outside the hypersurface @V. For an observer
in the shell, Tab is written in intrinsic coordinates, which
for a perfect fluid is given by

 Tab � � �ua �ub � P�hab � �ua �ub�; (41)

where � is the rest mass surface density, P is the surface
pressure (or, when negative, the surface tension), and
hab � g��e

�
a e�b. Tab is confined to the hypersurface @V

and it satisfies the conservation equation, Tbajb � 0, where a
j denotes covariant differentiation on the hypersurface,
which implies the explicit equation

 �� �ua�ja � P �ua
ja � 0; (42)

this last being obtained by multiplying the tensor Tab
by �ua.

To apply the Hamiltonian formalism we should pass to a
spacetime characterization of the energy-momentum ten-
sor. In order to do so we define the spacetime energy-
momentum tensor as

 T�� � Tabe�a e�b: (43)

Then, in order to write T?? and T?i we must first write the
energy-momentum tensor in an adapted coordinate system
fT; X; �1; � � � ; �d�2g (see Fig. 1), where T and X are the
time and radial adapted coordinates, and �1; � � � ; �d�2 are
the usual angular coordinates. In more detail, the origin of

 

a

o ξV

o ξV

u

n

e

ξ

X

T

Σt

V V− +

FIG. 1. The shell trajectory manifold @V in spacetime is
depicted. V� and V� are the spacetime regions interior and
exterior to @V, respectively, and �t is the hypersurface inter-
secting @V. Also shown are the normal vector n (normal to �t),
the velocity vector u (tangent to @V), the vector  (the spacelike
normal to @V), and the vector ea (the generic tangent vector to
@V). The vectors indicating the origin and direction of the
adapted coordinate system fT; Xg are depicted together with
the u and  vectors.
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the new adapted coordinate X is at the shell, and the
direction of any vector in X alone is the same as that of
the outward spacetime normal to the surface, , and the
direction of any vector in T alone is the same as that of the
tangent vector u. Then,

 T�� � f�u�u� � P�h�� � u�u��g��X�; (44)

where h�� is the intrinsic metric of the shell written as a
bulk d-dimensional spacetime tensor, h�� � g�� � ��,
and u� is the velocity of the particles of the shell written as
a bulk d-dimensional vector. When written as a bulk
tensor, the energy-momentum tensor of the thin shell is
proportional to a delta function. Now, T?? is given by
T��n�n�, which means that T��n�n� � ��u�u�n�n� �
P�h��n�n� � u�u�n�n�����X�. Knowing that n�n� �
�1, we have that �N?�2 � f2. So u?u? � �2=f2: In the
same way, we obtain h��n�n� � �1� � _R2�=�f2�. We
arrive thus at T?? � ���2=f2���X�. It is, however, neces-
sary to write the delta function as a function of the radial
coordinate r. This means we have to return to the original
Schwarzschild type coordinates of the metrics (36) and
(37). For that, we write dt � utdT � tdX, dr � urdT �
rdX. As we are interested in the energy-momentum ten-
sor on the spacelike hypersurface �t, we make dt � 0 and
obtain the differential relation dr=dX � r � �ur=ut�t �
f2=�. Taking into consideration the relation ��f�x�� �
�i��x� xi�=jf0�xi�j, where xi are the zeros of a general
function f�x�, and 0 denotes differentiation with respect
to the argument of the function, we have ��X� �
�f2=����r� R����. Plugging one equation into the other
we get

 T?? � ����r� R����; (45)

where � is the energy surface density on the shell, � is
given in (40), and R��� is the shell radial function.

For the other components of the matter tensor, T?i, we
have first to define z�i �

@x�

@yi as the projection vectors onto

the hypersurface �t, where yi are the intrinsic coordinates
of �t. Then, writing the intrinsic metric of @V as h�� �
g�� � ��, and knowing that u�� � 0, we arrive at

 T?i �
f2

�
���� P���N?f�2��ui � Pui���r� R����;

(46)

where ui are the components of the velocity vector pro-
jected onto �t. It is then possible to write completely the
matter constraints as

 H �m�
? �

���
g
p
����r� R����; (47)

and

 

H �m�
i � 2

���
g
p f2

�
���� P���N?f�2��ui � Pui�

� ��r� R����: (48)

One remark is due, regarding the foliation of spacetime.
From the way we have sliced the spacetime, by looking at
the ADM metric (9) and the fact that we are working with
spherical symmetry and static background (cf. (25)), we
see that the shift Lagrange multipliers Ni are equal to zero.
Therefore, every constraint with components in the �t
hypersurface H i will not be relevant to our discussion.
In the following we will need neither T?i nor H �m�

i .

2. The equations of motion

By varying the Hamiltonian action, written with the
constraints spelt out previously, with respect to g, N?, ’,
and pr the field equations will be, respectively,

 

dN
dr
� 0; (49)

 � �
�d� 2�!

rd�2

d
dr

�
rd�1

�
F�r� �

1

l2

�
k
�
�

p2

2�d�2
� T??;

(50)

 

d
dr
�rd�2p� � rd�2j0; (51)

 

d’
dr
� Np � 0; (52)

where F�r� � �1� f2�r��=r2, N � N?�grr�
1=2, and p�r� is

a redefinition of the canonical momentum radial compo-
nent pr through

 pr � rd�2 �1=2

�d�2
p; (53)

where � is the angular part of the determinant g of the
intrinsic metric gij of the hypersurface �t, with g �
grrrd�2�, and we have used the fact that the metric is
diagonal. In the same way we have redefined the current’s
time component

 J0 � rd�2 �1=2

�d�2
j0: (54)

We also have used (3) to write

 

X
p

�d� 2p�	p

�
1� f2

r2

�
p
�

�
F�

1

l2

�
k
: (55)

One should note that varying with respect to N? and ’ is
requiring that the constraints be made equal to zero, be-
cause both are Lagrange multipliers. That is, in the case of
N?, the variation implies H? � 0, and varying with
respect to ’ implies E’ � 0.
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Equations (49)–(52) are valid for any thin spherically
symmetric charged shell in Lovelock gravity coupled to
Maxwell electromagnetism. One has only to give the thin
shell delta-function energy-momentum tensor and inte-
grate the equations to find the solutions. Note that
Eq. (50) is valid only for a delta-function energy-
momentum tensor. Indeed this equation when integrated
gives the equation of motion of the shell itself, but if one
has a continuous distribution of matter, instead of a thin
shell, then within the matter there exists time dependence
in the metric function, which should be taken into account.
In the case of the thin shell we were able to ignore this time
dependence, since inside and outside the shell it is possible
to set up static backgrounds.

III. THIN SHELL SOLUTIONS IN A VACUUM
BACKGROUND WITH SPHERICAL SYMMETRY

A. Spherically symmetric vacuum solutions: solutions
with black hole character, with naked singularity

character, and empty solutions

The vacuum solutions are obtained when we consider
the matter action equal to zero, T?? � 0, and when there is
no vector current, J� � 0. So, after integrating the field
equations above, one obtains the vacuum solutions [20]

 N � N1 � 1; (56)

 f2�r� � 1�
r2

l2
� �gk�r�; (57)

 p�r� � 

Q

r�d�2�
; (58)

 ’�r� � ’1 �



�d� 3�

Q

r�d�3�
: (59)

The function gk�r� is defined by

 gk�r� �
�
2GkM� �d�2k;1

rd�2k�1
�


Gk

�d� 3�

Q2

r2�d�k�2�

�
1=k
; (60)

where the integration constants M and Q are the mass and
electric charge of the solutions, and where we have used
Eq. (5) for the definition of � in terms of Gk. From
Eqs. (55)–(60), in particular, from Eqs. (58)–(60), one
notes that the vacuum solutions yield a natural division
of the Lovelock theory into two branches, namely d�
2k� 1> 0 and d� 2k� 1 � 0, with d being the dimen-
sion of the spacetime and k the parameter that gives the
highest power of the curvature in the Lagrangian. The
branch d� 2k� 1> 0 embodies general relativity when
k � 1 (any d), Born-Infeld when k � �d�1

2 �, and other
generic cases. The branch d� 2k� 1 � 0 embodies
Chern-Simons type theories alone. Worth mentioning
now is the fact that in the d� 2k� 1> 0 branch the empty
vacuum solutions have M � 0 and Q � 0, whereas in the

d� 2k� 1 � 0 branch the empty vacuum solutions have
M � ��2Gk�

�1 and Q � 0. In the solutions, there appears
an additional unusual parameter �. The parameter � is the
spacetime character, given by

 � � �1�k�1: (61)

This means that the vacuum solutions may have a black
hole character or a naked singularity character. For � � 1
the solutions, being of the type found in general relativity,
have a black hole character, since for a correct choice of the
parameters, such as mass and charge, the solution is a black
hole solution, although, of course, for other choices of
parameters it can be an extremal black hole or a naked
singularity. For � � �1 the solutions, being of a new type
not found in general relativity, have a naked singularity
character, as there is no possible choice of the parameters
that gives a black hole solution, the full vacuum solution is
always singular without horizons. Note also that Eq. (61)
implies that if k is odd (such as in general relativity, where
k � 1) the character � � 1 only, whereas if k is even (such
as in general relativity with a Gauss-Bonnet term, where
k � 2) the character � can have both values1. Note also
that in the d� 2k� 1 � 0 Chern-Simons theory, the black
hole vacuum spacetime, i.e., the vacuum of the � � 1
character black hole solution, given by M � 0 and Q �
0, is different from the usual AdS spacetime, and there is a
mass gap between these spacetimes, with the latter being
obtained for M � ��2Gk�

�1, as mentioned above.
Equations (56)–(61) provide the electrically charged solu-
tions of the Lovelock theory defined by the parameters d
and k coupled to Maxwell electromagnetism, with d 	 4.
The dimension d � 3 yields singular solutions in the
charged sector, and so we do not consider this dimension
in this work, although in the uncharged sector it yields
perfectly sensible solutions [19].

Now, given a spacetime solution one should search for
horizons and singularities. For � � 1 the solution has a
black hole character and can have horizons and singular-
ities, i.e., the solutions represent black holes when the
parameters are appropriately chosen. For � � �1 the so-
lution has a naked singularity character, and should have
only singularities with no horizons, independently of the
choice of the other parameters. First we locate the horizons
for the � � 1 solutions, and then we locate the singularities
for both � � 1. For � � 1, the zeros of f�r�, in the
coordinates used, give the horizons. Upon close scrutiny,
the properties of these solutions have many similarities
with the d-dimensional Reissner-Nördstrom-AdS black
holes in pure general relativity. Moreover, this set of black
hole solutions reduces to the d-dimensional Reissner-
Nördstrom-AdS black holes for k � 1, and the charged
Born-Infeld and charged Chern-Simons black hole solu-
tions are recovered for d � 2k� 2 and d � 2k� 1, re-
spectively [19]. For generic values of d and k, in analogy
with the Reissner-Nordström geometry, the black hole
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solutions possess, in general, two horizons located at the
roots of f2�r�, one is the event horizon r�, and the other the
Cauchy horizon r�, with r� < r�. When the two horizons
merge the black hole is extremal as usual. If the solution is
overcharged one has a naked singularity for some value of
Q in terms of M [20]. Now one finds the location of the
singularities, which can be treated together for both char-
acters � � 1. The scalar curvature is

 R �
1

rd�2

d2

dr2

�
rd�2

�
gk�r� �

r2

l2

��
: (62)

For k � 1, general relativity with its Reissner-Nördstrom-
AdS black holes, one finds that R � 0 as it should, thus in
this case the singularities are located when the
Kretschmann scalar, R����R����, blows up, which is at
r � 0. For k > 1 the Ricci scalar is no more zero, R � 0. In
this case, Eq. (62) has a singularity at the zero of the
function gk�r�, and is due to the existence of an electric
field. This is a real timelike singularity located at re
 

re �
�



2�d� 3�

Q2

�M� �2Gk�
�1�d�2k;1�

�
1=�d�3�

; k > 1:

(63)

This singularity can be reached in a finite proper time
interval. However, an external observer is protected from
it because both horizons cover it, re < r� < r�. Moreover,
for even k, regions where r < re have a metric with com-
plex functions, so there is no solution in this region. For
odd k, the metric can be defined in the region 0< r< re,
where r � 0 is also a spacetime timelike singularity. This
solution has no horizons, and is defined between two time-
like singularities and so is of no interest to us. For all
purposes the solutions of interest, for k > 1, are defined
in the interval re < r <1, and for k � 1 (general relativ-
ity) in the interval 0< r <1. The corresponding Carter-
Penrose diagrams can be easily sketched.

B. Spherically symmetric thin shell solutions through
the Hamiltonian formalism

1. Shell dynamics

a. The two master equations—We now want to find the
equations governing the motion of a thin shell in a vacuum
background of a given Lovelock theory specified by the
dimension d of the spacetime and the parameter k, which
gives the highest power in the curvature terms in the
Lagrangian of the theory. In order to obtain shell solutions
in a vacuum background, as opposed to pure vacuum
solutions, we study the complete field equations,
Eqs. (49)–(52), and take into consideration the matter
term H �m� and the electric current J� in those equations.
We know that inside the shell the spacetime solution, with
mass M� say, is obtained by integrating the constraint
H? � 0, i.e., the Eq. (50) with T?? � 0, with the vacuum
solution given in (57). In the same way, outside the shell

the spacetime vacuum solution, with mass M� say, is
obtained by integrating the constraint H? � 0, i.e., the
Eq. (50) again with T?? � 0, with the vacuum solution
given in (57). It remains now to integrate the constraint
H? � 0 in the neighborhood of the shell, from R� 
 to
R� 
, where 
 is the infinitesimal thickness of the shell,
with 
! 0. That is, we have to impose

R
R�

R�
 drH? � 0.

This integration should be performed in the asymptotic
region, outside of the black hole, since there the normal
to the t � constant hypersurfaces is timelike, and thus the
Hamiltonian formalism is directly applicable. In addition,
one has to fix from the start the same value of the character
� on both sides of the shell (one has to choose either � � 1
or � � �1), i.e., one has to choose which of the two types
of spacetime one is working with. Using then Eq. (50) we
obtain

 Z R�


R�

dr
�
��
�d� 2�!

rd�2

d
dr

�
rd�1

�
F�

1

l2

�
k
�

�
p2

2�d�2
� T??

�
� 0; (64)

where T?? is given in (45). Knowing (3) and (5), using
(55), and defining the energy-density content of the shell
m � ��d�2R

d�2, the integration yields

 

1

2
m��� � ��� � �M� �M�� �


�Q2
� �Q

2
��

2�d� 3�

1

Rd�3
;

(65)

where following Eq. (40)

 �� �
������������������
f2
� � _R2

q
and �� �

������������������
f2
� � _R2

q
; (66)

� being the generalized Lorentz factor, and where the
different indices � and � stem from the fact that the
integration is made both in the V��� (from R� 
 to R)
and V��� (from R to R� 
) spacetimes. Note that when
integrating Eq. (64), we have used the fact that the radial
electric field is zero inside a uniformly charged sphere, due
to Gauss’ theorem, and that outside it is �Q� �Q��=�r2 �

2�, where 
 denotes the distance from the surface on the
outside to the point of measurement, r denotes the radius of
the sphere, and f�2�r� is continuous in the domain of
integration. When there are black holes this domain should
be exterior to the horizon of the black hole solution, where
the solutions are static. Then, the integration in r of the
H �e�
? between the limits R� 
 and R� 
 is, in the limit of


! 0, equal to zero. Thus, the electric field does not
contribute to the shell equation through the radial integra-
tion of the Hamiltonian constraint. It is sometimes useful to
write Eq. (65) in another way, namely, to multiply both
sides by �� � ��. This yields the following equivalent
equation
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m��gk��R� � gk��R�� � �gk��R�
k � gk��R�

k�

� Rd�2k�1��� � ���: (67)

Equation (65), and its equivalent (67), were deduced for the
asymptotic region, where the vacuum spacetime is static,
but in the case a black hole is present or being formed, with
some care, those equations can be extended, by continuity,
to the interior black hole region.

We proceed our study by analyzing now the electro-
dynamic constraint (51). Inside the shell the electric field
solution, Q�=rd�2, is obtained by integrating the con-
straint E’ � 0, i.e., Eq. (51) with j0 � 0, yielding the
vacuum solution (58). In the same way, outside the shell
the electric field solution, Q�=rd�2, is obtained by inte-
grating the constraint E’ � 0, i.e., Eq. (51) again with
j0 � 0, yielding the vacuum solution (58). It remains
now to integrate the constraint E’ in the neighborhood of
the shell, from R� 
 to R� 
, where 
 is the infinitesimal
thickness of the shell, with 
! 0. That is, we have to
impose

R
R�

R�
 drE’ � 0. Using then Eq. (51), we obtain

 

Z R�


R�

dr

d
dr
�rd�2p� �

Z R�


R�

dr rd�2j0; (68)

where j0 is the time component of the vector current, and
j0 � �e��r� R�u0, where �e is the surface charge den-
sity. Defining the charge of the shell as q � �e�d�2R

d�2

yields

 Q� �Q� � q: (69)

Relation (69) is Gauss’ law, and is a trivial consequence of
the conservation of charge.

The two master equations are then Eq. (65) (or its
equivalent (67)) and Eq. (69). The former can be seen as
a dynamic equation for _R2, the latter is a static equation
that simply expresses the conservation of charge. Thus in
the rest of our study we concentrate on Eq. (65) (or
equivalently on Eq. (67)).

b. Rewriting the equations to simplify the analysis—
Equation (65) (or Eq. (67)) was derived for the asymptotic
flat region, thus if there is a black hole present it was
derived for the region exterior to the event horizon. We
should now transform it in order to have it written in a more
workable manner. For that we have to square Eq. (65)
appropriately. To simplify the notation let us define the
right-hand side of Eq. (65) as E, i.e.,

 E � �M� �M�� �

�Q2

� �Q
2
��

2�d� 3�

1

Rd�3
: (70)

Note that from (65) one sees that this quantity E is positive
for positive shell mass m (i.e., positive energy density
�> 0), a condition we always assume throughout. Now
we obtain from Eq. (65) a set of two equations which give
the dynamics of the shell in detail. First, squaring Eq. (65)
and using the definition (70), we get for _R2 the following
expression

 

_R 2 �

�
E
m
�
m
4E
�f2
� � f

2
��

�
2
� f2

�; (71)

or, alternatively

 

_R 2 �

�
E
m
�
m
4E
�f2
� � f

2
��

�
2
� f2

�: (72)

Second, there is one last step needed for the entire set of
relevant equations, in the asymptotic region, to be written
down. This has to do with the fact that squaring Eq. (65)
yields Eq. (71) (or, alternatively, (72)) making the solutions
of (65) also solutions of (71) (or, alternatively, (72)) but not
all solutions of the (71) (or, alternatively, (72)) are solu-
tions of (65). So, a sufficient condition is found by putting
Eqs. (71) and (72) appropriately back into Eq. (65). One
arrives then at the following conditions

 f2
� � f

2
� 	 �

4

m2 E
2; (73)

 f2
� � f

2
� 


4

m2 E
2: (74)

Equations (73) and (74) define implicitly a constraint
radius rc, meaning that, in the asymptotic region, a solution
for R��� is a solution of the equation of motion only if it
obeys (71) (or, alternatively, (72)) and R���> rc for all R.
We need now to choose which of the two relations,
Eqs. (73) and (74), hold for the system in question. In
order to do so, we have to know what signal the difference
f2
� � f

2
� carries. From (57) one sees that the most general

expression is f2
� � f

2
� � ��gk��r� � gk��r��, where gk�r�

comes from (60). The signal on the right-hand side of this
equation depends on the difference ��gk��r� � gk��r��
being positive or negative, and this determines which
relation in (73) and (74) is the relevant one to use. For
example, in the case where the interior is flat, gk��r� � 0,
the right-hand side is ��gk��r�. In this case when
��gk��r�< 0 the relation in (73) is the relevant one,
when ��gk��r�> 0 the relation in (74) is the appropriate
one. (Note that for pure vacuum, no shell, ��gk��r�> 0,
represents a solution with naked singularity character,
while ��gk��r�< 0 represents a solution with black
hole character). In brief, Eq. (73) defines a constraint
radius rc which is of use in the asymptotically exterior
region. So, in the asymptotically exterior region, Eqs. (71)
(or (72)) and (73) and (74) recover the same solutions as
those of the shell equation (65), with (73) and (74) being a
constraint equation. With this set of equations, containing
no square roots, one can analyze the spacetime evolution of
the shell, in the asymptotic region, outside the black hole.

It is also useful to derive the acceleration of the shell
radius. Differentiating equations (71) and (72) with respect
to the proper time of the shell �, we get
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m �R �
�Q2
� �Q

2
������m

2ERd�2
� �d� 2�Rd�3�d�2P����

�
m2

4E
�

�
��

df2
�

dR
� ��

df2
�

dR

�
; (75)

where we have used the conservation equation (42) to
arrive at the result dm

d� � ��d� 2�Rd�3P _R, which was
used in (75).

2. Analysis of two cases: matter in equilibrium and
gravitational collapse

We can now apply the above equations of motion to a
variety of physical situations. We choose two interesting
cases, namely, static matter in equilibrium and gravita-
tional collapse of matter.

a. Matter in equilibrium—To find a solution for a static
shell we have to determine the radii where both the velocity
of the shell and its acceleration are null, i.e., _R � 0 and
�R � 0, in the Eqs. (71) (or, alternatively, (72)) and (75),

respectively. Forcing _R � 0 in (71) (or, alternatively, (72))
yields

 Rd�3
0

�
1

2
m�

������
f2
�

q
�

������
f2
�

q
� � �M� �M��

�

�

�Q2

� �Q
2
��

2�d� 3�
; (76)

where R0 is the radius at which the shell is static, and f2
�

and f2
� are evaluated at R0. To be in equilibrium we have to

impose, in addition, �R � 0, which when combined simul-
taneously with (76) gives the pressure necessary to hold the
thin shell in equilibrium. This pressure is then given by

 

P � �
1

�d� 2�Rd�3
0 �d�2����

�
�Q2
� �Q

2
������m

2ERd�2
0

�
m2

4E

�
��

df2
�

dR

��������R0

���
df2
�

dR

��������R0

��
; (77)

where the functions are evaluated at R0, given by (76).
Thus, we obtain the pressure in terms of the parameters of
the problem, such as d, k, m, M�, M�, Q�, Q�, and the
radius of the static shell R0, for a static configuration. As a
particular simple case we may apply the above expressions
to find the pressure necessary to hold the shell in static
equilibrium in general relativity (k � 1, � � 1), without
charge, and for zero cosmological constant and flat interior.
This gives

 P �
�d� 3�

2�d� 2�

Gm2

�d�2R
d�2
0 �Rd�3

0 �m�
; (78)

where R0 is the radius of the static shell, given by R0 �

�Gm2=�2�m�M���1=�d�3�, and G is the Newton’s constant

for k � 1, i.e., we have done Gk�1 � G, whatever the
dimension d. In four dimensions, d � 4, Eq. (78)
reduces to P � �Gm2�=�16�R2

0�R0 �m��, with R0 �
Gm2=�2�m�M��, confirming the result given in [27].

b. Gravitational collapse—In this analysis of gravita-
tional collapse in Lovelock gravity coupled to Maxwell
electromagnetism, we first study a simple example of
charged dust matter collapsing into an empty interior and
then prove cosmic censorship in the generic case of shell
collapse into an interior free of naked singularities. An
analysis of gravitational expansion, not worked out here,
follows straightforwardly by performing a time reversal
operation on the collapsing solutions.

i. Gravitational collapse of dust matter in an empty
interior:—In order to have an idea of the main features
of gravitational collapse in Lovelock gravity coupled to
Maxwell electromagnetism, rather than analyzing the full
problem, which can be daunting since there are a great
number of parameters to play with, we investigate the
simplest problem, namely, of gravitational collapse of
charged dust matter into an empty interior. Even then, in
this case the task of studying it in full detail is enormous,
since one has first to set the dimension of the spacetime, the
dimension of the k parameter, and then all the other pa-
rameters. So we resort to study it somewhat generically,
and then give some particular examples in the diverse
theories that we chose to study. The aim is to show that
gravitational collapse is possible in this subset of theories
of Lovelock gravity, reinforcing some similarities which
this has with general relativity, as well as showing some
new features. So, in the following we analyze the case
where the matter is composed of dust particles with P �
0, in which case m is a constant and can be identified with
the shell’s rest mass, and where the interior is empty, in
which case the function f��R� is given through f2

��R� �
R2=l2 � 1.

Before proceeding, it is necessary to emphasize that the
Lovelock theory we are analyzing is separable into two
branches: (i) the d� 2k� 1> 0, which can have even and
odd dimensions, and includes general relativity when
k � 1 (any d), includes the Born-Infeld case of the dimen-
sionally continued theory when k � �d�1

2 �, and includes
other generic cases, and (ii) the d� 2k� 1 � 0, which
can only have odd dimensions and is precisely the Chern-
Simons case of the dimensionally continued theory. We
study each branch in turn.

The branch d� 2k� 1> 0 (general relativity when
k � 1 (any d), Born-Infeld when k � �d�1

2 �, and other
generic cases):

The d� 2k� 1> 0 branch allows theories in even and
odd dimensions. For instance in d � 6 one can have k � 1
(general relativity) and k � 2 (general relativity with a
generalized Gauss-Bonnet term) theories, which in the
case k � 2 gives a Born-Infeld theory. On the other hand,
in d � 7 one can also have theories with k � 1 (general
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relativity) and k � 2 (general relativity with a generalized
Gauss-Bonnet term), but none of these is a Born-Infeld
theory. Indeed, as already alluded to in Sec. II, the Born-
Infeld case is the realization of this Lovelock theory in
even dimensions, for which k � �d�1

2 �.
Considering thus an empty interior, with M� � 0

and Q� � 0, one has f2
��R� � R2=l2 � 1. Putting then

M� � M, Q� � Q, and � � �1�k�1 (see (61)) one finds
from Eqs. (71) and (72) that the shell equation for d�
2k� 1> 0 is,
 

_R2 �

�M� 
Q2

2�d�3�Rd�3

m
�

m

4�M� 
Q2

2�d�3�Rd�3�

� �
�

2Gk

Rd�2k�1

�
1=k
�
M�



2�d� 3�

Q2

Rd�3

�
1=k
�

2

�

�
1�

R2

l2

�
: (79)

In order to have physical solutions, we have to demand
_R2 > 0.

The equation of the acceleration of the thin shell (75),
allows us to understand the forces acting on the shell in
collapse. Expanding the � defined in (66), with _R2 re-
placed by the right-hand side of (71) or (72), appropriately
chosen, we have

 � �
��������
M� 
Q2

2�d�3�Rd�3

m


m

4�M� 
Q2

2�d�3�Rd�3�

� �
�

2Gk

Rd�2k�1

�
1=k
�
M�



2�d� 3�

Q2

Rd�3

�
1=k
��������:

(80)

Then Eq. (75) for an empty interior turns into
 

�R � �
2R

l2
�
Q2����
2ERd�2

� �
m
2E

�

�
��

1

k

�
2GkM

Rd�2k�1
�


Gk

d� 3

Q2

R2�d�k�2�

�
�1�k�=k

�

�
2�d� 2k� 1�GkM

Rd�2k �
2�d� k� 2�
Gk

d� 3

�
Q2

R2�d�k��3

��
; (81)

where the functions � are given in (80), and we have used
Eq. (65). The first term on the right-hand side of Eq. (81) is
proportional to the radius of the thin shell, meaning that
this term dominates the acceleration for large values ofR, it
tends to�1 as R! 1 dominating all the others, and since
the term is negative it points towards the center. The term
proportional to the square of the electric charge Q2 in-
cludes a _R2 term and a j _Rj term (due to the product ����).
This means that the charge term is positive for a thin shell,
works to push the shell to higher radii, and it tends to zero

as R! 1. The third term has several terms included, like
gravitational and viscosity forces per unit mass terms. A
simple example where the terms in Eq. (81) are drastically
reduced is when we put d � 4, k � 1, l2 ! 1,Q � 0, i.e.,
the case of an uncharged shell collapse in usual general
relativity in four dimensions. Then we get for the accel-
eration of the shell, �R � �M=R2 �m2=�4R3�: The term
m2=�4R3� is a correction to the Newtonian dynamics,
representing a self-gravitational potential energy.

Since, in general, the character � has two values, � �
1, for the branch we are analyzing, we study separately
both cases. Note first that for � � 1 one has from (57) that
the shell spacetime solution has a black hole character (i.e.,
for certain choices of the parameters one has a black hole
solution), whereas for � � �1 one has from (57) that the
shell spacetime solution has a naked singularity character
(i.e., there are no possible choices of parameters that give a
black hole). So, since when k is odd (such as in general
relativity where k � 1) the character � � 1 for sure, odd k
allows black hole character solutions only, and since when
k is even (such as in general relativity with a Gauss-Bonnet
term where k � 2) the character � can have both values
1, even k can have both black hole and naked singularity
character solutions.

For � � 1 the spacetime has a black hole character.
When the shell collapses it will pass through its horizon
radius, defined by the equation f2

��rh� � 0. So for � � 1
shell collapse implies the formation of a black hole. To see
this more clearly, note that from Eq. (57) the relation
f2
��rh� � 0 defining the horizon turns into �1� r2

h=l
2� �

�2Gk=r
d�2k�1
h �1=k�M� �
Q2�=�2�d� 3�rd�3

h ��1=k. One can
show by inspection that the horizon radius is always larger
than the turning radius rt, rh > rt. So in this type of
Lovelock gravity the bounce is always inside the event
horizon, which implies the shell expands into another
universe, a result already obtained in pure general relativity
[29].

For � � �1 the spacetime has a naked singularity char-
acter. We can now give an argument which shows that
cosmic censorship holds in the case of d� 2k� 1> 0,
with an empty interior. The spacetime would be singular if
the shell would hit re, given in (63). Through the shell
equation, Eq. (65), we see that M� �
Q2�=�2�d�
3�Rd�3�> 0. However, the singularity at re makes the
right-hand side of the shell equation (65) zero. This shows
that the radius of this singularity is out of the region of
validity of the shell equation, preventing the collapse of the
charged shell to form a naked singularity, and validating
here the cosmic censorship hypothesis. Note that this is
only applicable to k even.

In Fig. 2 the branch d� 2k� 1> 0 (general relativity
when k � 1, Born-Infeld when k � �d�1

2 �, and other ge-
neric cases) is studied in some instances. In each plot the
effective potential _R2 as a function of R (which gives the
turning points and the allowed region for the shell motion),
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and the metric function f2�R� as a function of R (which
gives the horizon formation), for several different values of
the parameters, are shown. The vertical axis ��r� in the
figure represents both _R2�r� (full line) and f2

��r� (dashed
line). The thin shell trajectory is allowed only in the region
where _R2 is positive. In all the plots we have made the
respective Newton’s constant equal to the unity,Gk � 1, so
that radii and energies are measured in the respective
Planck units (@ � 1, c � 1). We have not plotted �R since
it yields a totally different scale in the vertical axis, render-
ing the other two functions, _R2 and f2�R�, almost invisible.
We now look at each choice of plot in turn. (a) General

relativity, k � 1. Left plot: d � 4, l � 1,M � 1000,Q �
300, m � 20. Right plot: d � 10, l � 1, M � 200, Q �
300,m � 30 (since k is odd, one has � � 1 for both plots).
More specifically, the left plot is the usual general relativity
with d � 4 (which incidentally is also a Born-Infeld type
theory), and the right plot is general relativity with d � 10.
There is always collapse to a black hole, a result confirmed
by both plots. Indeed, since _R2 is nonzero at the horizon,
where f2

��r� � 0, the shell passes smoothly through the
horizon itself. So there is no bounce outside the horizon,
the bounce being inside the horizon, and into another
universe. For example, in d � 4 the value of the radius
of the bounce, or turning point, inside the horizon is given
by rt � �m

2 �Q2�=�2�m�M�� � 45:7 in the units de-
fined above. This agrees with the expressions given in
[29], where using Israel’s formalism [21], as opposed to
the Hamiltonian methods used here, a full study of the
equation of motion and of the turning points in
d-dimensional general relativity was performed.
(b) Born-Infeld, k � �d�1

2 �. Left plot: d � 10, k � 4, � �
1, l � 1, M � 10 000, Q � 30 000, m � 1. Right plot:
d � 10, k � 4, � � �1, l � 1, M � 10 000, Q �
30 000, m � 1. More specifically, the left plot is for � �
1, and we find there is always collapse to a black hole,
since _R2 is nonzero at the horizon, where f2

��r� � 0, and
the shell passes smoothly through the horizon itself. There
is a bounce inside the horizon into another universe. The
right plot is for � � �1, with the same choices of the other
parameters as for� � 1. In this case the external spacetime
has a naked singularity character. Here there is no horizon
because the metric function f2

��r� has no zero. There is a
zero of _R2, which limits the region _R2 > 0, the region
where the shell has its trajectory. The zero is larger than
the radius at which there is a singularity. Thus the collapse
never forms a naked singularity. (c) General relativity with
a generalized Gauss-Bonnet term, k � 2, a particular case
of 1< k< �d�1

2 � (here the intermediate cases, (1< k<
�d�1

2 �), where k is neither minimum (general relativity),
nor maximum (Born-Infeld), are studied). Left plot: d �
10, k � 2, � � 1, l � 1, M � 1000, Q � 300, m � 20.
Right plot: d � 10, k � 2, � � �1, l � 1, M � 1000,
Q � 300, m � 20. The choice of the coefficients 	p are
given in Eq. (3). More specifically, the left plot is for � �
1, and we see there is always collapse to a black hole, since
_R2 is nonzero at the horizon, where f2

��r� � 0, and the
shell crosses the horizon smoothly. There is also a bounce
inside the horizon. The right plot is for � � �1, where the
external spacetime has a naked singularity character. There
is no horizon, because there are no zeros of f2

��r�. The
region where _R2 > 0, where the shell has its trajectory, is
limited on the left by the zero of _R2. The zero of _R2 is larger
than the radius at which there is a singularity. There is thus
no collapse to form a naked singularity. In all the
figures 2(a)–2(c) we have shown bouncing solutions
only, although one could easily find parameters for which
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FIG. 2. In this figure the branch d� 2k� 1> 0 (general rela-
tivity when k � 1, Born-Infeld when k � �d�1

2 �, and other ge-
neric cases) is studied in some particular instances. In each plot
the effective potential _R2 as a function of r (which gives the
turning points and the allowed regions for the shell), and the
metric function f2�r� as a function of r (which gives the horizon
formation, for several different values of the parameters) are
displayed. The vertical axis ��r� represents both _R2�r� (full line)
and f2

��r� (dashed line). Note that the thin shell trajectory is
allowed only in the region where _R2 is positive. In all the plots
the respective Newton’s constant is put equal to the unity, Gk �
1, so that radii and energies are measured in the respective
Planck units (@ � 1, c � 1). (a) General relativity, k � 1, left
plot is for d � 4 and right plot for d � 10, with � � 1 in both
plots (� � �1 is not possible for k odd), (b) Born-Infeld, k �
�d�1

2 �, here k � 4 and d � 10, left plot is for � � 1 and right plot
for � � �1, (c) General relativity with a generalized Gauss-
Bonnet term, k � 2, a particular case of 1< k< �d�1

2 �, here d �
10, left plot is for � � 1 and right plot for � � �1. See text for
details.
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the collapsing shell suffers no bounce and goes all the way
down to the singularity. Note that a general setup for the
study of the turning points and the shell’s trajectory in a
Carter-Penrose diagram for the causal structure (with a
corresponding careful analysis of the normal to the shell
along the trajectory), as was done analytically for
d-dimensional general relativity in [28,29], could also be
performed here case to case, i.e., giving d and k. However,
this is beyond the scope of this work.

The branch d� 2k� 1 � 0 (Chern-Simons):
The d� 2k� 1 � 0 branch implies d is odd always.

Moreover the theory is of Chern-Simons type. The d�
2k� 1> 0 branch and the Chern-Simons d� 2k� 1 � 0
branch, are quite distinct. First, in this latter branch, in this
charged setting, there is no general relativity (k � 1),
because the theory is defined only for d > 3, and thus
k 	 2 (however in the uncharged case the theory is well-
defined for d � 3, yielding three dimensional general rela-
tivity, see [19]). Second, for the d� 2k� 1> 0 branch
one has that the vacuum mass is M� � 0, whereas for the
d� 2k� 1 � 0 Chern-Simons branch the vacuum mass is
M� � ��2Gk�

�1. From (57) and (60) one finds that the
interior for the Chern-Simons theory with M� �
��2Gk�

�1 is characterized by f2
��R� � R2=l2 � 1 also.

From Eq. (65) the shell equation for d� 2k� 1 � 0,
M� � ��2Gk�

�1, M� � M, Q� � 0, Q� � Q, and � �
�1�k�1 is
 

_R2 �

�M� �2Gk�
�1 � 
Q2

2�d�3�Rd�3

m

�
m

4�M� �2Gk�
�1 � 
Q2

2�d�3�Rd�3�
��2Gk�

1=k

�

�
M� �2Gk�

�1 �



2�d� 3�

Q2

Rd�3

�
1=k
�

2

�

�
1�

R2

l2

�
: (82)

In order to have physical solutions, we have to demand
_R2 > 0.

Since, in general, � � 1, we study separately both
cases. Again note first that for � � 1 one has from (57)
that the shell spacetime solution has a black hole character,
whereas for � � �1 one has from (57) that the shell
spacetime solution has a naked singularity character. So,
since when k is even (such as in general relativity with a
generalized Gauss-Bonnet term, where k � 2 and d � 5)
� can have both values 1, even k can have both black
hole and naked singularity character solutions, and since
when k is odd (such as k � 3, and d � 7) � � 1 for sure,
odd k allows solutions of black hole character only.

For � � 1 (so k can be odd or even) the horizon
is located at the radius rh given implicitly by the equa-
tion (see (57)) �1� r2

h=l
2� � �2Gk�

1=k�M� �2Gk�
�1 �

�
Q2�=�2�d� 3�rd�3
h ��1=k. When the parameters m, M,

Q, l yield a solution for the collapsing shell then the shell
will pass through its own event horizon at rh and form a
black hole.

For � � �1 (so k can be even only), the shell solution
has a naked singularity character. We can again give an
argument to show that cosmic censorship in the particular
case of Chern-Simons (d� 2k� 1 � 0) with an empty
interior holds. Indeed, from Eq. (65) one finds that the
following relation holds M� �2Gk�

�1 � �
Q2�=�2�d�
3�Rd�3�> 0. Noting that re, given in (63), makes the
right-hand side zero, this means that this singularity is
unattainable through gravitational collapse. Thus cosmic
censorship holds in charged collapse in a Chern-Simons
type theory. This is in contrast to uncharged collapse in the
same theory where naked singularities can form [26].

Finally we write the equation of the acceleration of the
thin shell, which allows us to understand the forces acting
on the collapsing shell. Expanding the � defined in (66),
with _R2 replaced by the right-hand side of (71) or (72),
appropriately chosen, we have

 

� �
��������
M� �2Gk�

�1 � 
Q2

2�d�3�Rd�3

m


m

4�M� �2Gk�
�1 � 
Q2

2�d�3�Rd�3�
� ��2Gk�

1=k
�
M� �2Gk�

�1 �



2�d� 3�

Q2

Rd�3

�
1=k
��������:
(83)

As before, the constraint radius marks the lower bound of validity of the shell’s equations. Then the Eq. (75) for an empty
interior turns into

 

�R �
Q2����
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�
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�

�
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��
; (84)

where the functions � are given in (83), and we used Eq. (65) in the second equality. For uncharged collapse Q � 0 the
acceleration is always negative, as can be easily checked from Eq. (84). In the charged caseQ � 0, there is no definite sign
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on the right-hand side of Eq. (84), it depends on the radius
at which the shell is located. Thus, reexpansion, after a
collapsing phase, is allowed.

In Fig. 3 we show the effective potential _R2 as a function
of R (which gives the turning points and the allowed
regions for the shell), and the metric function f2�R� as a
function of R (which gives the horizon formation), for
several different values of the parameters. The vertical
axis ��r� in the figure represents both _R2�r� (full line)
and f2

��r� (dashed line). The thin shell trajectory is allowed
only in the region where _R2 is positive. In all the plots we
have made the respective Newton’s constant equal to the
unity, Gk � 1, so that radii, energies, and forces are mea-
sured in the respective Planck units (@ � 1, c � 1). Left
plot: d � 5, k � 2, � � 1, l � 50, M � 20, Q � 610,
m � 5. Right plot: d � 5, k � 2, � � �1, l � 50, M �
20,Q � 300, m � 5. More specifically, the left plot shows
a region limited by two zeros of _R2, the region where a
trajectory of a thin shell is possible. The horizon, given by
the larger zero of f2�R�, is inside the region where _R2 > 0,
which means that the shell passes smoothly through the
horizon. The shell then suffers a bounce inside the horizon
into another universe. The plot on the right shows a naked
singularity character exterior spacetime, which means that
there is no zero of f2�R�, hence no horizon. There is,
however, no collapse to a naked singularity, because the
region where _R2 > 0 is limited by two zeros, the smaller
being larger than the constraint radius. Thus the shell
bounces between two extreme values of R, and so does
not collapse at all. In the figure we have shown bouncing
solutions only, although as before one could produce to-
tally collapsing solutions. As in the d� 2k� 1> 0
branch, a general setup for the study of the turning points
and the shell’s trajectory in a Carter-Penrose diagram for

the causal structure could be performed here, but this will
not be done.

ii. Cosmic censorship:—Given the experience we have
acquired with the above examples, one can now study
cosmic censorship directly from Eq. (65) or (67). Cosmic
censorship holds if no naked singularity forms from gravi-
tational collapse in an initially nonsingular spacetime or if
no naked singularity forms from gravitational collapse in a
spacetime initially containing a black hole. We assume
Q� � 0 and Q� � 0. There are three such cases in our
study: first, both spacetime regions on each side of the
collapsing shell have character � � 1, and the interior
solution is a black hole spacetime; second, both spacetime
regions on each side of the collapsing shell have character
� � 1, and the interior solution is an empty vacuum space-
time; and third, both spacetime regions on each side of the
collapsing shell have character � � �1, and the interior
solution is an empty vacuum spacetime. On all these cases
cosmic censorship holds. For the first case, that both space-
time regions on each side of the collapsing shell have
character � � 1, and the interior solution is a black hole
spacetime, given the above dynamic equation one can
directly prove that the collapse of a charged shell in such
a background never yields a naked singularity spacetime.
To start with we have a shell collapsing into an interior
black hole spacetime. This means that the � term on the
left of (67) is positive (otherwise the interior would not be
that of a black hole spacetime). From Eq. (65) it is known
that gk��R�k � gk��R�k > 0, because this expression is the
right-hand side of (65). If then the shell is collapsing onto
an existing black hole, and it is such that the result would
be a naked singularity, i.e., the collapsing shell is suffi-
ciently overcharged, then f2

��rh� � 0 for a certain rh, and
f2
��r� would always be larger than zero (because in the

exterior spacetime there would be no horizon). It is then
clear that the term (�� � ��) is negative if the shell
reaches rh. However, as we are working in the asymptoti-
cally outside region, then gk�r�> 0. This means that the
signal of gk�r� is the same as that of gk�r�k, and so the
signal of gk��R�

k � gk��R�
k is the same as that of

gk��R� � gk��R�. This results in the fact that the left-
hand side of (67) is positive at the horizon of the inner
black hole, defined by f2

��rh� � 0, and that the right-hand
side of the same Eq. (67) is negative, which implies a
contradiction. For the second case, that both spacetime
regions on each side of the collapsing shell have character
� � 1, and the interior solution is an empty vacuum space-
time, one can treat it as a limiting case of the first case, as
the mass of the interior black hole goes to zero, or directly
using similar arguments as above, with the result that a
collapsing shell, if undercharged forms a black hole, if
overcharged has a bounce back from where it came. For
the third case, that both spacetime regions on each side of
the collapsing shell have character � � �1, and the inte-
rior solution is an empty vacuum spacetime, one can write
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FIG. 3. In this figure the branch d� 2k� 1 � 0 (Chern-
Simons, d always odd) is studied in some particular instances.
In each plot the effective potential _R2 as a function of r (which
gives the turning points and the allowed regions for the shell),
and the metric function f2�r� as a function of r (which gives the
horizon formation, for several different values of the parameters)
is displayed. The vertical axis ��r� represents both _R2�r� (full
line) and f2

��r� (dashed line). Note that the thin shell trajectory is
allowed only in the region where _R2 is positive. In the plots the
respective Newton’s constant is put equal to the unity, Gk � 1,
so that radii and energies are measured in the respective Planck
units (@ � 1, c � 1). Left plot is for k � 2, d � 5, and � � 1,
and right plot is for k � 2, d � 5, and � � �1. See text for
details.
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Eq. (67) asm � �gk��R�k�1Rd�2k�1��� � ���. One sees
that when the shell approaches re, its right-hand side
approaches zero, whereas the left-hand side approaches a
finite value. So there is a bounce and the shell never
collapses to a singularity. These three cases prove the
result, and yield cosmic censorship in charged back-
grounds in the Lovelock theory we are studying coupled
to Maxwell electromagnetism. We now briefly comment
on the uncharged case Q� � Q� � 0. One can prove that
in this particular case, in the d� 2k� 1> 0 branch one
has no formation of naked singularities, whereas in the d�
2k� 1 � 0 uncharged branch there is formation of naked
singularities, so that one can say that electrical charge acts
really as a cosmic censor.

Thus, a charged shell never develops a naked singularity.
This is rather like having a shell with some angular mo-
mentum, a situation which is much harder to study directly
in theories with d > 3. Nonetheless, the special case of an
uncharged collapsing shell in d � 3 with angular momen-
tum was studied in [24,25], with the result that indeed the
angular momentum also prevents the formation of a naked
singularity.

IV. CONCLUSIONS AND PHYSICAL
IMPLICATIONS

There are two main conclusions from this work. One
conclusion is that the Hamiltonian formalism is a powerful
method to treat in a unified way spacetimes composed of
several pieces, such as several vacua and thin shells, in
theories much more complicated than general relativity
such as the subset of theories derived from Lovelock
gravity coupled to Maxwell electromagnetism we have
studied. The other conclusion is that, when the spacetimes

in question have the same character of those spacetimes
provided by general relativity (� � 1), the collapse of the
thin shells in the backgrounds, black hole or otherwise, of
each different type of Lovelock theory is in many ways
similar to the collapse in general relativity itself, and when
the spacetimes in question have the opposite character
(� � �1), some other new features appear. This in turn
has the following physical implications: if indeed there are
extra dimensions with a relative large size, as exposed in
the introduction, then the new and the old features, when
confronted with experimental data, can provide the signa-
ture to the uncovering not only of the actual spacetime
dimension d, but also of the value of the parameter k, i.e.,
of which particular Lovelock gravity nature picks up at the
appropriate scales, whether be it general relativity (k � 1,
any d), Born-Infeld (k � maximum, even d), Chern-
Simons (k � maximum, odd d), or other generic gravity
(other k, any d). Of course, a full quantum treatment, or
even a semiclassical approximation, would be much more
appropriate for this kind of questions, but for Lovelock
type gravities the technical difficulties are exponentiated
easily, and thus it is advisable to start up with a classical
analysis, as we did here.
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