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Simple models of a classical spacetime foam are considered, which consist of identical static defects
embedded in Minkowski spacetime. Plane-wave solutions of the vacuum Maxwell equations with
appropriate boundary conditions at the defect surfaces are obtained in the long-wavelength limit. The
corresponding dispersion relations !2 � !2� ~k� are calculated, in particular, the coefficients of the
quadratic and quartic terms in ~k. Astronomical observations of gamma-ray bursts and ultra-high-energy
cosmic rays then place bounds on the coefficients of the dispersion relations and, thereby, on particular
combinations of the fundamental length scales of the static spacetime foam models considered. Spacetime
foam models with a single length scale are excluded, even models with a length scale close to the Planck
length (as long as a classical spacetime remains relevant).
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I. INTRODUCTION

Whether or not space remains smooth down to smaller
and smaller distances is an open question. Conservatively,
one can say that the typical length scale of any fine-scale
structure of space must be less than 10�18 m � 10�3 fm,
which corresponds to the inverse of a center-of-mass en-
ergy of 200 GeV in a particle-collider experiment.
Astrophysics provides us, of course, with much higher
energies, but not with controllable experiments. Still, as-
trophysics may supply valuable information as long as the
relevant physics is well understood.

In this article, we discuss astrophysical bounds solely
based on solutions of the Maxwell (and Dirac) equations.
These solutions hold for a particular type of classical
spacetime with nontrivial small-scale structure.
Specifically, we consider a static (time-independent) fine-
scale structure of space, which is modeled by a homoge-
neous and isotropic distribution of identical static
‘‘defects’’ embedded in Minkowski spacetime. With ap-
propriate boundary conditions at the defect surfaces, plane-
wave solutions of the vacuum Maxwell equations are
obtained in the long-wavelength limit. That is, the wave-
length � must be much larger than max�b; l�, with b the
typical size of the individual defect and l the mean sepa-
ration between the different defects. An (imperfect) anal-
ogy would be sound propagation in a block of ice with
frozen-in bubbles of air.

Generalizing the terminology of Wheeler and Hawking
[1–6], we call any classical spacetime with nontrivial
small-scale structure (resembling bubbly ice, Swiss cheese,
or whatever) a ‘‘classical spacetime foam.’’ The plane-
wave Maxwell solutions from our classical spacetime
foam models, then, have a modified dispersion relation
(angular frequency squared as a function of the wave
number k � j ~kj � 2�=�):

 !2
�j
�defect type �� � a����2c

2k2 � a����4�b
����2c2k4 � . . . ; (1.1)

where c is the characteristic velocity of the Minkowski line
element (ds2 � c2dt2 � jd ~xj2), a�2 and a�4 are dimension-
less coefficients depending on the fundamental length
scales of the model (one length scale being b), and � labels
different kinds of models.

For simplicity, we consider only three types of static
defects (or ‘‘weaving errors’’ in the fabric of space):

(i) a nearly pointlike defect with the interior of a ball
removed from R3 and antipodal points on its bound-
ary identified;

(ii) a nearly pointlike defect with the interior of a ball
removed from R3 and boundary points reflected in an
equatorial plane identified;

(iii) a wormholelike defect with two balls removed from
R3 and glued together on their boundaries;
cf. Refs. [5,6].

Further details will be given in Sec. II A. As mentioned
above, the particular spacetime models considered consist
of a frozen gas of identical defects (types � � 1, 2, 3)
distributed homogeneously and isotropically over
Euclidean space R3. We emphasize that these classical
models are not intended to describe in any detail a possible
spacetime foam structure (which is, most likely, essentially
quantum-mechanical in nature) but are meant to provide
simple and clean backgrounds for explicit calculations of
potential nonstandard propagation effects of electromag-
netic waves.

The type of Maxwell solution found here is reminiscent
of the solution from the so-called ‘‘Bethe holes’’ for wave-
guides [7]. In both cases, the standard Maxwell plane wave
is modified by the radiation from fictitious multipoles
located in the holes or defects. But there is a crucial
difference: for Bethe, the holes are in a material conductor,
whereas for us, the defects are ‘‘holes’’ in space itself.

Returning to our spacetime foam models, we also cal-
culate the modified dispersion relation of a free Dirac
particle, for definiteness taken to be a proton (mass mp):*Electronicaddress:frans.klinkhamer@physik.uni-karlsruhe.de
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 !2
pj
�defect type �� � a���p0@

�2c4m2
p � a

���
p2c

2k2

� a���p4�b
����2c2k4 � . . . ; (1.2)

with reduced Planck constant @ � h=2� and dimension-
less coefficients ap0, ap2, and ap4. As might be expected,
the response of Dirac and Maxwell plane waves to the
same spacetime foam model turns out to be quite different,
with unequal quadratic coefficients ap2 and a�2, for ex-
ample. The different proton and photon velocities then
allow for Cherenkov-type processes [8,9]. But, also in
the pure photon sector, there can be interesting time-
dispersion effects [10] as long as the quartic coefficient
a�4 of the photon dispersion relation (1.1) is nonvanishing.

In fact, with the model dispersion relations in place, we
may use astronomical observations to put bounds on the
various coefficients a2 and a4, and, hence, on particular
combinations of the model length scales (e.g., average
defect size �b and separation �l). Specifically, the absence
of time dispersion in an observed TeV flare from an active
galactic nucleus bounds ja�4j and the absence of
Cherenkov-like effects in ultra-high-energy cosmic rays
bounds (a�2 � ap2) and a�4. In other words, astrophysics
not only explores the largest structures of space (up to the
size of the visible universe at approximately 1010 lyr 	
1026 m) but also the smallest structures (down to 10�26 m
or less, as will be shown later on).

The outline of the remainder of this article is as follows.
In Sec. II, we discuss the calculation of the effective photon
dispersion relation from the simplest type of foam model,
with static � � 1 defects. The calculations for isotropic
� � 2 and � � 3 models are similar and are not discussed
in detail (Appendix A gives additional results for aniso-
tropic defect distributions). Some indications are, however,
given for the calculation of the proton dispersion relation
from model � � 1 with details relegated to Appendix B.
The main focus of Sec. II and the two appendices is on
modified dispersion relations but in Sec. II C we also
discuss the Rayleigh-like scattering of an incoming elec-
tromagnetic wave by the model defects. In Sec. III, we
summarize the different dispersion relations calculated and
put the results in a general form. In Sec. IV, this general
photon dispersion relation is confronted to the astronomi-
cal observations and bounds on the effective length scales
are obtained. In Sec. V, we draw an important conclusion
for the classical small-scale structure of space and present
some speculations on a hypothetical quantum spacetime
foam.

II. CALCULATION

A. Defect types

The present article considers three types of static defects
obtained by surgery on the Euclidean 3-space R3. The
discussion is simplified by initially choosing the origin of
the Cartesian coordinates ~x � �x1; x2; x3� � �x; y; z� of R3

to coincide with the ‘‘center’’ of the defect. The corre-
sponding Minkowski spacetime R
 R3 has standard met-
ric ����� � diag�1;�1;�1;�1� for coordinates
x� � �x0; ~x� � �ct; xm� with index � � 0, 1, 2, 3.

The first type of defect (label � � 1) is obtained by
removing the interior of a ball from R3 and identifying
antipodal points on its boundary. Denote this ball, its
boundary sphere, and point reflection by
 

Bb � f ~x 2 R3:j ~xj � bg; (2.1a)

Sb � f ~x 2 R3:j ~xj � bg; (2.1b)

P� ~x� � � ~x: (2.1c)

Then, the 3-space with a single defect centered at the origin
~x � 0 is given by

 

M���1�
b �M���1�

0;b

� f ~x2 R3:j ~xj � b^ �Sb 3 ~x P� ~x� 2 Sb�g; (2.2)

where  denotes pointwise identification and M���1�
b is a

shorthand notation. The 3-space (2.2) has no boundary
because of the Sb identifications (cf. Fig. 1) and, away
from the defect at j ~xj � b, is certainly a manifold (hence,
the suggestive notation M). The resulting spacetime is
M � R
M���1�

b .
The corresponding classical spacetime foam model is

obtained from a superposition of � � 1 defects with a
homogeneous distribution. The number density of defects
is denoted n � l�3 and only the case of a very rarefied gas
of defects is considered (b� l), so that there is no overlap
of defects. Clearly, there is a preferred reference frame for
which the defects are static. Such a preferred frame, in the
context of cosmology, may or may not be related to the
preferred frame of the isotropic cosmic microwave
background.

In more detail, the construction is as follows. The 3-
space with N � 1 identical defects is given by

 M ���1�
f ~x1;...; ~xNg;b

� M���1�
~x1;b

\M���1�
~x2;b

\ . . . \M���1�
~xN;b

; (2.3)

 

b

FIG. 1. Three-space (2.2) from a single spherical defect (type
� � 1, radius b) embedded in R3, with its ‘‘interior’’ removed
and antipodal points identified (as indicated by the pairs of open
and filled circles). The corresponding classical spacetime foam
model has a homogeneous distribution of static � � 1 defects
embedded in Minkowski spacetime.
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where M���1�
~xn;b

is the single-defect 3-space (2.2) with the
center of the sphere moved from ~x � 0 to ~x � ~xn. The
minimum distance between the different centers ~xn of 3-
space (2.3) is assumed to be larger than 2b. The final
spacetime foam model results from taking the Cartesian
product of R with the N ! 1 ‘‘limit’’ of (2.3),

 M ���1�
distribution;b � R
 � lim

N!1
M���1�
f ~x1;...; ~xNg;b

�; (2.4)

where one needs to give the statistical distribution of the
centers ~xn. As mentioned above, we choose the simplest
possible distribution, homogeneous, and the quantity to
specify is the number density n of defects.

The second type of defect (� � 2) follows by the same
construction, except that the identified points of the sphere
Sb are obtained by reflection in an equatorial plane with
unit normal vector â. For a point ~x on the sphere Sb, the
reflected point is denoted Râ� ~x�. [With only one defect
present, global Cartesian coordinates can be chosen so
that â points in the 3-direction and �x1; x2; x3� 2 Sb is to
be identified with �x1; x2;�x3� 2 Sb.] The space with a
single � � 2 defect centered at the origin ~x � 0 (not
indicated by our shorthand notation) is then given by
(cf. Figure 2)

 M ���2�
â;b � f ~x 2 R3:j ~xj � b ^ �Sb 3 ~x  Râ� ~x� 2 Sb�g;

(2.5)

and spacetime is R
M���2�
â;b . However, the defect em-

bedded in (2.5) is not a manifold but an orbifold [11],
i.e., a coset space M=G, for manifold M and discrete
symmetry group G. The 3-space (2.5) has, in fact, singular
points corresponding to the fixed points of Râ, which lie on
the great circle of Sb in the equatorial plane with normal
vector â. But away from these singular points, the 3-space
is a genuine manifold and we simply use the (slightly
misleading) notation M in (2.5). The corresponding classi-
cal spacetime foam model results from a homogeneous and
isotropic (randomly oriented) distribution of � � 2 defects.

The third type of defect (� � 3) is obtained by a some-
what more extensive surgery [5,6]. Now, the interiors of
two identical balls are removed from R3. These balls,
denoted Bb and B0b, have their centers separated by a
distance d > 2b. The two boundary spheres Sb and S0b
are then pointwise identified by reflection in the central
plane. This reflection is again denoted Râ. [With ball
centers at ~x � ��d=2; 0; 0�, the reflection plane is given
by x1 � 0.] The space manifold with a single � � 3 defect
centered at the origin ~x � 0 is now (cf. Figure 3)
 

M���3�
â;b;d � f ~x 2 R3:j ~x� �d=2�âj � b ^ j ~x� �d=2�âj � b

^ �Sb 3 ~x  Râ� ~x� 2 S0b�g; (2.6)

and the spacetime manifold is R
M���3�
â;b;d . Using standard

wormhole terminology [1–6], the static � � 3 defect has
two ‘‘wormhole mouths’’ of diameter 2b, with correspond-
ing points on the wormhole mouths separated by a vanish-
ing distance through the ‘‘wormhole throat’’ and by a
‘‘long distance’’ D 2 �d� 2b; d� �b� via the ambient
Euclidean space. Again, the corresponding classical space-
time foam model results from a homogeneous and iso-
tropic distribution of � � 3 defects.

For later use, we also define a � � 30 defect with dis-
tance d set to the value 4b, where the factor 4 has been
chosen arbitrarily. An individual � � 30 defect then has
only one length scale, b, which simplifies some of the
discussion later on. The relevant space manifold is thus

 M ���30�
â;b � M���3�

â;b;4b ; (2.7)

in terms of the � � 3 manifold defined by (2.6).
Let us end this subsection with two parenthetical re-

marks, one mathematical and one physical. First, the � � 1
and � � 3 spaces are multiply connected (i.e., have non-
contractible loops) but not the � � 2 space. Second, the
classical spacetimes considered in this article do not solve

 

a

b

FIG. 2. Three-space (2.5) from a single spherical defect (type
� � 2, radius b) embedded in R3, with its ‘‘interior’’ removed
and points identified by reflection in the equatorial plane with
normal vector â. The corresponding classical spacetime foam
model has a homogeneous and isotropic distribution of static
� � 2 defects embedded in Minkowski spacetime.

 

a

b b

d

FIG. 3. Three-space (2.6) from a single wormholelike defect
(type � � 3, two spheres with radii b and distance d between the
centers) embedded in R3, with the ‘‘interiors’’ of the two spheres
removed and their points identified by reflection in the central
plane with normal vector â. The corresponding classical space-
time foam model has a homogeneous and isotropic distribution
of static � � 3 defects embedded in Minkowski spacetime.
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the vacuum Einstein equations but appear to require some
exotic form of energy located at the defects; see, e.g.,
Part III of Ref. [6] for further discussion. In one way or
another, the fine-scale structure of spacetime may very
well be related to the ‘‘dark energy’’ of cosmology; see,
e.g. Refs. [12,13] and references therein.

B. Photon dispersion relation

The task, now, is to determine the electromagnetic-wave
properties for the three types of classical spacetime foam
models considered. The � � 1 case will be discussed in
some detail but not the other cases �� � 2; 3�, for which
only results will be given.

The calculation is relatively straightforward and consists
of three steps. First, recall the vacuum Maxwell equations
in Gaussian units [14–16],
 

r � ~E � 0; cr
 ~E� @t ~B � 0; (2.8a)

r � ~B � 0; cr
 ~B� @t ~E � 0; (2.8b)

and the standard plane-wave solution over Minkowski
spacetime,
 

~E0� ~x; t� � E0x̂ exp�ikz� i!�t�; (2.9a)

~B0� ~x; t� � E0ŷ exp�ikz� i!�t�; (2.9b)

with amplitude E0 and dispersion relation !2
� � c2k2. This

particular solution corresponds to a linearly polarized
plane wave propagating in the z � x3 direction (x̂ and ŷ
are unit vectors pointing in the x1 and x2 directions, re-
spectively). The pertinent observation, now, is that the
electromagnetic fields (2.9) also provide a valid solution
of the Maxwell equations between the holes of the classical
spacetime foam models considered, for example, model
(2.4) for � � 1 defects.

Second, add appropriate vacuum solutions � ~E1; ~B1�, so
that the total electric and magnetic fields, ~E � ~E0 � ~E1

and ~B � ~B0 � ~B1, satisfy the boundary conditions from a
single defect. The specific boundary conditions for the
electric field at the defect surface follow by considering
the allowed motions of an electrically charged test particle
and similarly for the boundary conditions of the magnetic
field. Geometrically, the electromagnetic-field boundary
conditions trace back to the proper identification of the
defect surface points and their tangential spaces.

Third, sum over the contributions � ~Ej; ~Bj� of the differ-
ent defects �j � 1; 2; 3; . . .� in the model spacetime foam
and obtain the effective dielectric and magnetic permeabil-
ities, � and �, which may be wavelength dependent. The
dispersion relation for the isotropic case is then given by

 !2
��k� � c2k2=���k���k��; (2.10)

and we refer the reader to the textbooks for further dis-

cussion (see, e.g., Sec. II-32-3 of Ref. [15] and Secs. 7.5(a)
and 9.5(d) of Ref. [16]).

The specifics of the second and third step of the calcu-
lation for � � 1 defects are as follows. In step 2, the motion
of a test particle under influence of the Lorentz force (see,
for example, the points marked in Fig. 1 for tangential
motion) gives the following boundary conditions at the
surface Sb of 3-space (2.2):

 

n̂� ~x� � ~E� ~x; t� � �n̂�� ~x� � ~E�� ~x; t�;

n̂� ~x� 
 ~E� ~x; t� � �n̂�� ~x� 
 ~E�� ~x; t�
��������
���1�

j ~xj�b
; (2.11a)

n̂� ~x� � ~B� ~x; t� � �n̂�� ~x� � ~B�� ~x; t�;

n̂� ~x� 
 ~B� ~x; t� � �n̂�� ~x� 
 ~B�� ~x; t�
��������
���1�

j ~xj�b
; (2.11b)

where n̂� ~x� is the outward unit normal vector of the surface
at point ~x 2 Sb � R3. The boundary conditions (2.11) also
ensure an equal Poynting vector c� ~E
 ~B�=4� at antipodal
points, as might be expected for an energy-flux density
passing through the defect. As mentioned above, these
boundary conditions trace back to the antipodal identifica-
tion of the points on the surface Sb and the identification of
the respective tangential spaces.

Constant fields ~E / E0x̂ and ~B / E0ŷ, corresponding to
the unperturbed fields (2.9) over distances of order b� �,
do not satisfy the defect boundary conditions (2.11) and
need to be corrected. As discussed in the Introduction, the
correction fields ~E1 and ~B1 correspond to multipole fields
from ‘‘mirror charges’’ located inside the defect. The
leading contributions of a � � 1 defect come from ficti-
tious electric and magnetic dipoles at the defect center,
each aligned with their respective initial fields (2.9) and
both with a strength proportional to b3E0. For � � 1 and
kb� 1, the electric field ~E � ~E0 � ~E1 turns out to be
normal to the surface Sb and the magnetic field ~B � ~B0 �
~B1 tangential, just as for a perfectly conducting sphere (see,
e.g., Secs. 13.1 and 13.9 of Ref. [14]).

In step 3 of the calculation for � � 1 defects, the effec-
tive dielectric and magnetic permeabilities (Gaussian
units) are found to be given by

 

����1� � 1� 4�nb3�j0�kb� � j2�kb��; (2.12a)

����1� � 1� 2�nb3�j0�kb� � j2�kb��; (2.12b)

where n � 1=l3 is the number density of defects (mean
separation l) and jp�z� is the spherical Bessel function of
order p, for example, j0�z� � �sinz�=z. The similarity signs
in Eqs. (2.12a) and (2.12b) indicate that only the ‘ � 1
multipoles have been taken into account [17]. With (2.10),
the dispersion relation is then
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 �!���1�
� �k��2 �

c2k2

�1� 4�nb3�j0�kb� � j2�kb����1� 2�nb3�j0�kb� � j2�kb���
; (2.13)

which holds for kb� kl� 1. A Taylor expansion in nb3

and kb gives

 �!���1�
� �k��2 � �1� 2�nb3�c2k2 � ��=5�nb5c2k4 � . . . :

(2.14)

As mentioned already, the dispersion relation (2.13) has
only been derived for sufficiently small values of k.
However, taking this expression (2.13) at face value, we
note that the corresponding front velocity (vfront �
limk!1vphase) would be precisely c. See, e.g., Ref. [18]
for the relevance of the front velocity to the issues of signal
propagation and causality.

For the � � 2 spacetime foam model, the dispersion
relation is found to be given by

 �!���2�
� �k��2 �

c2k2

1� 2�nb3�j0�kb� � j2�kb��
; (2.15)

with Taylor expansion

 �!���2�
� �k��2 � �1� 2�nb3�c2k2 � ��=5�nb5c2k4 � . . . :

(2.16)

Apparently, the result (2.16) for randomly orientated � � 2
defects agrees, to the order shown, with the previous result
(2.14) for unoriented � � 1 defects. Some results for an-
isotropic defect distributions are given in Appendix A.

For the � � 3 spacetime foam model, the calculation is
more complicated as the correction fields of the two
‘‘wormhole mouths’’ [spheres Sb and S0b in Eq. (2.6)] affect
each other. Therefore, we have to work directly with Taylor
expansions in b=d. Giving only the leading order terms in
b=d, the end result is
 

�!���3�
� �k��2 � �1� �20�=3�nb3�c2k2

� �2�=9�nb3d2c2k4 � . . . ; (2.17)

which holds for kb� kd� kl� 1. For anisotropic de-
fect distributions, some results are again given in
Appendix A.

In closing, it is to be emphasized that any localized
defect (weaving error) of space responds to an incoming
electromagnetic plane wave by radiation fields correspond-
ing to fictitious multipoles [7]. Only the position and
relative strengths of these multipoles depend on the de-
tailed structure of the defect. Together with the statistical
distribution of the defects, these details then determine the
precise numerical coefficients of the modified photon dis-
persion relation written as a power series in ~k (see Sec. III
for further discussion).

C. Scattering

In this subsection, another aspect of electromagnetic-
wave propagation is discussed, namely, the scattering of an
incoming plane wave by � � 1 defects. Similar results are
expected for � � 2 and � � 30 defects.

As mentioned in Sec. II B, the boundary conditions of a
� � 1 defect correspond precisely to those of a perfectly
conducting sphere. So the problem to consider is the
scattering of an electromagnetic wave by a random distri-
bution of identical perfectly conducting spheres with radii
b and mean separation l, in the long-wavelength limit.
More precisely, the relevant case has b� l� �, whereas
ideal Rayleigh scattering (incoherent scattering by ran-
domly distributed dipole scatterers) would have b� ��
l. This means that all dipoles in a volume k�3 radiate
coherently and their number, Ncoh � �k

�3�=�l3�, appears
as an extra numerical factor in the absorption coefficient
compared to standard Rayleigh scattering (see, e.g., Sec. I-
32-5 of Ref. [15] and Secs. 9.6 and 9.7 of Ref. [16]).

The relevant absorption coefficient (inverse scattering
length) is then given by

 a���1�
scatt � 1=L���1�

scatt � 	dipl�3Ncoh; (2.18)

with 	dip the cross section from the electric/magnetic
dipole corresponding to an individual defect, l�3 the num-
ber density of such dipoles (i.e., defects), andNcoh � 1 the
coherence factor for the l� � case discussed above. From
the calculated polarizabilities of a � � 1 defect, one has
	dip � k4b6 neglecting factors of order unity. With Ncoh �

�kl��3, the scattering length becomes

 L���1�
scatt � k

�1�l=b�6; (2.19)

again up to factors of order unity. Expression (2.19) suffi-
ces for our purpose but can, in principle, be calculated
exactly, given the statistical distribution of defects [14,16].

D. Proton dispersion relation

In this last subsection, we obtain the dispersion relations
from the Klein-Gordon and Dirac equations for the � � 1
spacetime foam model. For the Klein-Gordon case, similar
results are expected from the � � 2 and � � 30 models,
but, for the Dirac case, the expectations are less clear and a
full calculation seems to be required.

For � � 1 defects and the long-wavelength approxima-
tion kb� 1 (i.e., considering the undisturbed harmonic
fields to be spatially constant on the scale of the defect), the
heuristics is as follows:

(i) a scalar field obeying the Klein-Gordon equation
does not require fictional sources to satisfy the
boundary conditions at j ~xj � b and, therefore, the
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dispersion relation is unchanged to leading order
(there may, however, be other effects such as scat-
tering [19]);

(ii) a spinor field obeying the Dirac equation does require
fictional sources but their contributions average to
zero for many randomly positioned defects and the
dispersion relation is unchanged to leading order.

A detailed calculation (not reproduced here) gives, in-
deed, unchanged constant and quadratic terms in the dis-
persion relation of a real scalar, at least to leading order in
kb. The Dirac calculation is somewhat more subtle and
details are given in Appendix B. The end result for the
dispersion relation of a free Dirac particle, for definiteness
taken to be a proton, is:

 �!���1�
p �k��2 � @

�2c4m2
p � c

2k2 � . . . ; (2.20)

with higher-order terms neglected and proton mass mp.
These neglected higher-order terms in the proton disper-
sion relation would, for example, arise from additional
factors k2b2 and b2=l2, resulting in possible terms with
the structure c2k2�m2

pc2=@2��b4=l2� and c2k4�b4=l2�.
The combined photon and proton dispersion relation

results will be discussed further in the next section.

III. DISPERSION RELATION RESULTS

A. Coefficients and comments

The different dispersion relations encountered up till
now can be summarized as follows:

 �!���s �2 � @
�2c4m2

s � �1� K�s2b
3
�=l

3
��c

2k2

� K�s4b5
�=l3�c2k4 � . . . ; (3.1)

for defect type � � 1, 2, 3 and particle species s � �,
, p
corresponding to the Maxwell, Klein-Gordon, and Dirac
equations, respectively. Four technical remarks are in or-
der. First, the implicit assumption of (3.1) is that the same
maximum limiting velocity c holds for all particles in the
absence of defects (that is, for particles propagating in
Minkowski spacetime). Second, the photon mass vanishes
in Maxwell theory, m� � 0, as long as gauge invariance
holds. Third, only a few terms have been shown explicitly
in (3.1) and, a priori, there may be many more (even up to
order k4, as explained at the end of Sec. II D). Fourth, a
suffix � has been added to the length scales b
and l of the models, since the length scale b of a � � 1
defect, for example, is not the same quantity as the length
scale b of a � � 2 defect. But, elsewhere in the text, this
suffix is omitted, as long as it is clear which model is
discussed.

In the previous section, the photon coefficients K��2 and
K��4 have been calculated for all three foam models �� �
1; 2; 3�, but those of the scalar and proton dispersion rela-
tions only for the � � 1 model. The quadratic and quartic
photon coefficients are given in Table I. The quadratic

proton coefficient K1p2 from the � � 1 foam model van-
ishes according to Eq. (2.20), as does the scalar coefficient
K1
2. Note that the present article considers only pointlike
defects but that, in principle, there can also be linelike and
planelike defects which give further terms in the modified
dispersion relations [20].

Let us close this subsection with three general com-
ments. First, the modification of the quadratic coefficient
of the photon dispersion relation, as given by Eq. (3.1) and
Table I, can be of order unity (for b� somewhat less than l�)
and is not suppressed by powers of the quantum-
electrodynamics coupling constant � or by additional in-
verse powers of the large energy-scale �� @c=b� (which
is already impossible for dimensional reasons, with m� �

0 and a fixed density factor 1=l3�). This last observation
agrees with a well-known result from quantum field theory;
see, e.g., Refs. [21,22]. Namely, if a symmetry (here,
Lorentz invariance) of the quantum field theory considered
is violated by the high-energy cutoff � (or by a more
fundamental theory), then, without fine tuning, the low-
energy effective theory may contain symmetry-violating
terms which are not suppressed by inverse powers of the
cutoff energy �.

Second, the calculated dispersion relations (3.1) do not
contain cubic terms in k, consistent with general arguments
based on coordinate independence and rotational invari-
ance [23]. Furthermore, the photon dispersion relations
found are the same for both polarization modes (i.e.,
absence of birefringence). For an anisotropic distribution
of defects of type � � 2 or � � 3, however, the photon
dispersion relations do show birefringence but still no
cubic terms; see Appendix A.

Third, an important consequence of having different
proton and photon dispersion relations (3.1) is, as men-
tioned in the Introduction, the possibility of having so-
called ‘‘vacuum Cherenkov radiation’’ [8,9]. A detailed
study of this process in a somewhat different context
(quantum electrodynamics with an additional Chern-
Simons term in the photonic action) has been given in
Refs. [24,25].

B. General form

The previous results on the dispersion relation (3.1) for
the proton and photon can be combined and rewritten in the
following general form:

TABLE I. Quadratic and quartic coefficients K in the photon
dispersion relation (3.1), for s � �, m� � 0, and defect type �.

K��2 K��4

� � 1 �2� �=5
� � 2 �2� �=5
� � 3 �20�=3 �2�=9�d2=b2
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!2
p � @

�2c4
p �m2

p � c
2
pk

2 � O�k4�; (3.2a)

!2
� � �1� �	2

�b3=�l3�c2
pk2 � �	4

�b5=�l3c2
pk4 � . . . ; (3.2b)

for 0 � k �b, k�l� 1 and sign factors �	2, �	4 2 f�1; 0;�1g.
The velocity squared c2

p is defined as the coefficient of the
quadratic term in the proton dispersion relation (3.2a) and
the effective proton mass squared �m2

p is to be identified
with the experimental value.

With the results of Table I and Eq. (2.20), it is possible to
get the explicit expressions for the effective length scales �b
and �l in terms of the fundamental length scales b� and l� of
the spacetime model considered. Specifically, the � � 1
spacetime foam model has
 

�b� 10�1=2b1; �l� �2���1=310�1=2l1;

�	2 � �1; �	4 � 1

��������
���1�

; (3.3)

with radius b1 of the individual defects (identical empty
spheres with antipodal points identified) and mean separa-
tion l1 between the different defects. In other words, the
effective and fundamental length scales of the � � 1 model
are simply proportional to each other with coefficients of
order unity.

Similar results are expected for the � � 2 and � � 30

models, defined by Eqs. (2.5) and (2.7), respectively. More
generally, one could have a mixture of different defects
(types � � 1, 2, 30, or other), with calculable parameters �b,
�l, and �	2;4 in the photon dispersion relation (3.2b).

For the purpose of this article, the most important result
is that the effective length scales �b and �l of the photon
dispersion relation (3.2b) are directly related to the funda-
mental length scales of the underlying spacetime model.
This is a crucial improvement compared to a previous
calculation of anomalous effects from a classical spacetime
foam [26,27], where the connection between effective and
fundamental length scales could not be established
rigorously.

The parametrization (3.2) for the isotropic case holds
true in general and will be used in the following. Its length
scales �b and �l will simply be called the average defect size
and separation, respectively. Moreover, �b=�l and b=� ratios
of order one will be allowed for, even though the calcu-
lations of Sec. II B, leading, for example, to the identifica-
tions (3.3), are only valid under the technical assumptions
b=l� 1 and b=�� 1. In short, the proposal is to consider
a modest generalization of our explicit results.

IV. ASTROPHYSICS BOUNDS

The discussion of this section closely follows the one of
some previous articles [27–29], which investigated modi-
fied dispersion relations from an entirely different (and less
general [30]) origin. For completeness, we repeat the es-
sential steps and give the original references. Note also
that, for simplicity, we focus on two particular ‘‘gold-

plated’’ events but that other astrophysical input may
very well improve the bounds obtained here.

A. Time-dispersion bound

The starting point for our first bound is the suggestion
[10] that the absence of time dispersion in a highly ener-
getic burst of gamma-rays can be used to obtain bounds on
modified dispersion relations (see, e.g., Refs. [31,32] for
subsequent papers and Ref. [33] for a review).

From the photon dispersion relation (3.2b), the relative
change of the group velocity vg � d!=dk between two
different wave numbers k1 and k2 is given by [34]:

 

�c
c

��������k1;k2

�

��������vg�k1� � vg�k2�

vg�k1�

����������3=2�jk2
1 � k

2
2j

�b5=�l3;

(4.1)

where �c=c on the left-hand side is a convenient shorthand
notation and where �b and �l on the right-hand side can be
interpreted as, respectively, the average defect size and
separation (see Sec. III B for further discussion).

A flare of duration �t from an astronomical source at
distance D, with wave-number range k1 � k2 � k�;max �

E�;max=�@c�, constrains the relative change of group veloc-
ity, �c=c � c�t=D. Using (4.1), this results in the follow-
ing bound:

 � �b=�l�3=2 �b �
1��������
3=2

p �
@c

E�;max

��
c�t
D

�
1=2

	 1:2
 10�26 m
�
2:0 TeV

E�;max

��
�t

280 s

�
1=2




�
1:3
 1016 s

D=c

�
1=2
; (4.2)

with values inserted for a TeV gamma-ray flare from the
active galaxy Markarian 421 observed on May 15, 1996 at
the Whipple Observatory [35,36]. (The galaxy Mkn 421
has a redshift z 	 0:031 and its distance has been taken as
D � cz=H0 	 124 Mpc, for Hubble constant H0 	
75 km=s=Mpc.) The upcoming Gamma-ray Large Area
Space Telescope (GLAST) may improve bound (4.2) by
a factor of 104, as discussed in Appendix A of Ref. [29].

B. Scattering bound

It is also possible to obtain an upper bound on the ratio
�b=�l by demanding the scattering length L to be larger than
the source distance D or, better, larger than D=100 for an
allowed reduction of the intensity by a factor F �
exp�f� � exp�100�. In other words, the chance for a
gamma-ray to travel over a distanceDwould be essentially
zero if L were less than D=102 (see discussion below).

The relevant expression for the scattering length L from
� � 1 defects has been given in Sec. II C. Here, we simply
replace b and l in result (2.19) by the general parameters �b
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and �l, again allowing for the case �b� �l. Demanding L *

D=f, then gives the announced bound:

 � �b=�l�3 &
���
f

p
�k�;maxD��1=2

	 1:6
 10�21

�
f

102

�
1=2
�
2:0 TeV

E�;max

�
1=2




�
3:8
 1024 m

D

�
1=2
; (4.3)

using the same notation and numerical values as in
Eq. (4.2).

Strictly speaking, bound (4.3) is useless if f is left
unspecified. The problem is to decide, given a particular
source, which intensity-reduction factor F � exp�f� is
needed to be absolutely sure that its gamma-rays would
not reach us if L were less than D=f. Practically speaking,
we think that a factor F � exp�100� is already sufficient,
but the reader can make up his or her own mind. More
important for bound (4.3) to make sense is that one must be
certain of the source of the observed gamma-rays and,
thereby, of the distance D. For the particular TeV
gamma-ray flare discussed here, the identification of the
source as Mkn 421 appears to be reasonably firm [35].

C. Cherenkov bounds

A further set of constraints follows from the suggestion
[8,9] that ultra-high-energy cosmic rays (UHECRs) can be
used to search for possible Lorentz-noninvariance effects
(or possible effects from a violation of the equivalence
principle). The particular process considered here is vac-
uum Cherenkov radiation, which has already been men-
tioned in the last paragraph of Sec. III A.

From a highly energetic cosmic-ray event observed on
October 15, 1991 by the Fly’s Eye Air Shower Detector
[37,38], Gagnon and Moore [39] have obtained the follow-
ing bounds on the quadratic and quartic coefficients of the
modified photon dispersion relation [40]:

 

�3
 10�23 & �	2
�b3=�l3 & 3
 10�23; (4.4a)

��7
 10�39 m�2 & �	4
�b5=�l3 & �5
 10�38 m�2; (4.4b)

for length scales �b, �l and sign factors �	2, �	4 as defined by
Eqs. (3.2a) and (3.2b). For these bounds, the primary was
assumed to be a proton with standard partonic distributions
and energy EUHECR

p 	 3
 1011 GeV. Note that the limit-
ing values of bounds (4.4a) and (4.4b) scale approximately
as �3
 1011 GeV=EUHECR

p �n with n � na � 2 and n �
nb � 4, respectively. See Ref. [39] for further details on
these bounds and Appendix B of Ref. [29] for a heuristic
discussion.

V. CONCLUSION

The time-dispersion bound (4.2) on a particular combi-
nation of length scales from the modified photon dispersion
relation (3.2b) is direct and, therefore, reliable. The same

holds for the scattering bound (4.3), as long as the allowed
intensity-reduction factor is specified (see Sec. IV B for
further discussion). The Cherenkov bounds (4.4a) and
(4.4b), however, are indirect in that they depend on further
assumptions, e.g., interactions described by quantum elec-
trodynamics and standard-model partonic structure of the
primary hadron. Still, the physics involved is well under-
stood and, therefore, also these Cherenkov bounds can be
considered to be quite reliable [41].

Turning to theoretical considerations, it is safe to say
that there is no real understanding of what determines the
large-scale topology of space [42]. With the advent of
quantum theory, a similar lack of understanding applies
to the small-scale structure of space [2]. Even so, assuming
the relevance of a classical spacetime foam model (see
discussion below), Occam’s razor suggests the model to
have a single length scale, with average defect size �b and
average defect separation �l of the same order (see Sec. III B
for details on the interpretation of these length scales).
Without natural explanation, it would be hard to under-
stand why the defect gas would be extremely rarefied, �b�
�l. In the following discussion, we focus on the single length
scale case but the alternative rarefied-gas case should be
kept in mind.

According to the time-dispersion bound (4.2), a static
classical spacetime foam with a single length scale ( �b� �l)
must have

 

�ljsingle-scale & 10�26 m 	 @c=�2
 1010 GeV�; (5.1)

which is a remarkable result compared to what can be
achieved by particle-collider experiments on Earth. As
mentioned in Sec. IVA, the experimental bound (5.1)
may even be improved by a factor 104 in the near future,
down to a value of the order of 10�30 m.

But the scattering and Cherenkov bounds (4.3) and
(4.4a) lead to a much stronger conclusion: within the
validity of the model, these independent bounds rule out
a single-scale static classical spacetime foam altogether,

 

�b=�l & 10�7: (5.2)

The fact that a single-scale foam model is unacceptable
holds even for values of �b� �l down to some 10�33 m 	
102 
 lPlanck (the precise definition of lPlanck will be given
shortly), at which length scale a classical spacetime may
still have some relevance for describing physical processes
[43].

The unacceptability of a single-scale classical spacetime
foam applies, strictly speaking, only to the particular type
of models considered. But we do expect this conclusion to
hold more generally (recall, in particular, the remarks of
the last paragraph in Sec. II B). For example, also a time-
dependent classical spacetime foam structure with a single
length scale appears to be ruled out [44].

At distances of the order of the Planck length, lPlanck���������������
G@=c3

p
	1:6
10�35 m	@c=�1:2
1019 GeV�, it is not
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clear what sense to make of a classical spacetime picture
[45]. Still, at distances of order 102 
 lPlanck, for example,
one does expect a classical framework to emerge and, then,
result (5.2) implies that the effective classical spacetime
manifold is remarkably smooth [49]. If this conclusion is
born out, it would suggest that either the Planck-length
fluctuations of the quantum spacetime foam [1–4] are
somehow made inoperative over larger distances or there
is no quantum spacetime foam in the first place [53].
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APPENDIX A: BIREFRINGENCE

The individual defects of type � � 2 and � � 3 have a
preferred direction given by the unit vector â in Figs. 2 and
3, respectively. An anisotropic distribution of defects may
then lead to new effects compared to the case of isotropic
distributions considered in the main text. This appendix
presents some results for the photon dispersion relations
from aligned � � 2 and � � 3 defects.

Consider, first, a highly anisotropic distribution of � � 2
defects (empty spheres with points identified by reflection
in an equatorial plane with normal vector â) having perfect
alignment of the individual â vectors (henceforth, indi-
cated by a caret, � � 2̂). Then, the two polarization modes
(denoted � and �) have dispersion relations:

 

�!���2̂�
�� �kjj; k?��2 �

�1� 6�nbh�kb��k2
jj
� 2k2

?�=k
4�c2k2

�1� 6�nbh�kb�=k2�2�1� 12�nbh�kb�=k2�
; (A1a)

�!���2̂�
�� �kjj; k?��2 �

�1� 6�nbh�kb��k2
? � 2k2

jj
�=k4�c2k2

�1� 6�nbh�kb�=k2�2�1� 12�nbh�kb�=k2�
; (A1b)

with an auxiliary function h�x� � cosx� �sinx�=x �
O�x2� for x � kb� 1, parallel wave number kjj �
j ~k � âj, perpendicular wave number k? � j ~k� � ~k � â�âj,
and defect number density n � 1=l3. For generic wave
numbers with kjj � k?, the two polarization modes have
different phase velocities ( ~vphase � k̂!=j ~kj) and there is
birefringence.

Consider, next, perfectly aligned � � 3̂ defects, that is,
wormholelike defects with two empty spheres identified by
reflection in a central plane (normal vector â) and with all
central planes parallel to each other (all vectors â aligned).
In this case, we do not have a closed expression for the
dispersion relations of the two polarization modes but
rather Taylor series (the situation considered has kb�
kd� kl� 1). Only the results for two special wave
numbers are given here. First, the photon dispersion rela-
tions for wave number parallel to the uniform orientation â
of the defects (k? � 0) are equal for both polarization
modes:
 

�!���3̂�
�� �kjj; 0��2 � �!

���3̂�
�� �kjj; 0��2 � �1� 4�nb3�c2k2

jj

� 2�nb3d2c2k4
jj
� . . . : (A2)

Second, the photon dispersion relations for wave number
perpendicular to the defect orientation (kjj � 0) are differ-
ent for the two polarization modes (i.e., show birefrin-
gence):
 

�!���3̂�
�� �0; k?��2 � �1� 8�nb3�c2k2

?

� �8�=5�nb5c2k4
? � . . . ; (A3a)

�!���3̂�
�� �0; k?��

2 � �1� 16�nb3�c2k2
?

� �16�=5�nb5c2k4
? � . . . ; (A3b)

neglecting terms suppressed by a factor of b=d.

The results of this appendix make clear that birefrin-
gence only occurs if there is some kind of ‘‘conspiracy’’
between individual asymmetric defects in the classical
spacetime foam.

APPENDIX B: DIRAC WAVE FUNCTION

In this appendix, we use the Dirac representation of the
�-matrices (for metric signature ���� and global
Minkowski coordinates) and refer to Refs. [54–56] for
further details. For simplicity, we also set c � @ � 1.
The Dirac equation in Schrödinger form reads then

 i @t � ~x; t� � ��i ~� � r �m�� � ~x; t�; (B1)

with 4
 4 matrices
 

~� � �0 ~� �
0 ~	

~	 0

 !
; (B2a)

� � �0 �
12 0

0 �12

 !
; (B2b)

in terms of the 2
 2 unit matrix 12 and the 2
 2 Pauli
matrices ~	.

In the presence of a single � � 1 defect (sphere with
radius b centered at ~x � 0 and antipodal identification), we
impose the following boundary condition on the Dirac
spinor:

  �� ~x; t� � ix̂ � ~� � ~x; t�
��������
���1�

j ~xj�b
; (B3)

for unit vector x̂ � ~x=j ~xj. [There can be an additional phase
factor � 2 C (j�j � 1) on the right-hand side of (B3),
which may in principle depend on the direction, � �
��x̂�.] The physical motivation of boundary condition
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(B3) is that the Dirac particle moves appropriately near the
defect at j ~xj � b. Recall that, in the first-quantized theory
considered (cf. Ref. [55]), the free particle is described by a
wave packet which can in principle have an arbitrarily
small extension, for example, much less than b. The
boundary condition (B3) then makes the probability
4-current j� � � �� �  y�14; ~�� well behaved near
the defect at j ~xj � b: probability density j0 equal at anti-
podal points, normal component of ~j going through, and
tangential components of ~j changing direction (cf. Fig. 1
and the discussion in Sec. II B).

The case of primary interest to us has spin- 1
2 particles of

very high energy compared to the rest mass m but wave-
length still much larger than the individual defect size b
and the mean defect separation l:

 m� k� 1=l� 1=b: (B4)

An appropriate initial solution of the Dirac equation over
R4 is given by

  � ~x; t�in � exp�ikz� i!t�

1
0
1
0

0
BBB@

1
CCCA; (B5)

which corresponds to a positive-energy plane wave prop-
agating in the z � x3 direction. This wave function, how-
ever, does not satisfy the defect boundary condition (B3)
for the 3-space (2.2) with a single defect centered at the
point ~x � 0.

Make now the following monopolelike Ansatz for the
required correction:

  � ~x; t�corr � exp��i!t�g�r=b�ix̂ � ~�

s1

s2

s3

s4

0
BBB@

1
CCCA; (B6)

with radial coordinate r � j ~xj, normalization g�1� � 1,
and complex constants sn. (This particular Ansatz is moti-
vated by the structure of the Green’s function for the Dirac
operator; cf. Sec. 34 of Ref. [54].) The total wave function,

  � ~x; t� �  � ~x; t�in �  � ~x; t�corr; (B7)

must then satisfy the defect boundary condition (B3) at r �
b, in the limit kb! 0. The appropriate constant spinor
�s1; s2; s3; s4� in (B6) is readily found. Also, the function g
in the ‘‘near zone’’ (r� �) must be given by g�r=b� �
b2=r2, in order to satisfy the Dirac equation neglecting
terms of order mb, kb, and m=k.

All in all, we have for the corrected wave function from
a single defect centered at ~x � ~x1:

 

 � ~x; t� � exp�ikz� i!t�

1

0

1

0

0
BBBBB@

1
CCCCCA

� i exp��i!t�
b2

r2
1

cos1

sin1 exp�i
1�

cos1

sin1 exp�i
1�

0
BBBBB@

1
CCCCCA; (B8)

where �r1; 1; 
1� are standard spherical coordinates with
respect to the defect center ~x1 and the z axis from the global
Minkowski coordinate system, having r1 � j ~x� ~x1j � b,
1 2 �0; ��, and 
1 2 �0; 2��.

Next, sum over the contributions of N identical defects
with centers ~x � ~xj, for j � 1; . . . ; N. The resulting Dirac
wave function at a point ~x between the defects is given by

 

 � ~x; t� � exp�ikz� i!t�

1

0

1

0

0
BBBBB@

1
CCCCCA

� i exp��i!t�
XN
j�1

b2

j ~x� ~xjj
2

cosj

sinj exp�i
j�

cosj

sinj exp�i
j�

0
BBBBB@

1
CCCCCA;

(B9)

where j and 
j are polar and azimuthal angles with
respect to the defect center ~xj and the z axis. With many
randomly positioned defects present (N � 1), the entries
of the second spinor on the right-hand side of (B9) average
to zero and only the initial Dirac spinor remains.

For the electromagnetic case discussed in Sec. II B, the
fictional electric/magnetic dipoles (radial dependence /
1=r3) are aligned by the linearly polarized initial electric/
magnetic fields (2.9) and there remain correction fields
after averaging, which produce a modification of the pho-
ton dispersion relation. As mentioned above, the corrective
wave function required for the Dirac spinor is monopole-
like (radial dependence / 1=r2) and averages to zero. This
different behavior is a manifestation of the fundamental
difference between vector and spinor fields.

The final result is that the dispersion relation of a high-
energy Dirac particle is unchanged, !2 � k2, at least up to
leading order inm=k, kl, and b=l. For an initial spinor wave
function at rest (k � 0 and b� l� 1=m), a similar cal-
culation gives !2 �m2. (Note that this is an independent
calculation as Lorentz invariance does not hold.)
Combined, the dispersion relation of a free Dirac particle
(for definiteness, taken to be a proton) reads
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 �!���1�
p �2 �m2 � k2 � . . . ; (B10)

to leading order in ml, kl, and b=l.
To summarize, we have found in this appendix that the

classical spacetime foam model considered affects the

quadratic coefficient of the proton dispersion relation dif-
ferently than the one of the photon dispersion relation.
However, the calculation performed here was only in the
context of the first-quantized theory and a proper second-
quantized calculation is left for the future.
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