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In this paper two things are done. First it is shown how a four-dimensional gauged Wess-Zumino-
Witten term arises from the five-dimensional Einstein-Hilbert plus Gauss-Bonnet Lagrangian with a
special choice of the coefficients. Second, the way in which the equations of motion of four-dimensional
General Relativity arise is exhibited.
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I. INTRODUCTION

Since the proof of power counting non renormalizability
[1] of General Relativity (GR), the scientific community
has increasingly accepted the idea that Einstein’s theory is
an effective field theory [2]. Although some candidates for
the high energy limit of GR have emerged, no one has
managed to give a power counting renormalizable theory
that also reproduces the dynamical behavior of GR in four
dimensions.

The most general gravitational action in five dimensions
has one additional free parameter besides the cosmological
constant [3]. These two parameters can be chosen so that
the Lagrangian becomes a Chern-Simons form, acquiring
some of the features that makeD � 3 gravity a theory with
zero beta function [4]. This particular D � 5 gravitation
theory is a gauge theory where the spin connection ! and
the vielbein e are parts of a single connection for the Lie
algebras so�4; 2�, so�5; 1� or iso�4; 1�. Gravitation theories
that have these properties exist in all odd dimensions. They
have been studied in [5,6] and a review of them can be
found in Ref. [7]. Another compelling reason to consider
these gauge theories for the SO�D� 1; 2� group, they
admit an immediate supersymmetric extension [8,9].
Moreover, the local supersymmetry in those theories is
realized off shell and without invoking auxiliary fields or
ad-hoc constraints.

In this work, the topological sector -in the sense that no
metric is needed to construct it-, of the gauged Wess-
Zumino-Witten (gWZW) Lagrangian, is shown to arise
from higher-dimensional gravity. In the case where the
connection is valued in the Lie algebra suL�3� � suR�3�,
the gWZW term plus a kinetic piece for the Goldstone
fields, arises as the effective Lagrangian of QCD [10]. In
our case, the gauge group will not be SUL�3� � SUR�3�,
but the anti-de-Sitter group in five dimensions, SO�4; 2�.

II. FIVE-DIMENSIONAL GRAVITY AND GWZW
TERMS

The most general five-dimensional, ghost-free [11,12],
gravitational action is given by [13]

 S�!; e� �
Z
M
"abcde��2R

abRcdee � �1R
abecedee

� �0eaebecedee� (1)

where the curvature twoform is written in terms of the
Lorentz (spin) connection !, as

 Rab � d!ab �!a
c!

cb �
1

2
Rab�vdx

�dxv (2)

The vielbein ea is related to the spacetime metric through
g�� � ea�e

b
v�ab, and �ab � diag��;�;�;�;�� is the

Lorentz-invariant metric. The vielbein and the Lorentz
connection are regarded as independent fields. The field
equations associated with the variations of! are satisfied if
the torsion,Dea � dea �!a

be
b, is set equal to zero. In the

sector of the theory where the torsion is zero and the
vielbein is invertible, ! is a function of the vielbein, and
the usual second order equations for the metric are recov-
ered from the field equations obtained from the variation
with respect to e.

An interesting accident occurs when the constants in the
action are in the ratio �2:�1:�0 � 1:2=3:1=5. In that case,
the action can be rewritten as a Chern-Simons theory
[5,6,8,9],

 S�A� � �
Z
M

�
AdAdA�

3

2
A3dA�

3

5
A5

�

� �
Z
M

CS�A�; (3)

where

 A �
1

2
!abJab � eaJa5; hJabJcdJe5i � "abcde; (4)

� is dimensionless, �JAB; JCD	 � �JAC�BD � JBC�AD �
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�A$ B�, and h. . .i stands for an invariant symmetric trace
in the algebra.

In this way, the action acquires an enlarged gauge sym-
metry. If �55 > 0 the gauge group is SO�5; 1� and the
action has positive cosmological constant. For �55 < 0
the gauge group is SO�4; 2� and the cosmological constant
is negative. In the latter case, localized deformations of the
geometry give rise to asymptotically locally anti–de Sitter
geometries.

Strictly speaking, under a gauge transformation the ac-
tion (3) is not gauge invariant but changes by a closed form
plus a boundary term. This quasi invariance is a source of
ambiguities in an asymptotically AdS spacetime, where the
boundary terms that arise by gauge transformations change
the action and modify the conserved charges, producing
even divergent values for them. This problem can be
circumvented if the action principle is modified by the
addition of some new terms that do not modify the field
equations but render the action truly gauge invariant
[14,15]. The trick is to replace the Lagrangian in (3) by a
transgression form,

 S�A; �A� � �
Z
M

CS�A� � CS� �A� � �
Z
@M
B�A; �A�;

(5)

where

 B�A; �A� � �
�
A �A

�
F � �F �

1

2
A2 �

1

2
�A2

�
1

2
A �A

��
: (6)

The transgression form is the object which appears in the
Chern-Weil theorem, that states that the pullback of invari-
ant polynomials of the curvature P�F � are members of
cohomology groups of the manifold where they are defined
[16],

 dP�F � � 0; P�F � � P� �F � � dTP�A; �A�; (7)

where TP�A; �A� is defined by Eq. (7) up to a closed
form. The gauge invariant, globally-defined expression for
TP�A; �A� stands for the transgression form. In 2n� 1
dimensions, the transgression takes the form

 TP2n�1�A; �A� � n
Z 1

0
dth�A� �A�F n�1

t i; (8)

where F t � dAt �AtAt, At �A�1� t� � �At.
Thus, the boundary term B�A; �A� is uniquely determined
by the Chern-Weil theorem.

The field equations for A are the same, whether the
action principle is defined by (5) or by (3). However, there
is a problem interpreting the physical meaning of the field
�A. An interpretation was proposed in [15], where the

Lagrangian CS� �A� was considered as defined in a mani-
fold with opposite orientation to the one for CS�A�. An

alternative is to regard �A not as a dynamical field but as a
means of constructing the boundary term which makes the
action finite [17]. A different philosophy will be followed
here, that is to regard �A and A as two connections
defining the same non trivial, principal bundle. That is,
they are related by a gauge transformation.

If a non trivial bundle is considered, the integrand does
not exist globally either in (3) or in (5). This non existence
problem will be treated in [18], where a detailed study of
the definition of an action principle in a manifold divided
into patches, for a non trivial principal bundle, will be
presented [19]. In the case of a non trivial bundle, however,
the action (5) can be treated formally provided more than
one chart is used. In this case, it is necessary to introduce
connection one-forms defined on each chart, such that, in
the overlap of two charts the connections are related by a
gauge transformation, �A � h�1Ah� h�1dh �Ah,
where h is a transition function which determines the non
triviality of the bundle.

Replacing �A �Ah in (5), it is straightforward to
check that the action takes the form of a gWZW term,
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�
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Z
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�
h�1dh�h�1dh�2�h�1dh�2i

� �
Z
M4
hdhh�1A

�
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�
�
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Z
M4
hdhh�1Af�dhh�1�2 �Adhh�1gi

� �
Z
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AAh

�
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1

2
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1

2
�Ah�2 �

1

2
AAh

��
: (9)

where the curvature is F � dA�AA and F h �
h�1Fh: This action is invariant under the adjoint action
of the gauge group, namely,

 A ! g�1Ag� g�1dg; h! g�1hg: (10)

As has been shown, the principle of gauge invariance,
through the mathematical structure of the theory of prin-
cipal bundles, provides a compactification mechanism.
Beginning with a five-dimensional gauge theory that has
no metric in it, a D � 4 gauge invariant theory has been
obtained. This is a compactification mechanism alternative
to Kaluza-Klein. The relation between three-dimensional
Chern-Simons theories and two-dimensional gWZW mod-
els was early realized in [20]. Originally, gWZW terms
were obtained in [10] by trial and error, and it was later
shown that they can be obtained systematically see, e.g.,
[21–23].

Other attempts to relate the D � 4 gWZW Lagrangians
to D � 5 Chern-Simons theory can be found in the litera-
ture (see for instance, Refs. [24,25]). However, asymptotic
conditions for the metric were always assumed in order to
reproduce the kinetic term for the Goldstone fields, not
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present in (9). As can been seen from the previous dis-
cussion, such a strong assumption is not required here, the
kinetic term does not appear, but the gWZW term arises
naturally from the transgression form.

The action (9), usually supplemented with a kinetic term
for the so-called Goldstone fields, requires the introduction
of the Hodge dual, which in turn requires the existence of a
metric in the manifold. The point of view followed here is
that the metric arises from the components of a gauge
connection in a broken phase of the theory, but it is not
assumed to be defined a priori. In the next section the
action principle (9) for a particular class of h will be
studied further.

III. THE GWZW TERM AS A GRAVITATIONAL
ACTION

The action (9) describes a theory with SO�4; 2� �
SO�4; 2� gauge symmetry spontaneously broken to its
diagonal subgroup SO�4; 2� [10,26]. The gauge invariance
is manifest since the connection takes its values in the
diagonal subalgebra only [22]. However, in order to de-
scribe the known low energy gravitational behavior, it is
necessary to reduce the symmetry to the usual SO�3; 1�
local symmetry present in the Einstein-Hilbert action. A
way to do this is by replacing the gauge group SO�4; 2� by
the coset SO�4;2�

R
, where R stands for the group of trans-

formations generated by e�J45 and an element of the coset,
h, is a representative of the equivalence class �h	 � fh

h0 , h0 � e�J45hjh; h0 2 SO�4; 2�g. Using the adjoint
action, the stability group of this coset is SO�3; 1� � R
and it corresponds to the residual gauge invariance present
in the theory, that is, h 2 �h	 ) g�1hg 2 �h	 , g 2
SO�3; 1� � R.

Fixing the Goldstone field associated to J45 in the action
(9), corresponds to reducing the gauge symmetry down to
SO�3; 1� � R. There is an interesting geometrical interpre-
tation of this. Suppose we have a six-dimensional manifold
M6 and delete a four-dimensional submanifoldM4 (Fig. 1).

Then, by considering the integral of a characteristic class
on M6 �M4, the action induced on M4 is (9) [27],

 

Z
M6�M4

hFFF i � S�h;A�: (11)

The field � can be interpreted in terms of the six-
dimensional pseudo-Riemannian geometry, as a deficit

angle around the four-dimensional defect M4 which, as
shown here, is related to the four-dimensional cosmologi-
cal constant. Here we have assumed that � is a constant,
thus breaking part of the gauge symmetry ‘‘by hand’’. In
terms of this geometrical picture, the defect is assumed to
have a fixed deficit angle.

Now, in order to write the field equations associated with
the gWZW term (9) for the coset SO�4;2�

R
, it is helpful to

decompose the connection and the curvature in a way that
reflects the SO�3; 1� symmetry,

 A �
1

2
!abJab � b

aJa4 � e
aJa5 ��J45; (12)

 

F �
1

2
�Rab � eaeb � babb�Jab � �Dba � ea�	Ja4

� �Dea � ba�	Ja5 � �d�� baea	J45; (13)

whereDea � dea �!a
be

b. The field equations associated
to the variation of the Goldstone fields in the coset SO�4;2�

R

are

 

�
Z
M4

�
h�1�h

�
�F h�2 �F 2 �F hF �

3

4
�Ah �A;Ah �A	�F h �F � �

1

8
�Ah �A;Ah �A	2

�
1

2
�Ah �A��F h �F ;Ah �A	�

��
� 0; (14)

while the 15 equations of motion that arise from the variation of the connection, are

 �
Z
M4

�
�A�Ah �A�

�
F h � 2F �

1

4
�Ah �A;Ah �A	

��
� �h$ h�1� � 0: (15)

 

M
6

4
M  deleted

FIG. 1. A four-dimensional defect in a six-dimensional mani-
fold. The submanifold M4 has been deleted, as indicated by the
infinitesimal loop in the center of the diagram.
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In order to obtain the equations of motion in a explicit
form, it is necessary to pick a representative of the coset. In
any open set, it can be parametrized by 14 coordinates �,
as h � e�J45e�

a4Ja4e�
a5Ja5e�1=2��abJab , where � is an arbi-

trary, real, constant. The purely gravitational sector of the
theory, that is the one in which only the vielbein and the
spin connection are present, corresponds to setting ba, �
and the 14 Goldstone fields equal to zero. In this dynamical
sector the set of Eqs. (15) reduces to

 "abcde
b�Rcd ��eced� sinh� � 0 (16)

 "abcdecDed sinh� � 0: (17)

Here the constant � is given by �1� 2 cosh��=3.
Excluding the trivial case � � 0 implies �> 1, and
Eq. (17) implies that the torsion is zero. Solving the torsion
for the spin connection and replacing it back in (16), the
Einstein’s equations in standard form are obtained. It is
reassuring to check that these field configurations also
satisfy the 14 field equations obtained from (14).

In order to write Einstein’s equations it is necessary to
assume that the vielbein ea� is invertible, and to make
contact with a metric theory, it is also necessary to rescale
the vielbein with a parameter with dimensions of length,
ea � �ea=l. In this way, the metric is g�v � �ea� �ebv�ab, the
effective cosmological constant acquires its usual units
� � �1� 2 cosh��l�2, and (16) can be rewritten as

 R�v �
1

2
g�vR��g�v � 0: (18)

However, as was shown in Ref. [4], assuming the invert-
ibility of the vielbein spoils the possibility of making a
sensible, quantum mechanical, perturbative expansion
around A � 0. The rescaling of ea is also unhelpful in
the sense that, if no such rescaling is done, all the parame-
ters of the theory are dimensionless, which would suggest
the possibility of power counting renormalizability of the
theory.

IV. DISCUSSION AND OUTLOOK

Here we have shown that General Relativity is a dy-
namical sector of a gWZW theory for the coset SO�4;2�

R
. It

can be checked that the same phenomenon occurs if in the
SO�4; 2� gWZW, a representative of the group is taken as
h � e�J45e�

a4Ja4e�
a5Ja5e�

abJab � e�J45 �h, and � is kept fixed
in the action reducing the symmetry to SO�3; 1� � R. The
four-dimensional spacetime arises in the sector of solution
space characterized by �h � 1, dete � 0, b � 0 �A45.

Having obtained the equations of General Relativity, a
more detailed analysis of the dynamical structure of the
theory (9) is necessary. Generically, as it happens with all
higher-dimensional Chern-Simons theories, the system
will possess degenerate dynamical sectors [28–30]. A
deeper understanding of this problem would be required
prior to any study of the quantum properties of the action
(9).

The theory changes dramatically if the � field is re-
garded as dynamical. In that case, there is no purely
gravitational sector with only ea and !ab nonzero.
However there are solutions of gravity coupled to the other
fields, including an interesting class of gravitational sol-
itons, that is, Lorentzian, everywhere regular, classical
solutions. A two-parameter family of these solitons will
be presented in [31].
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