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Slowly rotating fluid balls of Petrov type D
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The second order perturbative field equations for slowly and rigidly rotating perfect fluid balls of Petrov
type D are solved numerically. It is found that all the slowly and rigidly rotating perfect fluid balls up to
second order, irrespective of Petrov type, may be matched to a possibly nonasymptotically flat stationary
axisymmetric vacuum exterior. The Petrov type D interior solutions are characterized by five integration
constants, corresponding to density and pressure of the zeroth order configuration, the magnitude of the
vorticity, one more second order constant, and an independent spherically symmetric second order small
perturbation of the central pressure. A four-dimensional subspace of this five-dimensional parameter
space is identified for which the solutions can be matched to an asymptotically flat exterior vacuum
region. Hence these solutions are completely determined by the spherical configuration and the magnitude
of the vorticity. The physical properties, like equation of state, shape, and speed of sound, are determined

for a number of solutions.

DOI: 10.1103/PhysRevD.75.024013

I. INTRODUCTION

In [1] a second order formalism for slowly and rigidly
rotating stars was developed by Hartle. This formalism was
applied in [2] to rotating white dwarfs and neutron stars
using the Harrison-Wheeler and Tsuruta Cameron V,
equations of state, and in [3] to the case with constant
energy density. In [4] the second order formalism is com-
pared with numerical solutions of the full Einstein equa-
tions. For a review of relativistic rotating stars see [5]. In
[6] global models for slowly rotating bodies in the post-
Minkowskian approximation are treated. In a recent paper
[7] second order perturbation theory for the matching of
general stationary axisymmetric bodies to an asymptoti-
cally flat vacuum has been put on a more solid mathemati-
cal ground and the exterior metric is determined to second
order.

In this paper we use the Hartle formalism to study
perfect fluids of Petrov type D. This condition will be
used instead of an equation of state. It was shown in [8]
that physically realistic rotating fluid balls cannot be of
Petrov types II, III, N, or O, so the only possible cases are of
Petrov types D or I. Hence, it is of interest to closer study
the properties of Petrov type D solutions, being the only
possible algebraically special solutions. Also, since in the
nonrotating spherically symmetric case all interior solu-
tions are of Petrov type D or 0, one might hope to find
physically interesting interior solutions of Petrov type D
also in the axisymmetric case, at least for slow rotation.
However, the quadrupole moment of the rotating configu-
ration will typically deviate from that given by the Kerr
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metric and hence its exterior metric cannot be Kerr [4]. It is
easily verified that such an exterior metric is not of Petrov
type D.

The field equations to second order in the small rota-
tional parameter ) will be solved numerically using fourth
order Runge-Kutta. The system reduces to a closed sub-
system of six first order differential equations. There are
also two more differential equations for two further depen-
dent variables which do not appear in this closed subsys-
tem. Assuming regularity at the center, the solutions of this
closed subsystem depend on four constants of integration,
corresponding to zeroth order central density and pressure,
the magnitude of the angular velocity, and one more sec-
ond order small constant. Because of scaling invariances
we need only consider a two-dimensional subspace of the
solution space. The solutions are then matched to a second
order axisymmetric vacuum solution using the Darmois-
Israel procedure [9,10]. This metric includes the general
second order asymptotically flat stationary axisymmetric
vacuum solution as a special case. The interior solutions
that can be matched to this vacuum form a three-
dimensional subspace of the space of solutions. One
more freely specifiable parameter, associated with an in-
dependent spherically symmetric second order small
change of the central pressure, is obtained from the solu-
tion of the two remaining equations. Hence the rotating
configuration for the asymptotically flat subclass is deter-
mined by the spherically symmetric configuration (includ-
ing a possible second order change of the central pressure)
and the magnitude of the angular velocity.

The paper is organized as follows: In Sec. II the method
is briefly described and the field equations are presented,
along with the Petrov type D condition. Finally, the second
order vacuum metric is given. The matching procedure is
described in Sec. III and the integration constants for the
vacuum solution are solved for in terms of the values of the
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interior solution on the matching surface. In Sec. IV the
equations are rewritten in a form suitable for numerical
integration. The results of the numerical runs are given in
Sec. V. First the program is checked against the exact
Wahlquist solution, and then the subset for which the
solutions are asymptotically flat is determined. Properties
like shape, equation of state, and speed of sound are then
determined for a number of solutions.

II. PRELIMINARIES

To second order the metric of a slowly rotating axisym-
metric object, both in the interior fluid region and the
outside vacuum region, can be written as

1
ds? = (1 + 2h)A%dr* — (1 + 2m)?a’r2

— (1 + 2k)r’[d6?* + sin®0(de — wdt)*], (1)

where w 1is first order and &, m, and k are second order in
the rotational parameter [1]. The requirements of regularity
at the center and asymptotic flatness imply that the first
order function w depends on r only. The second order
functions h, m, k can be given as

h = hy + hyP5(cosh),
k = kyP,(cosf),

m = mg + m,P,(cosh),

where hy, mq and h,, m,, k, are functions of r only, and
P,(x) = 1(3x* — 1) is the second order Legendre polyno-
mial. This result follows from reflection symmetry in the
equatorial plane, from the fact that the equations for A, m,
and k separate with the ansitze h = >, h;(r)P;(cos§)
etc., and from the fact that there are no inhomogeneous
terms containing w in the equations for #;, k;, and m; for
i > 2. For more details see [1].

The matching of the two spacetime regions happens via
the application of a coordinate transformation ¢ — ¢ +
Qrt in the fluid region. In addition to this, we can also
rescale the interior time coordinate first by a constant c,
while matching the spherical zeroth order solutions, and
then later by a second order small constant when doing the
matching of the corresponding rotating spacetimes. These
then yield the coordinate transformation t — c4(1 + c3)t.
The first of these coordinate transformations says that the
inner fluid region rotates with respect to the distant sta-
tionary observers with angular velocity (). This parameter
) is considered to be the small expansion parameter with
respect to which w is first order and the other corrections 4,
m, k are second order.

The matter content of the interior is modeled by a perfect
fluid,

Tab = (p + p)uaub — P8ab-

The coordinate system used in (1) is assumed to be comov-
ing with the fluid, i.e. the 4-velocity is assumed to possess
the form
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ut = (1/\/800: O) O’ O) = ((1 - h)/A; 0: 0: O)

which also implies that the shear of the fluid is zero so it
rotates rigidly.

A. The field equations

In this subsection we list the field equations relevant to
various orders. A similar system of equations with a
slightly different choice of variables was given in [11]. If
no equation of state is specified then the only equation one
gets to zeroth order of the rotational parameter is the
pressure isotropy condition G, = G22 which reads

2
% 4 d(rA) d(B/r) + A 0. 3)
dr dr  dr B
Making use of G% =T° and G', =T',, the energy
density and pressure of the nonrotating configuration reads

1 2
poz—z[l_d(rB )} )

r dr

2 2
B? d(rA?) _ 1} 5)

1
o=l
To first order in the rotation parameter, the only relation
follows from G3, = 0,

d( ,Bdo , d (B
(=) + —(=)=0o
dr(rA dr) 4r wdr(A) 0 6)

The second order Einstein equations yield the following
four conditions. From G', = 0, one gets

d 1 dA
ra(hz + ky) + r(hy — mZ)ZE_

The pressure isotropy condition in the angular directions,
G?, = G*;, gives

B? 2 B B
6(hy + my) — r41?<d—w> +4rwi= i(—) =0. (8

h2 - nmp = 0. (7)

dr A dr\A

The equality of the pressure in the angular and radial
directions, i.e. G'; = G?,, gives two equations. After
eliminating the derivative of h, using (7), one obtains
from the P,(cosf) part

B* dA/ dk d (B
2r= =~(r=2=my | = 2r*Bhy— (= + my — 4k,
A dr r

dr dr
1 ,B?/dw\2
—5h, ——r*—(—) =0, 9
2 3rA2<dr> ©)

while the #-independent part takes the form

d /1 dh d(r*A?) dm
3p = (~A2B %) — 3p2 0 4 1242
6r dr<r dr) 3 dr dr o
dw\2 d (B
— 3B =) + 43w AB—(=)=0. 10
d (m) re dr<A> (10)
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The energy density function can be decomposed as p =

po + pa, Where py = pay + pyyPr(cosh) and py and py
are second order small functions of the coordinate r given
as

B d (B
P = 62A |:8r3a)2 dr( ) + 12— —(rBsz)

eafle

2(3A%h, + rPw?) d (. _dB
- 1-B*+r—(B—) |
3PAd [ " dr< drﬂ

12)

and

P2 =

The analogous decomposition of the pressure is defined by

P =Dpo+ P2 = po+ Pt pnP(cosh), where
B? dhy dw
P =7 2A2[12 rA2 =0 P 12m 0—(rA2) + 7 (dr> }
(13)
and
2B d (B
=—0GA%h, + re’)—(=) 14
)25 3rA(3 hy rw)dr(A) (14)

The existence of a barotropic equation of state p = p(p)
is equivalent to
dp dp

-—— =0, 15
00 Or {as)

dp dp
00 or

which is a geometric condition ensuring the coincidence of
the constant pressure and density surfaces. Substituting the
decompositions p = py + pyy + pnPy(cosh) and p =
Po + Pao + p2P(cosh) into this relation yields, up to
second order,

dpo dpo

PzzW =P» dr’

which is identically satisfied in virtue of the above field
equations.

It seems to be plausible to require the equation of state to
be independent of the angular velocity. This condition
reads

(16)

P2 _ dpo

. 17
P2 dp() ( )

The #-dependent part of this relation is equivalent to (16),
while the spherically symmetric part gives the relation

dpo 9po
— = —_. 18
0y P (18)

P20
Then, by the substitution of the expressions p,q and p,q,
given by (11) and (13), together with p, and p, for the
zeroth order pressure and density, given by (5), one gets
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d*B? dA
24rA4|:r2 — 7t 2(1 — B2)} + 24rAm, = |:4A2
dA dB d*B
X (B2 — 1) — 4rABL L2 _ 4242842
dr dr dr?

dA d dm, r*w® d (B’
1834552 “ (2 V3270 4 (=
dr dr<A2>|: dr  B? dr(Azﬂ

d*B? dA d
—2r’A +4(1 - B?
a0 ) 4]

><|:r4<(jl—c:> —12A2m0}=0. (19)

+A2[2r

B. The Petrov type of slowly rotating fluids

The spherically symmetric field equation (3) is usually
complemented by a choice of an equation of state for the
fluid. Since spherically symmetric static spacetimes are
always algebraically special, we do not assume any special
equation of state for the nonrotating base solution. As we
will see shortly, the deviation from algebraically special
cases can arise first when considering the second order
terms in the rotational parameter. Here we require the
interior solution to remain Petrov type D for slow rotation,
thereby completing the system of field equations (3), (6)—
(10), and (19) by a further condition, which in some sense
plays the role of an equation of state.

In order to calculate the Petrov type, we need a suitable
null tetrad. Up to second order, an orthonormal tetrad can
be given as

1 w’r? .
et = (Z(l + s - h), 0,0, 0),

et = (0,B(1—m),0,0, o= (o 0 —(1 — k), o)

w2
e sin?@ + k))

e§L=<A siné, 0, 0, n9< 1+

From this we form the null tetrad by the relations
21k = el + ek, 2kt = et — ¥,
2m# = et +ie.
Then the components of the Weyl spinor are given as
Wy = Cpegk®mPkem?, Wy = Cpeak®lPmcle,
W, = Cupeak®km?, W, = CupeamIPmcle,
W, = Cupeak®mbmeld.

Since ¥, = 0 and W3 = 0 (even in the case of fast rota-
tion), the Petrov type is determined by the multiplicities of
the roots of the algebraic equation for the complex number
a,

Uy + 6W,a + W,a* = 0. (20)
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The Petrov type is D if there are two double roots, i.e.

We note that the Petrov type can alsobe Dif W, = ¥, = 0
and W, # 0 but, since then the equation of state can be
shown to be p = —p (see [8]), we only deal here with the
more general case (21). Considering the other possible
algebraically special types, the Petrov type cannot be III
because of ¥, = W, = 0, and the Petrov II and N cases
also have the nonphysical equation of state p = —p.
Finally, due to a theorem by Collinson [12], the confor-
mally flat case is also excluded.

Hence, the only algebraic special solutions of physical
interest one might hope to find are of Petrov type D. Up to
second order in the rotational parameter, Eq. (21) gives
only one real condition. By substitution of the zeroth and
first order field equations (3) and (6) into (21), the Petrov
type D condition gives the relation [11]

dB AT d /(B w\ 2

—4+1- R — = | —[— 1.
(rB a8 >(h2 m) =g [dr< A? ﬂ
(22)

|

n 1 a*M? . r
= e—_—_—_— — _c ,
0 - 2M< P 2M 2)
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Note that m and &, do not appear in Egs. (3), (6)—(9),
and (22) and hence this subsystem for A, B, w, m,, k,, and
h, decouples. Notice that these equations contain m, only
algebraically. In Sec. V the system will be reformulated as
a coupled system of six first order ordinary differential
equations. Because of the requirement of a regular center,
the solutions to this subsystem will only depend on four
constants of integration.

C. Vacuum metric

In the exterior vacuum region, we will use a frame
adapted to the asymptotically nonrotating observer.
Solving the field equations detailed in Sec. II A by impos-
ing p = p = 0, the metric functions for the vacuum region
are given as follows [1,13]:

A>=B>=1-2M/r, (23)
2aM
w = o (24)

_ 1 a’M?
Mo = 2M — r( r +C2>’

2M M M -M 2M
hy, = 3c,;r2M — 1) log<l — —) + a2—4(M + 1)+ 2c; —(3r* — 6Mr — 2M?) d + <1 — —)rqu,
r r r r

2M —r 25)

2M M M
ky = 3c,(r* — 2M2)10g<1 - —) —a*— (2M +r) — 2¢;—(2M?* = 3Mr — 3r%) + 2M? — r?)q,,
7 ¥ r

m, = 6a*

In this approximation, the slowly rotating solution is char-
acterized by the mass M, the first order small rotation
parameter a, and the second order small constants ¢, c,,
and g,. When ¢, takes the value zero, the metric is known
to be the general asymptotically flat stationary and axi-
symmetric vacuum metric to second order (see e.g. [14]). It
can be checked by plugging the vacuum quantities into the
Petrov type D condition (22) that the solution is of Petrov
type D only if both ¢; and g, are zero. The metric is then
equivalent to the Kerr metric to second order with mass
M— M — Cy.

When g; # 0 the metric cannot be asymptotically flat. It
is important to keep in mind, however, that without the
inclusion of this constant the matching conditions on the
zero pressure surface are overdetermined in general
[13,15].

III. MATCHING

The matching of the fluid ball to a suitable exterior
vacuum region happens at the zero pressure surface.

- I’lz.

[
Before matching these two spacetime regions, it is infor-
mative to investigate first the structure of the constant
pressure surfaces.

A. The constant pressure surfaces

The pressure in the rotating fluid configuration is given
by the function p(r, ) = py(r) + p,(r, #). The surfaces of
constant pressure, Sz, may be labeled by the function 7
defined by the relation

p(r, 0) = po(F) = po(F) + 6p(F), (26)

where p is the corresponding pressure for the nonrotating
configuration and 8 p(7) is a second order small shift of the
pressure that changes monotonously from the center,
where it takes the value p,,(0), to the zero pressure surface,
where it becomes zero. The value of the central pressure to
second order follows by assuming regularity at the center
and by making use of the field equations (10) and (19),
along with the relation for p,q (13) (see Sec. IV B). It turns
out that it will depend, among others, on one freely speci-
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fiable constant corresponding to a spherically symmetric
perturbation that produces a second order small change of
the central pressure (and density). If we choose to consider
only rotational perturbations with p,(0) = 0, §p(¥) may
be chosen to be identically zero.

The radial displacement ¢ is defined by

r=r+¢
To second order one has

p(r’ 0) = po(l") + pZ(rJ 0)
= po(r) + pao(r) + par(r)P,(cosh)

d
= pol®) + £22 | +pa() + pra(FIPa(cost)

= po(F) + 8p(F),

implying that & possesses the form & = &, + &,P,(cosf),
where &, and &, are given as

&y = —[px(7) — 8p(P)]/(dpo/drl;)

and

& = —pu(P)/(dpy/drl;). (27

Note that there will be a certain arbitrariness in &, the
average shift of the radius, unless 8 p(7) is specified. At the
origin £y = 0 and on the zero pressure surface r;, the
expressions (5) and (13) together with Sp(r;) = 0 give

1 dhg

12rB 4 L (4

(2]

for &y. If we choose Sp(F) = 0 this expression, with r,
substituted with 7, holds for any 7 in the interval [0, r;].
From (5) and (14) &,(F) is given by

(BA%h, + r?w?)

S ="———a | - (29)
3A‘Zi_/r\ r=r

é‘:O = |:12 A2 - 12moi(rA2)
dr

(28)

r=ry

The circumference of the intersection of a constant
pressure surface S; and the equatorial plane 6 = /2,
which is in fact a circle, is obtained from

dl?> = (1 + 2k)r*sin’0d ¢
é
— (1 + 2k — k2)< Ft g — 22) de?,
giving

o kz_é)
2 2F)

11—27Tr<1+k0+———

The length of the curve vy, yielded by the intersection of S
and a plane including the axis of rotational symmetry, is
given as
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&o fz))

L =2ar1+k +—+—+
2 m( 0 4" a7

where we have used the relation
di? = (1 + 2k)r?de?
= (1 + 2ky + 2k, P,(cosh))
X (F+ & + &,Py(cos6))*d6?,

along with the fact that the term obtained by substituting
dr = —3&, cosf sinfdf into the line element (1) is of
fourth order and is hence dropped. The constant pressure
surfaces are oblate iff /; > [,, i.e. whenever

k2+§<o (30)

Another way of determining the oblateness of the con-
stant pressure surfaces is possible by comparing the radial
distance from the origin to the curve y and the analogous
distance to second order in the eccentricity parameter e,
r=a(l — 6 2c0s26), for an ellipse in R? with semimajor
axis a. The curve 7 is then found to be an ellipse up to
second order, with € given as

/e

For infinitesimally small values of 7, (31) reduces to

&2 — —3<m2 fz)

7

according to which the constant pressure surfaces are
oblate iff

m2+%<0 (32)

Notice that this inequality, along with the relations (61) and
(62) in Sec. IV B, also justifies that the two different
characterizations of oblateness are compatible.

Note, finally, that d7 is a form field orthogonal to the
constant pressure surfaces S;. Up to second order, the
corresponding normalized field is

n, = (0, (1 + m)/B, 3£, sinf cosf/B, 0). (33)

B. The matching

In this section we match the interior rotating fluid solu-
tion to an exterior vacuum region at the zero pressure
surface S;—,,.

In the vacuum exterior region, suitable hypersurfaces for
matching are determined by the condition [16]

QZgWD +2Qg,, +g.,=1—-C (34)
where ) and € are constants. To second order such a
surface can be given as
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r=rnr +X=r1 +X0+X2P2(COS€), (35)

where y, and y, are second order small constants. The unit
normal to this surface is given by

aY =, (1 + m®)/B®, 3y, sinf cosd/B™, 0), (36)

where the uppercase index ) here and after refers to
vacuum quantities.

To adjust the coordinates in the two regions, we apply a
rigid rotation in the interior by the transformation ¢ —
¢ + Qt. Also, we can rescale the interior time coordinate
by a constant ¢, while matching the spherical basis solu-
tions, and then later by a second order small constant when
doing the matching of the corresponding rotating configu-
ration t — c4(1 + ¢3)t. We do not have such freedom in
choosing the time coordinate and applying rotation in the
exterior region since we want a coordinate system adapted
to asymptotically nonrotating stationary observers.

Together with the values of the other parameters, the
location of the matching surface S,, is determined by the
Darmois-Israel conditions [9,10]. In particular, these con-
ditions pick out the zero pressure surface as the matching
surface.

The Darmois-Israel conditions require that the induced
metrics agree on the matching surface S,,

5 (37)

dS2|$,l = ds(zv)
as well as the induced second fundamental forms,
Kls, = K(”)Ls,l, (38)
where K is defined as
K = K,,dx*dx" = h,°h, n.qdx"dx’,
with
h,” =n,n®+ 8,°

being the projection operator onto the hypersurface or-
thogonal to the normal vector n,,.
Writing g, and K, as
0 1 2 0 1 2
8ab = gEzb) + 85113 + gfzb)’ Kab = Kz(zb) + Kﬁzb) + Kﬁlb)’

where the superscripts ), ), @ indicate zeroth, first, and
second order terms, respectively, one obtains to second
order

gar(r) =80 + gW(r) + g2(r)
0 1 2
=89 + &+ 00+ %)

924 (7)

2
o £+ g0 + g2,
r=r

(39)

= gg;,)(rl) +
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and similarly for K,,, on the matching surface given by
r = r; + &. An analogous result holds in the outer region.
From (37)—(39) we then obtain the following equations to
order by order.

Zeroth order:
B® = B,

AW = ¢ A, AW = A, (40)

First order:

o = ci(w — Q), oV, = cio,. 41)

Second order:
h(2U) = hy,

K =ky by =hotcs  (42)

C4A(h(()v) - hO,r) + EO(A(U),rr - C4A,rr) = 0’ (43)

QAR = hy,) + EAY),, — A )

— cyrA (K = ky,) = 0, (44)
B(my" — my) = &(B™, — B,), (45)

B(m(zv) —my) = &BY, - B,) + "B(kév) —ky,), (46)

Xo = &o, X2 = & 47)
All quantities here are evaluated at r = ry, i.e. at the zeroth
order radius. From the zeroth order equations, we solve for
M and ¢, as

1
M=2rn(l=B) o= (48)

|

The third equation is equivalent to the zero pressure con-
dition and also gives the radius r; implicitly from

ry (1 - B>. (49)

T S pldA
28244

To first order we solve for a and Q)

33
a rn_de =19 L 650

T 3ABT 1) dr’ 3 dr

From six of the nine second order equations, we can solve
for cls C2’ C3’ ql’ XO’ and /\/2 as
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_ B[r{B*(B* = 3)(§2)° + 36A%hy(1 — BY) + T2A’B*(h, + k)]

PHYSICAL REVIEW D 75, 024013 (2007)

) 51
“ O(B? — 1)°A272 G
{
& dB > B2 /dw\2 the function z by
=2(B2—1+2rB—)—rB*my— L —(—),
277 ( " dr> NPT 36 A2 (m) : dv
A rdeon2 c Then the zeroth order equation (3) becomes first order in z
N 2 .
cy = A2 <$> + m — hy, 53) and algebraic in B [17],

1
9r7A%(B? — 1)°
+ 216A2B*InB(2B?*(hy + ky) + (1 — B)h,)
+ 36h,A2B%(B* — 1)(B* + B> — 8)

A(AON2 o o 2 4
+r1<E>B (B2 — 1) + 11B? — 7B

4 = [18k2A2(B4 C (B — 8B+ 1)

+ 6B2(B* — 3) InB) } (54)

Xo=¢& and x, =&, (55)

where &, and &, are obtained from (28) and (29). The
remaining three equations turn out to be identically satis-
fied due to the other matching equations and the field
equations. Note that we did not assume the Petrov type D
condition (22) when calculating the matching conditions.
Hence an appropriate matching can be done, i.e. the vac-
uum metric in Sec. II C is general enough for describing the
exterior of any axisymmetric rigidly rotating perfect fluid
ball up to second order.

IV. NUMERICAL INTEGRATION

In this section we provide a reformulation of the field
equations which is more suitable for numerical integration.
By doing this we can get higher precision at the origin
where apparent singularities arise; moreover, the freely
specifiable constants are identified more easily this way.

A. Integrating the zeroth order field equation

In order to simplify (3) it is convenient to redefine the
functions A, &, m, and k in terms of the function v as

A=¢ev, h=he?, m= e %, k=ke?,
(56)
giving
- 1
ds* = e?’(1 + 2he™?")dt* — (1 + Zme’z”)?drz
— (1 + 2ke™2")r?[d#* + sin0(de — wdt)?].

The equations simplify considerably due to the fact that
only the derivative of v will appear. Hence we introduce

d
Brd—z+2B2 +22—4Bz+1=0. (58)
r

Furthermore, the pressure of the nonrotating configuration
(5) takes the form

1
po =3Bz =B —1). (59)

B. Series expansion around a regular center

For sufficiently regular configurations close to the cen-
ter, the metric coefficients can be given as power series in r.
Assuming that the central pressure and density are finite, it
follows that B(0) = z(0) = 1. The assumption of smooth-
ness of the configurations at the symmetry center, in the
spacetime sense, implies that the odd coefficients in the
expansions of the basic variables are zero. Although the
smoothness implies the vanishing of the odd coefficients
without the use of the field equations, the requirement of
smoothness of central density and pressure, together with
the field equations, also implies the smoothness of the
metric functions.

The vanishing of the odd coefficients can be shown in
the generic case by plugging power series expansions of
the dependent variables into the field equations. In these
cases the smoothness of the density and pressure results
from these considerations. If odd powers of r are included
in the expansion of the metric variables, then it can be
shown that the field equations and the Petrov D condition,
together with the assumption of finite and positive central
pressure and density, imply the vanishing of the coeffi-
cients of all odd terms. However, odd terms may appear in
special cases, and then the metric ceases to be smooth at
the origin. For example, consider the spherically symmet-
ric case when the only field equation is given by (58). If 73
terms are included in the expansion of B, then one also
obtains a nonsmooth density gradient % [,—o # O.
However, since the field equation implies that the pressure

gradient % |,—o is always zero, the squared speed of sound

is vanishing at the origin, i.e. v2 = Z—j’;gl,:() = 0. It is of
interest to find the minimal requirements needed to guar-
antee that the solution is regular to any order. A conjecture
is that this is the case when the central pressure and density

are finite and Z—Z |,—o # O [18]. If the Petrov D condition is
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used instead of an equation of state to specify the configu-
ration, then it can be shown that j—f; |,—o = 0 can occur only

if either the central pressure or density is negative.

Hence, assuming a smooth center in the spacetime
sense, the odd powers will be omitted hereafter. Plugging
the expressions

B=1+br*+by*+...,
2=1+zP+z,r*+...,

w=wy+ o rr+wort+...,

PHYSICAL REVIEW D 75, 024013 (2007)

into the field equations then justifies that all coefficients

can be given in terms of by, 71, wgy, and h; = h(21). To zeroth
order one obtains

hY = m =ik =0, (61)

then to second order

hy= Y + B2+ P 60 my) =k = =n) = —hi, =30z~ 3b),
(62)
my = m(zo) + m(zl)r2 + m(zz)r4 e,
A (V) Q) )
ky=ky + k't +ky ot and finally to fourth order
b? | 3w} 23
br= =3 gy G T3 n=ba -5 bh
h(z) _ h1(3Z1 - 13b1) _ w%(zl - 3b|)[2h](22Z1 - 31b1) + 3(1)%(Z] - 3b1)]
2 _ ’
X 14 21Oh1(Z1 bl) X (63)
h 2
K =20 =3b) + 5 (b = 2) —h, m =Ty = 3by) — A,
wo(z; — 3by)
w, =—————"[h(z; — 33b;) — 3wi(z; — 3b))]
2 0%, 1121 [ 1 olZ1 1
T}_le expansion Qf the density.and pressure of the non- hy = hg)) + hgl)rz + héz) Mt
rotating configuration can be written as (67)

3w?
Po = Poc = 5—>(poc + poc)*r? + O(r*), (64)
20k,

Po = Poc ~ 153Pge + 4pocpoc + pg)rt + O(r*), (65
where the central density and pressure are given by

Poc = —06by, Poc = 22;. (66)
This shows that for realistic configurations b; <0 and

z1 > 0; consequently, the z; — by term in the denominator

of h(zz) is nonvanishing. Also, the existence of a local
maximum of the density at the center implies /#; > 0.
The pressure always has a local maximum at r = 0 if the
central values are positive.

Assuming #; = 0 implies that the higher coefficients in
the expansion of h,, m,, and k, are zero. We conjecture that
hy, = m, = k, = 0, which is also supported by a numerical
calculation. From this it follows that w = w, = constant
and that A = B = +/1 + Cr’. But this simply gives the de
Sitter or anti de Sitter solutions, depending on the sign of
the integration constant C, in a rotating frame.

Plugging the expansions of the original (no tilde) second
order spherical perturbation quantities

my = mg)) + mgl)r2 + m(oz)r4 + ...

together with (60) into the two remaining equations (10)
and (19) gives that two constants, e.g. hgo) and mgl), are
freely specifiable, whereas the other coefficients can be

expressed in terms of these two. Of these, only m(()l) is

essential since the constant h(()o) can be absorbed by a
second order rescaling of the time coordinate. To second
order one gets

5m(()1)h1(Z1 —by) iol)

(. m

my =0 and hy =—F——F7—+ 68
0 0 2(1)(2)(21 - 3]91) 2 ( )
unless z; = 3by, corresponding to pg. = — pg.. From this

result it follows that p,, as given by (13), at the origin is

10mhy(by — z,)
w%(3b1 - Zl)

Pa(r=0) = (69)

Hence the central pressure will be unchanged if m(()l) = 0.
However, the higher order coefficients in the expansions
(67) are still nonzero, i.e. the expansions of /i, and m, start

with 7* terms. We note that, in general, p,y(r = 0) = 6m§)1)

and pao(r = 0) = 4hf) — 2m{".
Purely spherically symmetric perturbations, correspond-
ing to a small change of central pressure but unchanged
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equation of state, of the type (67) can be obtained. These
kinds of perturbations are possible even when there is no
rotation at all. By choosing wy = h; = 0 and mg) #0,a
spherically symmetric perturbation, with a second order
shift of the central pressure given by

6mf)l)(bl - Z])(3b1 - Zl)
567 + 10b, ’

pa(r=0) = (70)

is produced. This expression remains valid in general, even

when the Petrov D condition is not assumed.
|

A _ _repB -0+ )

- 3m  $r

dB _ 20°({ —3pB)

PHYSICAL REVIEW D 75, 024013 (2007)

C. System of differential equations

Motivated by the results of the previous section, it is
advantageous to define the new dependent variables S, ¢,

¥, h, k, and % through
B=1+rB  z=1+r

ky = r2(r2k — h),

w, = 2ry,
iy = rX(r*m — h).
(71)

The closed subsystem of equations (3), (6)—(9), and (22)
then takes the form

]’l2 = 7"2]’,1\,

. B¢ ~38)  dw

dr ﬁrz +1 ’ dr

@ _ 3m—50y
dr reoBrr+1? o

dh  [mGh + 0?) — 40>({h + k= 2Bh)]  ri?(2w® + 3h)(Br2 + 1)

2077(BR + 1) @

)
ry ~
— Qo + yr?) +

Brr+ 1)+ — = 2jr,

Brr+1)’ dr

ry(3m — 10Bw?(2 + Br?))
202(Br* + 1)? ’

30’ (¢ = p)
| Tk = 3p) + i)

L P — BP — Bh(2L — 3p)]

2
c—pprrn P

dr 2rw*(¢ — B)(Br* + 1)
dk i — 4k +2h(B - )
dr r(Br? +1)

while 7 can be solved for algebraically as

5

Brr +1

J(Br* + 1)*R2w({ —3B) — 51 + Bri({ — B) +2Br7)] }
2(Br2 + D[ = 2B) — §(Br2 + D27 + 2w)] + 3h — Brrw?

= ng(g ~3p) + %ﬂyz(ﬁﬂ +1)2 + zr?"z[
2r'w? B —2B)Bh — P —3p)) — w*({ —3P)
3 [rz(ﬁrz + D¢ = 2B) = 5(Br + (25 + 20)] + 34 - Brzwz}

Boundary conditions at r = 0 are given as

ﬂ(0)=blr Z(O):Z],

(0) = wy,

2 N
f(o) = W = gwo(Zl - 3b1), h(0) = hy,

A O, 0 _ @ hy
k(0)=k2 +h2 =F(Z1 _3b1)+?(b1 _Zl).
The relation

m(0) = mP + hY = 2wz — 3by)

is then satisfied identically. As we have seen, there are four
freely specifiable constants: by, z;, w, and h;.

The system of equations (72) possesses two types of
scale invariances. The first one is associated with the
rescaling of the r coordinate, r — ar, under which trans-
formation the dependent variables scale as

w, h— o, h.
(73)

There is also a rescaling associated to the rescaling of the

[

rotational parameter w, following the rule wo— ywy,
which induces the transformation
»

w,— yw, v, hwk— y*h yim, vk

B.{r— B¢

It is interesting that a combination of the above two rescal-
ings with y = 1/« yields a similarity transformation of the
investigated system.

Because of these scale invariances of the equations, two
of the constants, e.g., wy and b, can be fixed. All other
configurations can be obtained by rescaling. Note also that
b, and z; can be expressed in terms of the zeroth order
central density and pressure as

(74)

_ _1 _1
by = ~6Poc 21 = 3P0c-

Some of the above equations contain terms of the type
“F/r;” thereby they are apparently singular at the origin,
so we collected them to the beginning of the right-hand
sides. It can be checked case by case that all of the
corresponding numerators vanish at the origin.
Nevertheless, in determining the values of the correspond-
ing ratios numerically, it turned out to be advantageous to

024013-9



BRADLEY, ERIKSSON, FODOR, AND RACZ

use as the fundamental variables the differences {4, B As
Wy, VA hA, i, kA between the variables { B, w, y, h, m,
k and their exact values £o> Bo> wo, Yo, ho, g, ko at the
origin. Because of the cancellation of the terms involving
the exact values at the origin, what remains from the
numerators will be proportional to r2.

V. NUMERICAL SOLUTIONS

The system (72), when rewritten in terms of the variables
{ns Bas WA, YA, ha, M, ky, was solved using fourth order
Runge-Kutta. A check of the convergence factor

f f2n
f2n f4n

where 7 is the number of points in a given r interval, was
performed for various quantities f. We found that the
errors decreased according to the expectations, i.e. the
value of C, was found to be close to 16.

We also checked whether the scale invariance properties
of the field equations were reproduced properly by our
numerical code. When we rescaled the freely specifiable
boundary data according to (73) or (74), then all the
dependent variables scaled in the appropriate way.

In scanning the four-dimensional parameter space, due
to the scaling invariances, without loss of generality, we
fixed by = —1 and wy = 0.1 while we varied the central
values z; and h;. Notice that, to have positive central
densities and pressures, the relations b; <0 and z; >0
also have to be satisfied. The integrations were carried out
until the zero pressure surface was reached.

C, =

A. Check of Wahlquist

The code was checked for the Wahlquist solution [19],
which is of Petrov type D. To second order it is given by
[13]

1+2m 2

ds®> = fo(1 + 2h)dr> —2 S dx? — 5 sin’x
MoK~ fo MoK
X (1 + 2k)[d6? + sin*0(de — wdt)?] (75)
with
1
fo=1+—=(1— xcotx) (76)
K
and
= 200 (1 — xcotx). (77)
2sin“x

The transformation to the Hartle variables used in (1) is
given by

sinx.

r=
2
MoK

For the functions %, m, and k, see [13]. For the Wahlquist

PHYSICAL REVIEW D 75, 024013 (2007)

solution the four starting values are given by

b=R20-30), 4 =E01-k) e =B
4 6
and
22,2
_ MohpK
hy = —— 78
1 60 (78)

in terms of the three integration constants p, k, and r.
Solving for h; gives

(Z1 - 3bl)w(2)

h =
L5y —zy)

(79)

Note that #; < 0 for positive central density and pressure,
implying, together with Eq. (64), the well-known fact that
the density of the Wahlquist solution has a minimum at the
center.

In Fig. 1 the relative error between the analytical solu-
tion for the rotational function w, as given by (77), and the
numerical solution is plotted for various resolutions.

As it was already found [13,14], the shape of the
Wahlquist fluid ball is always prolate which is also in
accordance with the positive sign of the quantity k, +
&,/r,. The quantity g, is not zero for the Wahlquist solu-
tion which is equivalent to the fact that it cannot be
matched to an asymptotically flat exterior solution to sec-
ond order [13,14,20]. The value of ¢; was also found to be
negative for all the tested Wahlquist configurations. This is
also verified by analyzing the analytical expression for ¢,
given in [14]. It would be interesting to know whether the
sign of this quantity is related to the shape in general.

10 ; ;
—— Ar=001
- Ar=0.005
— Ar=0.0025
10~ N E
\
Iy
Iy e mmmm - _
i [ - T T T~ /
1 -7 L1 vy N /
0 \Wi \\ //
! v \
\ v !
s Ve I
10 ~ BT Vo
° \ \l /
\ !
v
10° W
v/
107
1071‘ 1 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04 045
r
FIG. 1. The relative error |®numerical — @analytic!/ @anatytic 18
shown for the resolutions Ar = 0.01, Ar = 0.005, and Ar =
0.0025. Starting values are z; = —b; = 1 and wy = 0.1, giving
h; = —0.004.
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B. Asymptotically flat solutions

A solution to the field equations (72) is asymptotically
flat iff g; = 0. In Fig. 2 the points of the dashed curve
represent configurations with value g; = 0 in the z;/h
plane, while in Fig. 3 a section of the same curve for small
Z1, corresponding to small central pressures, is given.
Naturally, the asymptotically flat solutions, represented
by points belonging to these curves, always have finite
radii, but increasing z; further, corresponding to the in-
crease of the central pressure, we get into a region where
the density becomes negative before a zero pressure sur-
face is reached. The limiting curve where the pressure and
density become zero at the same radius is shown in Figs. 2
and 3 by the solid lines. Because of the negative density,
the pressure ceases to be a monotonic function of r for
configurations above the p,, = 0 curve.

Since for the asymptotically flat solutions 4#; may be
seen as a function of z;, we see that h,, m,, and k, for these
solutions are determined by b, z;, and w,. The analysis
done in Sec. I'V B for the remaining field equations showed
that, essentially, one constant of integration is freely speci-
fiable for the functions A, and m,. This implies then that
the second order configuration is completely determined
by the zeroth order spherical configuration, a second order
spherically symmetric perturbation, and the magnitude of
the rotation.

C. Are there Kerr-like solutions?

To our knowledge the only known source for the Kerr
metric is the thin rotating disk of dust with a = m found by
Neugebauer and Meinel [21]. It is tempting to investigate
whether there can exist a fluid ball belonging to the class

Z4

0 0.01 0.02 0.03 0.04 0.05 006 0.07 0.08 0.09 0.1
hy

FIG. 2. Along the solid curve the density and pressure become
zero for the same value of the radius r = r|. Below this curve
those configurations can be found which can be matched to an
exterior vacuum region. The dashed curve represents those
configurations in the z;/; plane for which the exterior vacuum
region is asymptotically flat.

PHYSICAL REVIEW D 75, 024013 (2007)

25 f pr,=0 ——
Gy =0 -
2 - .
N15 i
1 .
05 ,

0 L L 4”’\ L L L L L L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
hy

FIG. 3. The same curves as in Fig. 2 are shown for small z;,
corresponding to low central pressures.

investigated in this paper that could be matched to the Kerr
solution to second order. To settle this issue note first that
the metric of the exterior region becomes the Kerr metric
with mass parameter M — ¢, iff ¢; = ¢; = 0. However,
the numerical runs indicated that either ¢; > 0 for h; >0
or ¢; <0 for h; <0 occurs, in general, i.e. the desired
matching seems not to be supported. Note that these nu-
merical findings are in accordance with some earlier re-
sults, see e.g. [4,22], telling us that typically the exterior
metric deviates from the Kerr metric due to the ellipsoidal
shape of the rotating fluid ball. To this end it is illuminating
to consider an expansion of the exterior metric for large r,
which gives the following leading terms of gqo (with ¢; =
0):

C2M(1 - 9) N 2MP2(c050)(c312 + 15—6M4cl)’

(80)

800 =
r r

i.e., the associated quadrupole moment reads (cf., e.g. [23])
011 = 0 = —033/2 = —2M(a* + ¥M*cy)

in an asymptotically Cartesian system with the 3-axis
along the axis of rotation. In Fig. 4 the value of ¢; as a
function of the central pressure p,. = 2z; along the g; = 0
curve is shown.

D. Some asymptotically flat solutions with a reasonable
equation of state

In this subsection we present some properties, like equa-
tion of state and speed of sound, for some of the physically
interesting inner fluid ball configurations which can be
matched to a suitable asymptotically flat exterior vacuum
region up to second order, i.e. those solutions for which ¢
vanishes. According to Table I the value of A; has to be
smaller than around 0.012 for these solutions to have
subluminal speed of sound, v? = dp/dp < 1. For all con-
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10*

107 10° 10' 10° 10°
pOC

FIG. 4. The constant c¢; as a function of zeroth order central
pressure, pg., along the curve g; = 0.

figurations in this interval the speed of sound also increases
when approaching the center, i.e. the fluid becomes stiffer
as would be expected on physical grounds.

In Figs. 5 and 6 the zeroth order pressure and density, p
and p,, are shown as functions of r for some configurations
with central pressure p,. between 0.218 and 4.366, while in
Figs. 7 and 8 the equation of state, i.e. p as a function of p,
and the square of the speed of sound, v? = Z—;’, as a
function of r are depicted, respectively, for the same family
of solutions. Notice that the value of v? at the surface of the
fluid ball seems to be independent of the values of the free
parameters at the center. However, a closer look shows that
the value slowly changes from 0.272 to 0.261 with increas-
ing central pressure for the configurations plotted in Fig. 8.

TABLE 1.

PHYSICAL REVIEW D 75, 024013 (2007)
45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 5 (color online). The zeroth order pressure pg is shown as
a function of r for various central pressures along the curve g, =
0. From top to bottom the central pressures are given by 4.3666,
2.6978, 1.7762, 1.4872, 1.21, 0.944, 0.6896, 0.448, and 0.2184,
respectively, whereas the central density is py. = 6 = —6b,.

In general, the equations of state cannot be polytropic
since the density does not tend to zero while approaching
the matching surface. However, the equations of state can
be approximated with a polytropic one close to the center.
The last two columns in Table I provide the central values
of the adiabatic index

k=—t=r_"_F%0 (81)

where 7 is the baryon number density, and the Newtonian
adiabatic index

The central pressure po. = 2z;, the radius of the zero pressure surface r;, the shape of the zero pressure surface (a =

k, + &,/r; is negative for an oblate configuration), the shape of the constant pressure surfaces close to the center given by b =
(ko + &,/7)|;—0, the value of the constant c;, the maximal speed of sound v2, the zeroth order energy density at the matching surface,
P

. .. . + . .
and, finally, the central values of the adiabatic indices k = % Z—ﬁ and ky = % Z—p are shown for some configurations which can be

matched to an asymptotically flat exterior (with ¢; = 0). Although for all listed configurations the central density p,. = 6 = —6by,
any central density can be obtained using the rescaling freedom (73).

b Cq 'U%

hy Poc = 224 r a po(ry) K Kn
0.006 0.2184 0.264 —0.0086 —0.00841 1.13 - 103 0.36 5.3021 10.3 9.9
0.007 0.4480 0.367 —0.0089 —0.00844 46.675 0.44 4.7244 6.3 5.9
0.008 0.6896 0.441 —0.0091 —0.00843 8.165 0.54 4.2416 52 4.7
0.009 0.9440 0.500 —0.0093 —0.00839 2.556 0.64 3.8318 4.7 4.1
0.01 1.210 0.548 —0.0095 —0.00831 1.105 0.74 3.485 44 3.7
0.011 1.4872 0.587 —0.0098 —0.00822 0.584 0.85 3.1898 4.3 34
0.012 1.7762 0.621 —0.0100 —0.00812 0.352 0.97 29324 4.2 33
0.015 2.6978 0.700 —0.0109 —0.007805 0.1259 1.35 2.3441 4.4 3.0
0.02 4.3666 0.786 —0.0126 —0.00733 0.0514 2.05 1.7335 4.9 2.8
0.05 15.2 1.029 —0.0254 —0.00620 0.0193 6.76 0.664 28 9.4 2.7
0.1 32.8 1.190 —0.0449 —0.00594 0.0210 14.95 0.421 64 17.7 2.7
1 312.8 1.636 —0.2297 —0.00637 0.0503 164.58 0.21398 168 3.2
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r

FIG. 6 (color online). The zeroth order density p, is shown as
a function of r for various central pressures along the curve ¢; =
0. From top to bottom the central pressures are as given in Fig. 5.

p dp
pdp’

Ky (82)

which approximates « for low pressures, respectively.
Unfortunately, the value of « is not in the preferred range
4/3 — 5/3 that is considered to be physically acceptable in
the case of compact neutron stars or white dwarfs.

As we have seen in Sec. III A, the surfaces of constant
pressure, S,, are determined by the relation r = 7 + &, +
&, P,(cos), where &, is given by (29). These surfaces are
oblate iff k,(7) + &,/7 < 0. In terms of the functions v, B,
£, h, k, and w, the expression k,(7) + &,/F can be written
as

45

FIG. 7 (color online).

The equation of state p = p(p) is shown
for the same configurations as before.

PHYSICAL REVIEW D 75, 024013 (2007)

FIG. 8 (color online).
d

L
figures.

The square of the speed of sound, v =
is shown for the same configurations as in the previous

(83)

Using the Taylor expansion around the center, obtained in
Sec. IV B, one gets in the limit 7 — 0

l_in(}kz(’_") + &/F = _%e—zu(o)(w% +3hy)/(z1 — by).
(34)

Note that ¢”® may be fixed to 1 since its value only
corresponds to a rescaling of the time coordinate. Since
z1 >0 and b <0 for realistic configurations we see that
close to the center the surfaces of constant pressure are
oblate iff h; > —wj3/3. In Table I the values of a =
(ky(F) + &3/P)7=,, and b = (ky(F) + &,/7)|7—y are also
indicated for several configurations. In virtue of the nega-
tive signs of these parameters, the constant pressure sur-
faces are all oblate for these configurations.

In Table I the central pressure py. = 2z;, the radius of
the zero pressure surface ry, the shape at the zero pressure
surface, the shape close to the center, the value of ¢;, the
maximal speed of sound v2, the zeroth order density at the
zero pressure surface, and the adiabatic index are given for
a sequence of solutions with g; = 0.

VI. CONCLUSIONS

The most important finding of this paper is that a sub-
class of slowly rotating perfect fluid balls of Petrov type D
can be matched to asymptotically flat vacuum spacetimes
and also that, in general, slowly rotating perfect fluid balls
can be matched to nonasymptotically flat vacuum exteriors
determined by Eqgs. (23)—(25). Our numerical results sup-
port the conclusion that neither of the Petrov type D inner
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fluid solutions can be matched to second order to the Kerr
metric, which is in accordance with the general expectation
that the ellipsoidal shape of the rotating fluid ball produces
an extra contribution to the quadrupole moment which
should also be present in the corresponding quadrupole
moment of the external field [4,22]. It was also found that
there is a range in parameter space for which the value of
the central pressure is relatively low and the speed of sound
is also subluminal. The equation of state was also deter-

PHYSICAL REVIEW D 75, 024013 (2007)

mined for various solutions belonging to the investigated
class. It is clear that the equation of state cannot be poly-
tropic since, in general, the energy density does not vanish
at the zero pressure surface. Nevertheless, the equation of
state can be approximated close to the center by a poly-
tropic one. Unfortunately, the corresponding adiabatic in-
dex « was found to take values out of the physically
preferred range.
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